Cross Modal Sentiment Analysis of Image Text Fusion Based on Bi LSTM and B-CNN

Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the study firstly designs a cross-modal sentiment analysis method based on bi-directional long and short-term memory networks and bi-linear conv...

Full description

Saved in:
Bibliographic Details
Published inInformatica (Ljubljana) Vol. 48; no. 21; pp. 95 - 111
Main Authors Fang, Yuan, Wang, Yi
Format Journal Article
LanguageEnglish
Published Ljubljana Slovenian Society Informatika / Slovensko drustvo Informatika 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the study firstly designs a cross-modal sentiment analysis method based on bi-directional long and short-term memory networks and bi-linear convolutional neural networks. At the same time, concepts such as image attributes are introduced in the experiment to detect irony in graphic and textual data. Finally, a hybrid strategy cross-modal sentiment analysis method is established in the experiment. After comparison, the proposed method has the highest subject working characteristic curve and PR, which are 5% and 3% higher than the comparative methods, respectively. The model has the lowest error take, with a minimum value of only 0.71%. The average F1 value and average accuracy reached 92.61% and 88.97%, respectively. When the validation set size is 400, the recognition time of the proposed method is 2.1 seconds. When iterating 50, the recognition time of this method is 0.9 seconds. In practical applications, the proposed method has accurately analyzed six types of graphic and textual content with different emotional tendencies. This method has the best detection results for both single graphic and cross-modal modes.
AbstractList Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the study firstly designs a cross-modal sentiment analysis method based on bi-directional long and short-term memory networks and bi-linear convolutional neural networks. At the same time, concepts such as image attributes are introduced in the experiment to detect irony in graphic and textual data. Finally, a hybrid strategy cross-modal sentiment analysis method is established in the experiment. After comparison, the proposed method has the highest subject working characteristic curve and PR, which are 5% and 3% higher than the comparative methods, respectively. The model has the lowest error take, with a minimum value of only 0.71%. The average F1 value and average accuracy reached 92.61% and 88.97%, respectively. When the validation set size is 400, the recognition time of the proposed method is 2.1 seconds. When iterating 50, the recognition time of this method is 0.9 seconds. In practical applications, the proposed method has accurately analyzed six types of graphic and textual content with different emotional tendencies. This method has the best detection results for both single graphic and cross-modal modes.
Author Wang, Yi
Fang, Yuan
Author_xml – sequence: 1
  givenname: Yuan
  surname: Fang
  fullname: Fang, Yuan
– sequence: 2
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
BookMark eNotjjtPwzAAhC1UJNLCzmiJOcGPOLbHNqKlUhqGZK9cP1Cq1C5xguDfEwTL3acbPt0SLHzwFoBHjDKK81w-d95ln7noCM4KXvAbkGDB8pQKjhcgQZShlDFZ3IFljGeEcooFSUBdDiFGeAhG9bCxfuwuc8C1V_137CIMDu4v6t3C1n6NcDvFLni4UdEa-AsdrJr2AJU3cJOWdX0Pbp3qo3347xVoti9t-ZpWb7t9ua7SqxRjSqUuqNFIO8Y5UsLigjBLKNIWiXl1yGkpmMWKO4K4MwrzXBijpdEne6Ir8PRnvQ7hY7JxPJ7DNMyX45HighJGCef0B_OKURE
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.31449/inf.v48i21.6767
DatabaseName ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
Technology Collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1854-3871
EndPage 111
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
.DC
29I
2WC
3V.
5GY
7SC
7XB
8AL
8FD
8FE
8FG
8FK
AAKPC
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
DWQXO
E3Z
EDO
EN8
GNUQQ
HCIFZ
I-F
JQ2
K6V
K7-
L7M
L~C
L~D
M0N
MK~
ML~
OK1
OVT
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PV9
Q9U
RNS
RZL
TR2
TUS
ID FETCH-LOGICAL-p98t-39c63dc0cf5770a8e1625e230ce080cff0fc985e1a7f207fda1748ddc9dcbeb3
IEDL.DBID BENPR
ISSN 0350-5596
IngestDate Fri Jul 25 22:12:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p98t-39c63dc0cf5770a8e1625e230ce080cff0fc985e1a7f207fda1748ddc9dcbeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3163253277?pq-origsite=%requestingapplication%
PQID 3163253277
PQPubID 1616336
PageCount 17
ParticipantIDs proquest_journals_3163253277
PublicationCentury 2000
PublicationDate 20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241201
  day: 01
PublicationDecade 2020
PublicationPlace Ljubljana
PublicationPlace_xml – name: Ljubljana
PublicationTitle Informatica (Ljubljana)
PublicationYear 2024
Publisher Slovenian Society Informatika / Slovensko drustvo Informatika
Publisher_xml – name: Slovenian Society Informatika / Slovensko drustvo Informatika
SSID ssj0043182
Score 2.3519008
Snippet Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the...
SourceID proquest
SourceType Aggregation Database
StartPage 95
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Data analysis
Deep learning
Emotions
Experiments
Internet
Methods
Neural networks
Recognition
Sentiment analysis
Title Cross Modal Sentiment Analysis of Image Text Fusion Based on Bi LSTM and B-CNN
URI https://www.proquest.com/docview/3163253277
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ELl78Nn4g6cFroevWtT0ZIU40shjBhBvZ-pFwcKCAf7-v0MWDibcl22lv-329lz6Ebk0JriF2nCRAVyQpI0UUd47EnJZOCs146XPIUZ4O35PnKZ-GwG0VxiprTNwCtVlon5H3YhAOjMdMiLvlJ_Fbo3x3NazQaKAWQLCUTdTqP-SvbzUWAzvKXR-BUwLaOTQqY3ARqgcV7H4ncs6irj-17A8YbxkmO0IHQRri-10tj9GerU7QYb12AYe_8BTlA89seLQw8PTYT_v4hA_Xx4vghcNPHwATeALAi7ONz8NwH9jKYH8xxy_jyQgXlcF9MsjzMzTOHiaDIQlrEchSyTWJlU5jo6l2XAhaSBuBhbHgJLQF9aedo04ryW1UCMeocKYA0yGN0croEqzzOWpWi8peIOy4liY1lFphEsbKgjsQQFFqpEyMKuwlatdvZBa-7NXstw5X_9--RvsMBMBu9KONmuuvjb0BAl-XHdSQ2WMn1OoHzH6a6w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLVKGWDhjXgU8ACj28SJE2dAiBZCS5ssDVInqsQPqQNNoS2If-IjuW4SMSCxsUVKlMH3-pxzH_ZF6FJmEDU4mhEX6Iq4mR2QgGlNHGZlmvuCsszkIaPY6z65jyM2qqGv6iyMaausMHEF1DIXJkfeckA4UOZQ37-ZvRIzNcpUV6sRGoVb9NXnB4Rs8-veHdj3itLwPul0STlVgMwCviBOIDxHCkto5vtWypUNEYACIS4UiCehtaVFwJmyU19Ty9cyBc3OpRSBFBlEnvDXNbTuOsDj5lx6-FDhPjAxL2oWzCKg08uiqAMRS9ACb2m-u3xC7aa5Ie0X8K_YLNxBW6UMxbeF3-yimpruoe1qxAMud_w-ijuGRXGUS_h6aDqLTDYRV1eZ4Fzj3gtAEk4A5HG4NLk33AZmlNg8TPBgmEQ4nUrcJp04PkDDf1isQ1Sf5lN1hLBmgktPWpbypUtpljINYsv2JOeuDFJ1jBrViozLXTQf_9j85O_XF2ijm0SD8aAX90_RJgXhUbScNFB98bZUZyAcFtn5yl4YPf-ve3wD99zWfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJMaLb-MDdQ96XGm3XXZ7MEZAAiqNEUw8Sdp9JBwsPkDjP_PnOQttPJh449akTQ-zs_N938zsDsCJTlE1BJbTEOGKhqkf0YhbSwPupVYKxXjq8pC9uN55CK8f-WMJvouzMK6tsoiJs0Ctx8rlyGsBEgfGAyZEzeZtEXet9sXLK3UTpFyltRinMXeRG_P1ifLt_bzbwrU-Zax9NWh2aD5hgL5EckKDSNUDrTxluRBeIo2PasAgKVcGiZSy1rMqktz4ibDME1YnyN-l1irSKkUVin9dgopwmqgMlcZVfHdfoADispxXMLhHkbXnJdIA9UtUQ985-wjliPln7r60PzAww7b2OqzmpJRczr1oA0om24S1YuADyff_FsRNh6mkN9b4dd_1GbncIikuNiFjS7rPGKDIAO1G2lOXiSMNxElN3MOI3PYHPZJkmjRoM463ob8Ac-1AORtnZheI5UrquvY8I3TIWJpwi9TLr2spQx0lZg-qhUWG-Z56H_56wP7_r49hGV1jeNuNbw5ghSELmfefVKE8eZuaQ2QRk_QoXzACT4v1kB8rzNwR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+Modal+Sentiment+Analysis+of+Image+Text+Fusion+Based+on+Bi+LSTM+and+B-CNN&rft.jtitle=Informatica+%28Ljubljana%29&rft.au=Fang%2C+Yuan&rft.au=Wang%2C+Yi&rft.date=2024-12-01&rft.pub=Slovenian+Society+Informatika+%2F+Slovensko+drustvo+Informatika&rft.issn=0350-5596&rft.eissn=1854-3871&rft.volume=48&rft.issue=21&rft.spage=95&rft.epage=111&rft_id=info:doi/10.31449%2Finf.v48i21.6767&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0350-5596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0350-5596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0350-5596&client=summon