Modeling Teachers’ Diagnostic Judgments by Bayesian Reasoning and Approximative Heuristics

The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to their latent traits (e.g., misconceptions). The judgment process can be modeled by Bayesian reasoning. We use this framework to analyze the situ...

Full description

Saved in:
Bibliographic Details
Published inResearch in Subject-matter Teaching and Learning (RISTAL) Vol. 4; no. 1; pp. 88 - 108
Main Authors Loibl, Katharina, Leuders, Timo
Format Journal Article
LanguageEnglish
Published Vienna Sciendo 01.12.2021
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2616-7697
DOI10.23770/rt1844

Cover

Loading…
Abstract The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to their latent traits (e.g., misconceptions). The judgment process can be modeled by Bayesian reasoning. We use this framework to analyze the situation of teachers’ diagnostic judgments on students’ potential misconceptions based on students’ responses. Humans typically deviate from normative Bayesian reasoning and apply heuristic strategies, often by only partially processing the available information (e.g., neglecting base rates). From the perspective of ecological rationality, such heuristics possibly constitute viable cognitive strategies for assessing student errors. We investigate the adequacy of a cognitively plausible heuristic strategy, which amounts to approximating the average probability information on prior hypotheses (base rates of student misconceptions) and evidence (student errors). With a computational simulation, we compare this strategy to optimal Bayesian reasoning and to information-neglecting strategies. We interpret the resulting accuracy within the ecology of informal student assessment.
AbstractList The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to their latent traits (e.g., misconceptions). The judgment process can be modeled by Bayesian reasoning. We use this framework to analyze the situation of teachers’ diagnostic judgments on students’ potential misconceptions based on students’ responses. Humans typically deviate from normative Bayesian reasoning and apply heuristic strategies, often by only partially processing the available information (e.g., neglecting base rates). From the perspective of ecological rationality, such heuristics possibly constitute viable cognitive strategies for assessing student errors. We investigate the adequacy of a cognitively plausible heuristic strategy, which amounts to approximating the average probability information on prior hypotheses (base rates of student misconceptions) and evidence (student errors). With a computational simulation, we compare this strategy to optimal Bayesian reasoning and to information-neglecting strategies. We interpret the resulting accuracy within the ecology of informal student assessment.
Author Loibl, Katharina
Leuders, Timo
Author_xml – sequence: 1
  givenname: Katharina
  surname: Loibl
  fullname: Loibl, Katharina
– sequence: 2
  givenname: Timo
  surname: Leuders
  fullname: Leuders, Timo
BookMark eNpFkM1OwzAQhC0EEqVUvIIlzoH1T2L7WMpPQUVIqEekyEk2wah1SpwAufEavB5PQkqROM0evpkdzRHZ97VHQk4YnHGhFJw3LdNS7pERT1gSqcSoQzIJwWUQcwVaCDMiT_d1gSvnK7pEmz9jE74_v-ils5WvQ-tyetcV1Rp9G2jW0wvbY3DW00e0ofZbm_UFnW42Tf3h1rZ1b0jn2DVu6w3H5KC0q4CTPx2T5fXVcjaPFg83t7PpItoorqPc8EwCUyXEOY9FLiErGcukAYPayFhJUUBZcmO4sDwDleQCeYKgwJSFBDEmp7vYocVrh6FNX-qu8cPHVLBY6SFIyoESO-rdrlpsCqyarh-Of5hB-jtcuhtOMq3FD2wTZh0
