Data-level Linkage of Multiple Surveys for Improved Understanding of Global Health Challenges

Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health, using surveys (e.g., Demographic Health Survey). Though there are multiple surveys on the topic, data-driven insight extraction and analysis...

Full description

Saved in:
Bibliographic Details
Published inAMIA Summits on Translational Science proceedings Vol. 2021; pp. 92 - 101
Main Authors Tadesse, Girmaw Abebe, Cintas, Celia, Ogallo, William, Speakman, Skyler, Walcott, Aisha, Weldemariam, Komminist
Format Journal Article
LanguageEnglish
Published American Medical Informatics Association 17.05.2021
Online AccessGet full text

Cover

Loading…
Abstract Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health, using surveys (e.g., Demographic Health Survey). Though there are multiple surveys on the topic, data-driven insight extraction and analysis are often applied on these surveys separately, with limited efforts to exploit them jointly, and hence results in poor prediction performance of critical events, such as neonatal death. Existing machine learning approaches to utilise multiple data sources are not directly applicable to surveys that are disjoint on collection time and locations. In this paper, we propose, to the best of our knowledge, the first detailed work that automatically links multiple surveys for the improved predictive performance of newborn and child mortality and achieves cross-study impact analysis of covariates.
AbstractList Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health, using surveys (e.g., Demographic Health Survey). Though there are multiple surveys on the topic, data-driven insight extraction and analysis are often applied on these surveys separately, with limited efforts to exploit them jointly, and hence results in poor prediction performance of critical events, such as neonatal death. Existing machine learning approaches to utilise multiple data sources are not directly applicable to surveys that are disjoint on collection time and locations. In this paper, we propose, to the best of our knowledge, the first detailed work that automatically links multiple surveys for the improved predictive performance of newborn and child mortality and achieves cross-study impact analysis of covariates.
Author Speakman, Skyler
Weldemariam, Komminist
Cintas, Celia
Ogallo, William
Tadesse, Girmaw Abebe
Walcott, Aisha
AuthorAffiliation 1 IBM Research — Africa, Nairobi, Kenya
AuthorAffiliation_xml – name: 1 IBM Research — Africa, Nairobi, Kenya
Author_xml – sequence: 1
  givenname: Girmaw Abebe
  surname: Tadesse
  fullname: Tadesse, Girmaw Abebe
– sequence: 2
  givenname: Celia
  surname: Cintas
  fullname: Cintas, Celia
– sequence: 3
  givenname: William
  surname: Ogallo
  fullname: Ogallo, William
– sequence: 4
  givenname: Skyler
  surname: Speakman
  fullname: Speakman, Skyler
– sequence: 5
  givenname: Aisha
  surname: Walcott
  fullname: Walcott, Aisha
– sequence: 6
  givenname: Komminist
  surname: Weldemariam
  fullname: Weldemariam, Komminist
BookMark eNpVjz1PwzAYhC0EoqX0P3hkiRR_Jl2QUIG2UhEDZUSRk7xODY4d7CRS_z1BdOGWG-706O4GXTrv4ALNKREs4alkM7SM8TOdxLlcCX6NZoxzkRHK5ujjUfUqsTCCxXvjvlQD2Gv8MtjedBbw2xBGOEWsfcC7tgt-hBq_uxpC7JWrjWt-6xvrS2XxFpTtj3h9VNaCayDeoiutbITl2Rfo8Px0WG-T_etmt37YJ12e00QAEZO4ykWplaxFKWjNmFaVIJwSzfS0Ntc0EyuRUV5WoiZEakFzTdLpJVug-z9sN5Qt1BW4PihbdMG0KpwKr0zxP3HmWDR-LHKW5TKlE-DuDAj-e4DYF62JFVirHPghFlRISSUhlLAfxkFquQ
ContentType Journal Article
Copyright 2021 AMIA - All rights reserved. 2021
Copyright_xml – notice: 2021 AMIA - All rights reserved. 2021
DBID 7X8
5PM
DatabaseName MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2153-4063
EndPage 101
GroupedDBID 53G
7X8
