大模型赋能智能摄影测量:现状、挑战与前景
P237; 大模型从深度学习和迁移学习技术发展而来,依靠大量的训练数据和庞大的参数容量产生规模效应,从而激发了模型的涌现能力,在众多下游任务中展现了强大的泛化性和适应性.以ChatGPT、SAM为代表的大模型标志着通用人工智能时代的到来,为地球空间信息处理的自动化与智能化提供了新的理论与技术.为了进一步探索大模型赋能泛摄影测量领域的方法与途径,本文回顾了摄影测量领域的基本问题和任务内涵,总结了深度学习方法在摄影测量智能处理中的研究成果,分析了面向特定任务的监督预训练方法的优势与局限;阐述了通用人工智能大模型的特点及研究进展,关注大模型在基础视觉任务中的场景泛化性以及三维表征方面的潜力;从训练数...
Saved in:
Published in | 测绘学报 Vol. 53; no. 10; pp. 1955 - 1966 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079%武汉大学计算机学院,湖北武汉 430072
26.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 |
DOI | 10.11947/j.AGCS.2024.20240068 |
Cover
Abstract | P237; 大模型从深度学习和迁移学习技术发展而来,依靠大量的训练数据和庞大的参数容量产生规模效应,从而激发了模型的涌现能力,在众多下游任务中展现了强大的泛化性和适应性.以ChatGPT、SAM为代表的大模型标志着通用人工智能时代的到来,为地球空间信息处理的自动化与智能化提供了新的理论与技术.为了进一步探索大模型赋能泛摄影测量领域的方法与途径,本文回顾了摄影测量领域的基本问题和任务内涵,总结了深度学习方法在摄影测量智能处理中的研究成果,分析了面向特定任务的监督预训练方法的优势与局限;阐述了通用人工智能大模型的特点及研究进展,关注大模型在基础视觉任务中的场景泛化性以及三维表征方面的潜力;从训练数据、模型微调策略和异构多模态数据融合处理3个方面,探讨了大模型技术在摄影测量领域当前面临的挑战与发展趋势. |
---|---|
AbstractList | P237; 大模型从深度学习和迁移学习技术发展而来,依靠大量的训练数据和庞大的参数容量产生规模效应,从而激发了模型的涌现能力,在众多下游任务中展现了强大的泛化性和适应性.以ChatGPT、SAM为代表的大模型标志着通用人工智能时代的到来,为地球空间信息处理的自动化与智能化提供了新的理论与技术.为了进一步探索大模型赋能泛摄影测量领域的方法与途径,本文回顾了摄影测量领域的基本问题和任务内涵,总结了深度学习方法在摄影测量智能处理中的研究成果,分析了面向特定任务的监督预训练方法的优势与局限;阐述了通用人工智能大模型的特点及研究进展,关注大模型在基础视觉任务中的场景泛化性以及三维表征方面的潜力;从训练数据、模型微调策略和异构多模态数据融合处理3个方面,探讨了大模型技术在摄影测量领域当前面临的挑战与发展趋势. |
Abstract_FL | Developed from deep learning and transfer learning techniques,large models leverage vast training datasets and im-mense parameter capacities to create scale effects,thus inspiring the model's emergent capabilities and demonstrating strong generalization and adaptability in numerous downstream tasks.Large models,represented by ChatGPT and SAM,signify the arrival of the era of general artificial intelligence,providing new theories and techniques for the automation and intelligence of Earth's spatial information processing.To further explore the methods and pathways for large models to empower the field of photogrammetry,this paper reviews the basic problems and mission tasks in the field of photogrammetry,summarizes the re-search achievements of deep learning methods in intelligent photogrammetric processing,analyzes the advantages and limita-tions of supervised pre-training methods aimed at specific tasks;Besides,we elaborates on the characteristics and research pro-gress of general artificial intelligence large models,focusing on the generalizability of large models in basic visual tasks and the potential in three-dimensional representation;Finally,this paper explores the current challenges and future trends of large model technologies in the field of photogrammetry,from the perspectives of training data,model fine-tuning strategies,and heterogeneous multi-modal data fusion strategies. |
Author | 皮英冬 王密 程昫 潘俊 肖晶 |
AuthorAffiliation | 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079%武汉大学计算机学院,湖北武汉 430072 |
AuthorAffiliation_xml | – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079%武汉大学计算机学院,湖北武汉 430072 |
Author_FL | PAN Jun PI Yingdong WANG Mi CHENG Xu XIAO Jing |
Author_FL_xml | – sequence: 1 fullname: WANG Mi – sequence: 2 fullname: CHENG Xu – sequence: 3 fullname: PAN Jun – sequence: 4 fullname: PI Yingdong – sequence: 5 fullname: XIAO Jing |
Author_xml | – sequence: 1 fullname: 王密 – sequence: 2 fullname: 程昫 – sequence: 3 fullname: 潘俊 – sequence: 4 fullname: 皮英冬 – sequence: 5 fullname: 肖晶 |
BookMark | eNrjYmDJy89LZWCQNTTQMzS0NDHXz9JzdHcO1jMyMDIBEwYGZhYsDJyGBgaGuoamlqYcDLzFxZlJBgamJsbmpsaWnAxWT5csf7Zi4dN53S-2dr9o3vts5i4QObHl6d6Nz7Z2v2zvt3ret-F517bHDY3PeiY-65jxZEff087eZzPX8zCwpiXmFKfyQmluhlA31xBnD10ff3dPZ0cf3WKgvQa6KabJhklm5qkpxibJKaaJySaJqYlpyYmmFuaJyYnJBolmRmaGiUnm5mkmRpbmFompBpZmacZmRskpRpZAEQtLY24GVYi55Yl5aYl56fFZ-aVFeUAb45MzKpJA3gT5z8AYAFThXrE |
