Data-level Linkage of Multiple Surveys for Improved Understanding of Global Health Challenges
Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health, using surveys (e.g., Demographic Health Survey). Though there are multiple surveys on the topic, data-driven insight extraction and analysis...
Saved in:
Published in | AMIA Summits on Translational Science proceedings Vol. 2021; pp. 92 - 101 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Medical Informatics Association
17.05.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health, using surveys (e.g., Demographic Health Survey). Though there are multiple surveys on the topic, data-driven insight extraction and analysis are often applied on these surveys separately, with limited efforts to exploit them jointly, and hence results in poor prediction performance of critical events, such as neonatal death. Existing machine learning approaches to utilise multiple data sources are not directly applicable to surveys that are disjoint on collection time and locations. In this paper, we propose, to the best of our knowledge, the first detailed work that automatically links multiple surveys for the improved predictive performance of newborn and child mortality and achieves cross-study impact analysis of covariates. |
---|---|
AbstractList | Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health, using surveys (e.g., Demographic Health Survey). Though there are multiple surveys on the topic, data-driven insight extraction and analysis are often applied on these surveys separately, with limited efforts to exploit them jointly, and hence results in poor prediction performance of critical events, such as neonatal death. Existing machine learning approaches to utilise multiple data sources are not directly applicable to surveys that are disjoint on collection time and locations. In this paper, we propose, to the best of our knowledge, the first detailed work that automatically links multiple surveys for the improved predictive performance of newborn and child mortality and achieves cross-study impact analysis of covariates. |
Author | Speakman, Skyler Weldemariam, Komminist Cintas, Celia Ogallo, William Tadesse, Girmaw Abebe Walcott, Aisha |
AuthorAffiliation | 1 IBM Research — Africa, Nairobi, Kenya |
AuthorAffiliation_xml | – name: 1 IBM Research — Africa, Nairobi, Kenya |
Author_xml | – sequence: 1 givenname: Girmaw Abebe surname: Tadesse fullname: Tadesse, Girmaw Abebe – sequence: 2 givenname: Celia surname: Cintas fullname: Cintas, Celia – sequence: 3 givenname: William surname: Ogallo fullname: Ogallo, William – sequence: 4 givenname: Skyler surname: Speakman fullname: Speakman, Skyler – sequence: 5 givenname: Aisha surname: Walcott fullname: Walcott, Aisha – sequence: 6 givenname: Komminist surname: Weldemariam fullname: Weldemariam, Komminist |
BookMark | eNpVjz1PwzAYhC0EoqX0P3hkiRR_Jl2QUIG2UhEDZUSRk7xODY4d7CRS_z1BdOGWG-706O4GXTrv4ALNKREs4alkM7SM8TOdxLlcCX6NZoxzkRHK5ujjUfUqsTCCxXvjvlQD2Gv8MtjedBbw2xBGOEWsfcC7tgt-hBq_uxpC7JWrjWt-6xvrS2XxFpTtj3h9VNaCayDeoiutbITl2Rfo8Px0WG-T_etmt37YJ12e00QAEZO4ykWplaxFKWjNmFaVIJwSzfS0Ntc0EyuRUV5WoiZEakFzTdLpJVug-z9sN5Qt1BW4PihbdMG0KpwKr0zxP3HmWDR-LHKW5TKlE-DuDAj-e4DYF62JFVirHPghFlRISSUhlLAfxkFquQ |
ContentType | Journal Article |
Copyright | 2021 AMIA - All rights reserved. 2021 |
Copyright_xml | – notice: 2021 AMIA - All rights reserved. 2021 |
DBID | 7X8 5PM |
DatabaseName | MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2153-4063 |
EndPage | 101 |
GroupedDBID | 53G 7X8 ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS BAWUL DIK GX1 HYE KQ8 OK1 RPM 5PM |
ID | FETCH-LOGICAL-p882-5e155554a85bfa6d5b52d33fac51421f3f4578f27595724bc5d116f528f101533 |
IEDL.DBID | RPM |
IngestDate | Thu Jul 06 23:05:37 EDT 2023 Fri Apr 12 04:05:40 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
License | This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p882-5e155554a85bfa6d5b52d33fac51421f3f4578f27595724bc5d116f528f101533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34457123 |
PQID | 2566261121 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378602 proquest_miscellaneous_2566261121 |
PublicationCentury | 2000 |
PublicationDate | 20210517 |
PublicationDateYYYYMMDD | 2021-05-17 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210517 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | AMIA Summits on Translational Science proceedings |
PublicationYear | 2021 |
Publisher | American Medical Informatics Association |
Publisher_xml | – name: American Medical Informatics Association |
SSID | ssj0000446954 |
Score | 2.199168 |
Snippet | Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health,... |
SourceID | pubmedcentral proquest |
SourceType | Open Access Repository Aggregation Database |
StartPage | 92 |
Title | Data-level Linkage of Multiple Surveys for Improved Understanding of Global Health Challenges |
URI | https://search.proquest.com/docview/2566261121 https://pubmed.ncbi.nlm.nih.gov/PMC8378602 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB3anryIomK1lhW8pu1udpL0KNVahIpgC71I2GR3sdCmpR_-fmfzAenVc7Is2dnNvJe8eQPwRCGXVhnpodaR5xzmvEhz4QVGh0NFCHmArt55-hFM5vJ9gYsGYFULk4v202TZy1brXrb8ybWV23Xar3Ri_c_pyJmgBwPRb0KTNmiNouevXyI4Q3T9dnwpMeSuEVENPJ5KH2u5ZHwB5yUIZM_FZJfQMNkVfL-og_JWTsTDHEOkg842lk1LxR_7Ou5-adkZoUxWfAowms3rtSnu9sLDnxXVRWxUtUrZX8Ns_DobTbyy-YG3daAXDSV6SvUqwsSqQGOCQvu-VSkhHMGtb-nZIitCHGIoZJKi5jywKCJLh4ww3A20sk1mboERR9GSJ8RcUoIPFhNBtCWykoJEbEvbNjxWyxPT3nI_DFRmNsd9THCIRhEi420IT9Yt3hZeGLFzpz69QkHLXarLIN39e-Q9nAknIHFWqWEHWofd0TwQAjgkXWi-LXg3j_sfSx63VA |
link.rule.ids | 230,315,730,783,787,888,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0QH_TFj6gRP2vi64B17TYeDUpQGTERDC9madc2EmEQ2Hzw13u7j2T4ps9dk-betjtnO_dchG4h5VRzRS0mpW8ZhznLlzaxXCW9DgeE3Gam3jkYuv0xfZqwSQ2xshYmE-1HYtqMZ_NmPP3ItJXLedQqdWKtl6BrTNDdNmltoW04r223QtKzCxgoToeZjjsOpcyzTSuiCnzcFD9W3ia9ffRWriMXkXw200Q0o-9fFo1_XugB2ivwJb7Lhw9RTcVH6P2eJ9yaGX0QNuQT7hC80DgoxIT4NV19QUYxAFicf2VQEo-rZS_m8bw9AM4Ll3C37MKyPkaj3sOo27eKvgrW0uBppgBDAIrgPhOau5IJRqTjaB4BeCK2djQEzdfEYx3mESoiJm3b1Yz4Gs4vwMMTVI8XsTpFGOiPpLYAUhQBMtFMEGBEvqaQfyByUjfQTRn3ELat-RfBY7VI1yEgLZgFYM9uIG8jIeEyt9kIjfH15giEOTPALsJ69u-Z12inPwoG4eBx-HyOdonRqRhHVu8C1ZNVqi4BaCTiKttWP-1j2F0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QXzxgorzGsHXtmuatN2jbI552Ri4wRCkJE2Dw60rW-uDv96TXqDzcc9NIJyTpN_Xfuc7CD1AyqniETWYlL6hHeYMX9rEcCPptTkg5BbT9c6Doduf0Jcpm9ZafeWi_VDMzHi-MOPZV66tTBahVenErNGgo03Q3RaxEqmsXbQHZ7bl14h6fgkDzWkz3XXHoZR5tm5HVIOQmwLI2huld4Q-qrUUQpJvM0uFGf7-s2ncarHH6LDEmfixGHKCdqL4FH12ecqNudYJYU1C4S7BS4UHpagQv2erH8gsBiCLi68NkcSTevmLHl60CcBFARPuVN1Y1mdo3Hsad_pG2V_BSDSuZhFgCUAT3GdCcVcywYh0HMVDAFHEVo6CwPmKeKzNPEJFyKRtu4oRX8E5Bph4jhrxMo4uEAYaJKktgByFgFAUEwSYka8o7AMgdFI10X0V-wC2r_4nweNoma0DQFwwC0Cf3UTeRlKCpLDbCLQB9uYTCHVuhF2G9nLrmXdof9TtBW_Pw9crdEC0XEUbs3rXqJGusugG8EYqbvOd9Qe2TNrd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-level+Linkage+of+Multiple+Surveys+for+Improved+Understanding+of+Global+Health+Challenges&rft.jtitle=AMIA+Summits+on+Translational+Science+proceedings&rft.au=Tadesse%2C+Girmaw+Abebe&rft.au=Cintas%2C+Celia&rft.au=Ogallo%2C+William&rft.au=Speakman%2C+Skyler&rft.date=2021-05-17&rft.pub=American+Medical+Informatics+Association&rft.eissn=2153-4063&rft.volume=2021&rft.spage=92&rft.epage=101&rft_id=info%3Apmid%2F34457123&rft.externalDBID=PMC8378602 |