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
GX1
HYE
KQ8
OK1
RPM
5PM
ID FETCH-LOGICAL-p882-5e155554a85bfa6d5b52d33fac51421f3f4578f27595724bc5d116f528f101533
IEDL.DBID RPM
IngestDate Thu Jul 06 23:05:37 EDT 2023
Fri Apr 12 04:05:40 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
License This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p882-5e155554a85bfa6d5b52d33fac51421f3f4578f27595724bc5d116f528f101533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34457123
PQID 2566261121
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378602
proquest_miscellaneous_2566261121
PublicationCentury 2000
PublicationDate 20210517
PublicationDateYYYYMMDD 2021-05-17
PublicationDate_xml – month: 5
  year: 2021
  text: 20210517
  day: 17
PublicationDecade 2020
PublicationTitle AMIA Summits on Translational Science proceedings
PublicationYear 2021
Publisher American Medical Informatics Association
Publisher_xml – name: American Medical Informatics Association
SSID ssj0000446954
Score 2.199168
Snippet Data-driven approaches can provide more enhanced insights for domain experts in addressing critical global health challenges, such as newborn and child health,...
SourceID pubmedcentral
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 92
Title Data-level Linkage of Multiple Surveys for Improved Understanding of Global Health Challenges
URI https://search.proquest.com/docview/2566261121
https://pubmed.ncbi.nlm.nih.gov/PMC8378602
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB3anryIomK1lhW8pu1udpL0KNVahIpgC71I2GR3sdCmpR_-fmfzAenVc7Is2dnNvJe8eQPwRCGXVhnpodaR5xzmvEhz4QVGh0NFCHmArt55-hFM5vJ9gYsGYFULk4v202TZy1brXrb8ybWV23Xar3Ri_c_pyJmgBwPRb0KTNmiNouevXyI4Q3T9dnwpMeSuEVENPJ5KH2u5ZHwB5yUIZM_FZJfQMNkVfL-og_JWTsTDHEOkg842lk1LxR_7Ou5-adkZoUxWfAowms3rtSnu9sLDnxXVRWxUtUrZX8Ns_DobTbyy-YG3daAXDSV6SvUqwsSqQGOCQvu-VSkhHMGtb-nZIitCHGIoZJKi5jywKCJLh4ww3A20sk1mboERR9GSJ8RcUoIPFhNBtCWykoJEbEvbNjxWyxPT3nI_DFRmNsd9THCIRhEi420IT9Yt3hZeGLFzpz69QkHLXarLIN39e-Q9nAknIHFWqWEHWofd0TwQAjgkXWi-LXg3j_sfSx63VA
link.rule.ids 230,315,730,783,787,888,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0QH_TFj6gRP2vi64B17TYeDUpQGTERDC9madc2EmEQ2Hzw13u7j2T4ps9dk-betjtnO_dchG4h5VRzRS0mpW8ZhznLlzaxXCW9DgeE3Gam3jkYuv0xfZqwSQ2xshYmE-1HYtqMZ_NmPP3ItJXLedQqdWKtl6BrTNDdNmltoW04r223QtKzCxgoToeZjjsOpcyzTSuiCnzcFD9W3ia9ffRWriMXkXw200Q0o-9fFo1_XugB2ivwJb7Lhw9RTcVH6P2eJ9yaGX0QNuQT7hC80DgoxIT4NV19QUYxAFicf2VQEo-rZS_m8bw9AM4Ll3C37MKyPkaj3sOo27eKvgrW0uBppgBDAIrgPhOau5IJRqTjaB4BeCK2djQEzdfEYx3mESoiJm3b1Yz4Gs4vwMMTVI8XsTpFGOiPpLYAUhQBMtFMEGBEvqaQfyByUjfQTRn3ELat-RfBY7VI1yEgLZgFYM9uIG8jIeEyt9kIjfH15giEOTPALsJ69u-Z12inPwoG4eBx-HyOdonRqRhHVu8C1ZNVqi4BaCTiKttWP-1j2F0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QXzxgorzGsHXtmuatN2jbI552Ri4wRCkJE2Dw60rW-uDv96TXqDzcc9NIJyTpN_Xfuc7CD1AyqniETWYlL6hHeYMX9rEcCPptTkg5BbT9c6Doduf0Jcpm9ZafeWi_VDMzHi-MOPZV66tTBahVenErNGgo03Q3RaxEqmsXbQHZ7bl14h6fgkDzWkz3XXHoZR5tm5HVIOQmwLI2huld4Q-qrUUQpJvM0uFGf7-s2ncarHH6LDEmfixGHKCdqL4FH12ecqNudYJYU1C4S7BS4UHpagQv2erH8gsBiCLi68NkcSTevmLHl60CcBFARPuVN1Y1mdo3Hsad_pG2V_BSDSuZhFgCUAT3GdCcVcywYh0HMVDAFHEVo6CwPmKeKzNPEJFyKRtu4oRX8E5Bph4jhrxMo4uEAYaJKktgByFgFAUEwSYka8o7AMgdFI10X0V-wC2r_4nweNoma0DQFwwC0Cf3UTeRlKCpLDbCLQB9uYTCHVuhF2G9nLrmXdof9TtBW_Pw9crdEC0XEUbs3rXqJGusugG8EYqbvOd9Qe2TNrd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-level+Linkage+of+Multiple+Surveys+for+Improved+Understanding+of+Global+Health+Challenges&rft.jtitle=AMIA+Summits+on+Translational+Science+proceedings&rft.au=Tadesse%2C+Girmaw+Abebe&rft.au=Cintas%2C+Celia&rft.au=Ogallo%2C+William&rft.au=Speakman%2C+Skyler&rft.date=2021-05-17&rft.pub=American+Medical+Informatics+Association&rft.eissn=2153-4063&rft.volume=2021&rft.spage=92&rft.epage=101&rft_id=info%3Apmid%2F34457123&rft.externalDBID=PMC8378602