ClassificationCodes | P237 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11947/j.AGCS.2024.20240068 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitle_FL | Large models enabling intelligent photogrammetry:status,challenges and prospects |
EndPage | 1966 |
ExternalDocumentID | chxb202410010 |
GroupedDBID | -01 2B. 4A8 5VS 5XA 5XB 7X2 92E 92I 93N ABJNI ACGFS AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CW9 HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PHGZM PHGZT PIMPY PMFND PSX PYCSY RIG TCJ TGP U1G U5K |
ID | FETCH-LOGICAL-s1000-d5c1b67ed34cd5ac4aeafca587acac0a6261ab77f42978ae096f362cd29429893 |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:08 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | 智能摄影测量 多模态 deep learning 深度学习 大模型 intelligent photogrammetry multi-modal large models |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1000-d5c1b67ed34cd5ac4aeafca587acac0a6261ab77f42978ae096f362cd29429893 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_chxb202410010 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | 测绘学报 |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2024 |
Publisher | 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079%武汉大学计算机学院,湖北武汉 430072 |
Publisher_xml | – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079%武汉大学计算机学院,湖北武汉 430072 |
SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
Score | 2.4320838 |
Snippet | P237;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1955 |
Title | 大模型赋能智能摄影测量:现状、挑战与前景 |
URI | https://d.wanfangdata.com.cn/periodical/chxb202410010 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5ivHgRn8RX2IPlRTbuzPT0I7eezaxBURATyC30vMzFDbgJaE6Kgo9oJDdzEQRBb-ohIkJ-je4m_guremZ3Jxow8dLb24-ar-qb7a6e7epxnIvK-CJDt5gillWdJcyvx1me1nOGsxFPc-P6FJx84yafnmXX5oK5kVGvsmtpeSmeSFb2jCv5H1axDHmlKNkDMDsQigWYR34xRYYx3RfHEAWgGWgBEQctQbtUoiKQIUQSwqDMSB_CKWqjFIR6d4kLklEv_Bq6VFL2UiAFyBZCgQgzEYQNm9EQcoh82iEhbXvZJCGUkaAkRAxCSe1RpkQh_evqXRsIKxcSEIa2I-oyBZpbURp00L8XyutTW2zSAsmrNag21XASocNhDSeNSjzYR1f7KBQfWTOEVmkEgvZrVp-AeIxCAYswe3vPWhP38WEn1G1o_Qr0P7VSZCYdWK0YqFYJSBcmc0khsr6wbQbqIIuhZSggpGTxgo8pawwPQlVWIdlYpTXRUJQgJK9pkShQ3CqHDIm_8V9mPrpuCrxgf7pJK921KKNSomraG2rQRlmqvQMhqDx4pqO66uj6BtWZszjmuT9CNCrzoKuKw5dLnwqHeb73fK2YsBO2vtq8PUHk2oQCl4YOymDbaLJwP6ZqAtM45Bz2hLBbM67fqi4p0KGXVZcVZ5jKkXwB83GFPnDh6X0LjA-PzAxcX_hcDZbQ5J8HdsdEqX8ZBUjAr-wF2wb_tXPTvlPxU2eOOUfLBWZNF6PFcWdkZeGEM6Y79JfX4t0HtUs1my-eaHZOOpPd9x96H991367ubK7uPN7qbXyndP1Jd-tLb3P119PXk9trn7dffP3x8FHv5Xrv2Zuf39a6z1_1Nj6dcmZb0Uxzul6-UKXeob_x6mmQuDEXWeqzJA1Mwkxm8sQEUpjEJA3DPe6aWIgcnVQhTdZQPEcHN0k9xehNDf5pZ7S92M7GnJqIWZp6rmtMaliKHzLluTF-ljZUbNz0jDNemmG-HDA787voO_uvBuecI8Mf-3lndOnecnYBFwBL8bhl_DeaALqt |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%A7%E6%A8%A1%E5%9E%8B%E8%B5%8B%E8%83%BD%E6%99%BA%E8%83%BD%E6%91%84%E5%BD%B1%E6%B5%8B%E9%87%8F%3A%E7%8E%B0%E7%8A%B6%E3%80%81%E6%8C%91%E6%88%98%E4%B8%8E%E5%89%8D%E6%99%AF&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%AF%86&rft.au=%E7%A8%8B%E6%98%AB&rft.au=%E6%BD%98%E4%BF%8A&rft.au=%E7%9A%AE%E8%8B%B1%E5%86%AC&rft.date=2024-11-26&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430079%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430072&rft.issn=1001-1595&rft.volume=53&rft.issue=10&rft.spage=1955&rft.epage=1966&rft_id=info:doi/10.11947%2Fj.AGCS.2024.20240068&rft.externalDocID=chxb202410010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |