Bidirectional RNN for Medical Event Detection in Electronic Health Records

Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It has important applications in health informatics including pharmacovigilance and drug surveillance. The stat...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting Vol. 2016; p. 473
Main Authors Jagannatha, Abhyuday N, Yu, Hong
Format Journal Article
LanguageEnglish
Published United States 01.06.2016
Online AccessGet more information

Cover

Loading…
Abstract Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It has important applications in health informatics including pharmacovigilance and drug surveillance. The state of the art supervised machine learning models in this domain are based on Conditional Random Fields (CRFs) with features calculated from fixed context windows. In this application, we explored recurrent neural network frameworks and show that they significantly out-performed the CRF models.
AbstractList Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It has important applications in health informatics including pharmacovigilance and drug surveillance. The state of the art supervised machine learning models in this domain are based on Conditional Random Fields (CRFs) with features calculated from fixed context windows. In this application, we explored recurrent neural network frameworks and show that they significantly out-performed the CRF models.
Author Yu, Hong
Jagannatha, Abhyuday N
Author_xml – sequence: 1
  givenname: Abhyuday N
  surname: Jagannatha
  fullname: Jagannatha, Abhyuday N
  organization: University of Massachusetts, MA, USA
– sequence: 2
  givenname: Hong
  surname: Yu
  fullname: Yu, Hong
  organization: University of Massachusetts, MA, USA; Bedford VAMC and CHOIR, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27885364$$D View this record in MEDLINE/PubMed
BookMark eNo1j9tKAzEURfOgeKn-guQHBjLHXB-1jlapFUrfy-nJGQxMkyEdBf_eQvVp7wWbBftanOWS-UJcgvPe3Ft9Jd4eU0yVaUol4yDXq5XsS5XvHBMdufvmPMknnk4LmbLshmOvJSeSC8Zh-pRrplLj4Uac9zgc-PYvZ2Lz3G3mi2b58fI6f1g2o_OuiegpmN5RYNUSRguedt4qRLSAELQ2GtpgSVmjgraKAFvAPrKxqmUHM3F30o5fuz3H7VjTHuvP9v8T_AIY0EOd
ContentType Journal Article
DBID NPM
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 27885364
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA180975
– fundername: HSRD VA
  grantid: I01 HX001457
– fundername: NHLBI NIH HHS
  grantid: R01 HL125089
GroupedDBID NPM
ID FETCH-LOGICAL-p787-da8c95f7c9e01cad628cb860aaa62a2944542196c06509460c2a12afde5601e72
IngestDate Wed Mar 16 01:31:04 EDT 2022
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p787-da8c95f7c9e01cad628cb860aaa62a2944542196c06509460c2a12afde5601e72
PMID 27885364
ParticipantIDs pubmed_primary_27885364
PublicationCentury 2000
PublicationDate 2016-Jun
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-Jun
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting
PublicationTitleAlternate Proc Conf
PublicationYear 2016
Score 1.6361879
Snippet Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards...
SourceID pubmed
SourceType Index Database
StartPage 473
Title Bidirectional RNN for Medical Event Detection in Electronic Health Records
URI https://www.ncbi.nlm.nih.gov/pubmed/27885364
Volume 2016
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEICtFhYWBOL9kgfWVInjOMkIqKhUIqpQkcpUOY5TOhAqtRng13N-5EEFCFiiym6b1p9yvjvfA6FLkTJCJXUd6kvlrZLcAa01cxgoIz7NdNUtFW2RsMEjHU6CSadz14paKldpT7x_mVfyH6owBlxVluwfyNZfCgPwGvjCFQjD9VeMr-dmRzLuvIck0UGD1dlLX4UygkBZmXcoz0a_aXpj84-M-bls66ijek9bVhEEos4L7LWB6tuZvhCVTxFs21lpij_31g-FVK6D6s0Fv1AnWtfRO3zGC-3E15IqfX4rVXZKfUj0VOoN8tV-wvooPNbEUlVCVo225CQ1_UtajBYvGhIBkzzwTWHzn2fXymRXU13UDSMl8JLRvar0bIfXrAatPYx30LZV-_GVYbiLOrLYQ8NP_DDww7Cg2PLDmh-u-eF5gRt-2PDDlt8-Gt_2xzcDx_a2cBYgIp2MRyIO8lDE0vUEzxiJRBoxl3POCCcxpQGFvYQJU-GQuYJwj_A8k8qCliE5QBvFayGPEI5zFSvkZ17oSiokjyNBaZ55nLIYHrT0GB2afz5dmPol02pNTr6dOUVbDcYztJnDAyPPQftapRd6ZT8APPc3zg
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+RNN+for+Medical+Event+Detection+in+Electronic+Health+Records&rft.jtitle=Proceedings+of+the+conference.+Association+for+Computational+Linguistics.+North+American+Chapter.+Meeting&rft.au=Jagannatha%2C+Abhyuday+N&rft.au=Yu%2C+Hong&rft.date=2016-06-01&rft.volume=2016&rft.spage=473&rft_id=info%3Apmid%2F27885364&rft_id=info%3Apmid%2F27885364&rft.externalDocID=27885364