ContentType Journal Article
Copyright 2021 Katharina Loibl et al., published by Sciendo
Copyright_xml – notice: 2021 Katharina Loibl et al., published by Sciendo
DBID ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.23770/rt1844
DatabaseName ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2616-7697
EndPage 108
ExternalDocumentID 10_23770_rt18444188
GroupedDBID AAHSB
ALMA_UNASSIGNED_HOLDINGS
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p728-c92b4017f05c253c40bf11b4909e8945743d0ff29923a2b076c3e26e0709fd403
IEDL.DBID BENPR
IngestDate Mon Jun 30 13:13:27 EDT 2025
Thu Jul 10 10:34:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p728-c92b4017f05c253c40bf11b4909e8945743d0ff29923a2b076c3e26e0709fd403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3157890944?pq-origsite=%requestingapplication%
PQID 3157890944
PQPubID 6788525
PageCount 22
ParticipantIDs proquest_journals_3157890944
walterdegruyter_journals_10_23770_rt18444188
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
PublicationTitle Research in Subject-matter Teaching and Learning (RISTAL)
PublicationYear 2021
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
SSID ssib052708339
ssib044759829
ssib048871860
Score 2.1655014
Snippet The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to...
SourceID proquest
walterdegruyter
SourceType Aggregation Database
Publisher
StartPage 88
SubjectTerms Bayesian reasoning
computational simulation
diagnostic judgment
heuristic
Title Modeling Teachers’ Diagnostic Judgments by Bayesian Reasoning and Approximative Heuristics
URI https://www.degruyter.com/doi/10.23770/rt1844
https://www.proquest.com/docview/3157890944
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1PT8IwFG8ELl6IRo0okh48utB13bqdDCiEmEgMwYSDCVnXjngQkG1RLsav4dfzk_hauix68N708N7r6-_9-z2ELgPuRr4ADZAEXhOLueuEnhSOIjIKIleCSZgu33EwemR3M39mE26ZbassfaJx1HKV6Bx513N9PbMZMXa9fnX01ihdXbUrNGqoAS44hOCr0R-MHyalRRk2u7ACAGCt4IurgMCnHCCIF5XTtJyT7iaHoIf9ApzNN1O6lmqxKbZ5WSo1P9DwADUtdMS9na4P0Z5aHqEnvcxMj5Rjy82cfX9-4dtdAx0cxHeFXJgxNiy2uB9vlZ6axBMVZyYRi-OlxD1NLP7-_GJIwPFIFZa--RhNh4PpzcixGxOcNaehk0RUQLzEU-In1PcSRkTquoKB2FQYMR_QgiRpCj8Q9WIqCA8ST9FAwbOPUsmId4Lqy9VSnSIckJgySXlKNSUW57FMhQqoGwiPh6kft1C7lM_cWn02r3TUQld_ZFadgrDDSHq-kzRzw_Ds_9vO0T7VrSSmi6SN6vmmUBeABXLRsQrvoNr9x-AHJ561RA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsCCQIB4FPAAG1ET24mTAaGWhwqUClVF6oAUxbGDGCjQh0o3_gY_gj_FL-HsJqpgYOtu3XAv32ffdwdwGAgv8iVawE0xmngiPCdkSjraVVEQeQpdwnb5toLGPb_u-t0SfBVcGNNWWeREm6jVS2reyKvM8w1nM-L89PXNMVujzO9qsUJj6hY3ejJGyDY4uTpH-x5RennROWs4-VYB51XQ0EkjKhFTiMz1U-qzlLsy8zzJUbQOI-7jjarcLMMsTVlCJcL8lGkaaAyNKFPcZSh2ARY5QyRThsX6ReuuXTiwHZ4XzuoNDA5M_TP84VOBFQ-LCvKuEG61P0SMxX_Vtytj-1Ou9GN_NBkWP7P2wrtchZW8UiW1qWutQUn31uHB7E4zDHaSj4IefH98kvNpvx4eJNcj9WhZc0ROSD2ZaEPSJG2dDOy7L0l6itTMHPP3p2c7c5w09CifFr0BnXmochPKvZee3gISuAnlioqMmglcQiQqkzqgXiCZCDM_2YZKoZ84D7JBPHOJbTj-o7PZKUQ5VtPxVNPcC8Od_6UdwFKjc9uMm1etm11YpqaLxTawVKA87I_0HpYhQ7mfG59APGd3-wHCRe38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Teachers%E2%80%99+Diagnostic+Judgments+by+Bayesian+Reasoning+and+Approximative+Heuristics&rft.jtitle=Research+in+Subject-matter+Teaching+and+Learning+%28RISTAL%29&rft.au=Loibl%2C+Katharina&rft.au=Leuders%2C+Timo&rft.date=2021-12-01&rft.pub=Sciendo&rft.eissn=2616-7697&rft.volume=4&rft.issue=1&rft.spage=88&rft.epage=108&rft_id=info:doi/10.23770%2Frt1844&rft.externalDBID=n%2Fa&rft.externalDocID=10_23770_rt18444188