Cross Modal Sentiment Analysis of Image Text Fusion Based on Bi LSTM and B-CNN
Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the study firstly designs a cross-modal sentiment analysis method based on bi-directional long and short-term memory networks and bi-linear conv...
Saved in:
Published in | Informatica (Ljubljana) Vol. 48; no. 21; pp. 95 - 111 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ljubljana
Slovenian Society Informatika / Slovensko drustvo Informatika
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the study firstly designs a cross-modal sentiment analysis method based on bi-directional long and short-term memory networks and bi-linear convolutional neural networks. At the same time, concepts such as image attributes are introduced in the experiment to detect irony in graphic and textual data. Finally, a hybrid strategy cross-modal sentiment analysis method is established in the experiment. After comparison, the proposed method has the highest subject working characteristic curve and PR, which are 5% and 3% higher than the comparative methods, respectively. The model has the lowest error take, with a minimum value of only 0.71%. The average F1 value and average accuracy reached 92.61% and 88.97%, respectively. When the validation set size is 400, the recognition time of the proposed method is 2.1 seconds. When iterating 50, the recognition time of this method is 0.9 seconds. In practical applications, the proposed method has accurately analyzed six types of graphic and textual content with different emotional tendencies. This method has the best detection results for both single graphic and cross-modal modes. |
---|---|
AbstractList | Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the study firstly designs a cross-modal sentiment analysis method based on bi-directional long and short-term memory networks and bi-linear convolutional neural networks. At the same time, concepts such as image attributes are introduced in the experiment to detect irony in graphic and textual data. Finally, a hybrid strategy cross-modal sentiment analysis method is established in the experiment. After comparison, the proposed method has the highest subject working characteristic curve and PR, which are 5% and 3% higher than the comparative methods, respectively. The model has the lowest error take, with a minimum value of only 0.71%. The average F1 value and average accuracy reached 92.61% and 88.97%, respectively. When the validation set size is 400, the recognition time of the proposed method is 2.1 seconds. When iterating 50, the recognition time of this method is 0.9 seconds. In practical applications, the proposed method has accurately analyzed six types of graphic and textual content with different emotional tendencies. This method has the best detection results for both single graphic and cross-modal modes. |
Author | Wang, Yi Fang, Yuan |
Author_xml | – sequence: 1 givenname: Yuan surname: Fang fullname: Fang, Yuan – sequence: 2 givenname: Yi surname: Wang fullname: Wang, Yi |
BookMark | eNotjjtPwzAAhC1UJNLCzmiJOcGPOLbHNqKlUhqGZK9cP1Cq1C5xguDfEwTL3acbPt0SLHzwFoBHjDKK81w-d95ln7noCM4KXvAbkGDB8pQKjhcgQZShlDFZ3IFljGeEcooFSUBdDiFGeAhG9bCxfuwuc8C1V_137CIMDu4v6t3C1n6NcDvFLni4UdEa-AsdrJr2AJU3cJOWdX0Pbp3qo3347xVoti9t-ZpWb7t9ua7SqxRjSqUuqNFIO8Y5UsLigjBLKNIWiXl1yGkpmMWKO4K4MwrzXBijpdEne6Ir8PRnvQ7hY7JxPJ7DNMyX45HighJGCef0B_OKURE |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BYOGL CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.31449/inf.v48i21.6767 |
DatabaseName | ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) (NC LIVE) Technology Collection East Europe, Central Europe Database ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1854-3871 |
EndPage | 111 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S .DC 29I 2WC 3V. 5GY 7SC 7XB 8AL 8FD 8FE 8FG 8FK AAKPC ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BGLVJ BPHCQ BYOGL CCPQU DWQXO E3Z EDO EN8 GNUQQ HCIFZ I-F JQ2 K6V K7- L7M L~C L~D M0N MK~ ML~ OK1 OVT P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PV9 Q9U RNS RZL TR2 TUS |
ID | FETCH-LOGICAL-p98t-39c63dc0cf5770a8e1625e230ce080cff0fc985e1a7f207fda1748ddc9dcbeb3 |
IEDL.DBID | BENPR |
ISSN | 0350-5596 |
IngestDate | Fri Jul 25 22:12:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p98t-39c63dc0cf5770a8e1625e230ce080cff0fc985e1a7f207fda1748ddc9dcbeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3163253277?pq-origsite=%requestingapplication% |
PQID | 3163253277 |
PQPubID | 1616336 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3163253277 |
PublicationCentury | 2000 |
PublicationDate | 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ljubljana |
PublicationPlace_xml | – name: Ljubljana |
PublicationTitle | Informatica (Ljubljana) |
PublicationYear | 2024 |
Publisher | Slovenian Society Informatika / Slovensko drustvo Informatika |
Publisher_xml | – name: Slovenian Society Informatika / Slovensko drustvo Informatika |
SSID | ssj0043182 |
Score | 2.3519008 |
Snippet | Due to the different modalities of data such as images and text, the difficulty of sentiment analysis increases. To achieve cross-modal sentiment analysis, the... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 95 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Data analysis Deep learning Emotions Experiments Internet Methods Neural networks Recognition Sentiment analysis |
Title | Cross Modal Sentiment Analysis of Image Text Fusion Based on Bi LSTM and B-CNN |
URI | https://www.proquest.com/docview/3163253277 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ELl78Nn4g6cFroevWtT0ZIU40shjBhBvZ-pFwcKCAf7-v0MWDibcl22lv-329lz6Ebk0JriF2nCRAVyQpI0UUd47EnJZOCs146XPIUZ4O35PnKZ-GwG0VxiprTNwCtVlon5H3YhAOjMdMiLvlJ_Fbo3x3NazQaKAWQLCUTdTqP-SvbzUWAzvKXR-BUwLaOTQqY3ARqgcV7H4ncs6irj-17A8YbxkmO0IHQRri-10tj9GerU7QYb12AYe_8BTlA89seLQw8PTYT_v4hA_Xx4vghcNPHwATeALAi7ONz8NwH9jKYH8xxy_jyQgXlcF9MsjzMzTOHiaDIQlrEchSyTWJlU5jo6l2XAhaSBuBhbHgJLQF9aedo04ryW1UCMeocKYA0yGN0croEqzzOWpWi8peIOy4liY1lFphEsbKgjsQQFFqpEyMKuwlatdvZBa-7NXstw5X_9--RvsMBMBu9KONmuuvjb0BAl-XHdSQ2WMn1OoHzH6a6w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLVKGWDhjXgU8ACj28SJE2dAiBZCS5ssDVInqsQPqQNNoS2If-IjuW4SMSCxsUVKlMH3-pxzH_ZF6FJmEDU4mhEX6Iq4mR2QgGlNHGZlmvuCsszkIaPY6z65jyM2qqGv6iyMaausMHEF1DIXJkfeckA4UOZQ37-ZvRIzNcpUV6sRGoVb9NXnB4Rs8-veHdj3itLwPul0STlVgMwCviBOIDxHCkto5vtWypUNEYACIS4UiCehtaVFwJmyU19Ty9cyBc3OpRSBFBlEnvDXNbTuOsDj5lx6-FDhPjAxL2oWzCKg08uiqAMRS9ACb2m-u3xC7aa5Ie0X8K_YLNxBW6UMxbeF3-yimpruoe1qxAMud_w-ijuGRXGUS_h6aDqLTDYRV1eZ4Fzj3gtAEk4A5HG4NLk33AZmlNg8TPBgmEQ4nUrcJp04PkDDf1isQ1Sf5lN1hLBmgktPWpbypUtpljINYsv2JOeuDFJ1jBrViozLXTQf_9j85O_XF2ijm0SD8aAX90_RJgXhUbScNFB98bZUZyAcFtn5yl4YPf-ve3wD99zWfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJMaLb-MDdQ96XGm3XXZ7MEZAAiqNEUw8Sdp9JBwsPkDjP_PnOQttPJh449akTQ-zs_N938zsDsCJTlE1BJbTEOGKhqkf0YhbSwPupVYKxXjq8pC9uN55CK8f-WMJvouzMK6tsoiJs0Ctx8rlyGsBEgfGAyZEzeZtEXet9sXLK3UTpFyltRinMXeRG_P1ifLt_bzbwrU-Zax9NWh2aD5hgL5EckKDSNUDrTxluRBeIo2PasAgKVcGiZSy1rMqktz4ibDME1YnyN-l1irSKkUVin9dgopwmqgMlcZVfHdfoADispxXMLhHkbXnJdIA9UtUQ985-wjliPln7r60PzAww7b2OqzmpJRczr1oA0om24S1YuADyff_FsRNh6mkN9b4dd_1GbncIikuNiFjS7rPGKDIAO1G2lOXiSMNxElN3MOI3PYHPZJkmjRoM463ob8Ac-1AORtnZheI5UrquvY8I3TIWJpwi9TLr2spQx0lZg-qhUWG-Z56H_56wP7_r49hGV1jeNuNbw5ghSELmfefVKE8eZuaQ2QRk_QoXzACT4v1kB8rzNwR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+Modal+Sentiment+Analysis+of+Image+Text+Fusion+Based+on+Bi+LSTM+and+B-CNN&rft.jtitle=Informatica+%28Ljubljana%29&rft.au=Fang%2C+Yuan&rft.au=Wang%2C+Yi&rft.date=2024-12-01&rft.pub=Slovenian+Society+Informatika+%2F+Slovensko+drustvo+Informatika&rft.issn=0350-5596&rft.eissn=1854-3871&rft.volume=48&rft.issue=21&rft.spage=95&rft.epage=111&rft_id=info:doi/10.31449%2Finf.v48i21.6767&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0350-5596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0350-5596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0350-5596&client=summon |