Modeling Teachers’ Diagnostic Judgments by Bayesian Reasoning and Approximative Heuristics
The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to their latent traits (e.g., misconceptions). The judgment process can be modeled by Bayesian reasoning. We use this framework to analyze the situ...
Saved in:
Published in | Research in Subject-matter Teaching and Learning (RISTAL) Vol. 4; no. 1; pp. 88 - 108 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Sciendo
01.12.2021
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2616-7697 |
DOI | 10.23770/rt1844 |
Cover
Loading…
Abstract | The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to their latent traits (e.g., misconceptions). The judgment process can be modeled by Bayesian reasoning. We use this framework to analyze the situation of teachers’ diagnostic judgments on students’ potential misconceptions based on students’ responses. Humans typically deviate from normative Bayesian reasoning and apply heuristic strategies, often by only partially processing the available information (e.g., neglecting base rates). From the perspective of ecological rationality, such heuristics possibly constitute viable cognitive strategies for assessing student errors. We investigate the adequacy of a cognitively plausible heuristic strategy, which amounts to approximating the average probability information on prior hypotheses (base rates of student misconceptions) and evidence (student errors). With a computational simulation, we compare this strategy to optimal Bayesian reasoning and to information-neglecting strategies. We interpret the resulting accuracy within the ecology of informal student assessment. |
---|---|
AbstractList | The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to their latent traits (e.g., misconceptions). The judgment process can be modeled by Bayesian reasoning. We use this framework to analyze the situation of teachers’ diagnostic judgments on students’ potential misconceptions based on students’ responses. Humans typically deviate from normative Bayesian reasoning and apply heuristic strategies, often by only partially processing the available information (e.g., neglecting base rates). From the perspective of ecological rationality, such heuristics possibly constitute viable cognitive strategies for assessing student errors. We investigate the adequacy of a cognitively plausible heuristic strategy, which amounts to approximating the average probability information on prior hypotheses (base rates of student misconceptions) and evidence (student errors). With a computational simulation, we compare this strategy to optimal Bayesian reasoning and to information-neglecting strategies. We interpret the resulting accuracy within the ecology of informal student assessment. |
Author | Loibl, Katharina Leuders, Timo |
Author_xml | – sequence: 1 givenname: Katharina surname: Loibl fullname: Loibl, Katharina – sequence: 2 givenname: Timo surname: Leuders fullname: Leuders, Timo |
BookMark | eNpFkM1OwzAQhC0EEqVUvIIlzoH1T2L7WMpPQUVIqEekyEk2wah1SpwAufEavB5PQkqROM0evpkdzRHZ97VHQk4YnHGhFJw3LdNS7pERT1gSqcSoQzIJwWUQcwVaCDMiT_d1gSvnK7pEmz9jE74_v-ils5WvQ-tyetcV1Rp9G2jW0wvbY3DW00e0ofZbm_UFnW42Tf3h1rZ1b0jn2DVu6w3H5KC0q4CTPx2T5fXVcjaPFg83t7PpItoorqPc8EwCUyXEOY9FLiErGcukAYPayFhJUUBZcmO4sDwDleQCeYKgwJSFBDEmp7vYocVrh6FNX-qu8cPHVLBY6SFIyoESO-rdrlpsCqyarh-Of5hB-jtcuhtOMq3FD2wTZh0 |
ContentType | Journal Article |
Copyright | 2021 Katharina Loibl et al., published by Sciendo |
Copyright_xml | – notice: 2021 Katharina Loibl et al., published by Sciendo |
DBID | ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.23770/rt1844 |
DatabaseName | ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2616-7697 |
EndPage | 108 |
ExternalDocumentID | 10_23770_rt18444188 |
GroupedDBID | AAHSB ALMA_UNASSIGNED_HOLDINGS ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-p728-c92b4017f05c253c40bf11b4909e8945743d0ff29923a2b076c3e26e0709fd403 |
IEDL.DBID | BENPR |
IngestDate | Mon Jun 30 13:13:27 EDT 2025 Thu Jul 10 10:34:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p728-c92b4017f05c253c40bf11b4909e8945743d0ff29923a2b076c3e26e0709fd403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3157890944?pq-origsite=%requestingapplication% |
PQID | 3157890944 |
PQPubID | 6788525 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3157890944 walterdegruyter_journals_10_23770_rt18444188 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna |
PublicationTitle | Research in Subject-matter Teaching and Learning (RISTAL) |
PublicationYear | 2021 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
SSID | ssib052708339 ssib044759829 ssib048871860 |
Score | 2.1655014 |
Snippet | The diagnostic judgments teachers make can be regarded as inferences from manifest observable evidence on students’ behavior (e.g., responses to a task) to... |
SourceID | proquest walterdegruyter |
SourceType | Aggregation Database Publisher |
StartPage | 88 |
SubjectTerms | Bayesian reasoning computational simulation diagnostic judgment heuristic |
Title | Modeling Teachers’ Diagnostic Judgments by Bayesian Reasoning and Approximative Heuristics |
URI | https://www.degruyter.com/doi/10.23770/rt1844 https://www.proquest.com/docview/3157890944 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1PT8IwFG8ELl6IRo0okh48utB13bqdDCiEmEgMwYSDCVnXjngQkG1RLsav4dfzk_hauix68N708N7r6-_9-z2ELgPuRr4ADZAEXhOLueuEnhSOIjIKIleCSZgu33EwemR3M39mE26ZbassfaJx1HKV6Bx513N9PbMZMXa9fnX01ihdXbUrNGqoAS44hOCr0R-MHyalRRk2u7ACAGCt4IurgMCnHCCIF5XTtJyT7iaHoIf9ApzNN1O6lmqxKbZ5WSo1P9DwADUtdMS9na4P0Z5aHqEnvcxMj5Rjy82cfX9-4dtdAx0cxHeFXJgxNiy2uB9vlZ6axBMVZyYRi-OlxD1NLP7-_GJIwPFIFZa--RhNh4PpzcixGxOcNaehk0RUQLzEU-In1PcSRkTquoKB2FQYMR_QgiRpCj8Q9WIqCA8ST9FAwbOPUsmId4Lqy9VSnSIckJgySXlKNSUW57FMhQqoGwiPh6kft1C7lM_cWn02r3TUQld_ZFadgrDDSHq-kzRzw_Ds_9vO0T7VrSSmi6SN6vmmUBeABXLRsQrvoNr9x-AHJ561RA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsCCQIB4FPAAG1ET24mTAaGWhwqUClVF6oAUxbGDGCjQh0o3_gY_gj_FL-HsJqpgYOtu3XAv32ffdwdwGAgv8iVawE0xmngiPCdkSjraVVEQeQpdwnb5toLGPb_u-t0SfBVcGNNWWeREm6jVS2reyKvM8w1nM-L89PXNMVujzO9qsUJj6hY3ejJGyDY4uTpH-x5RennROWs4-VYB51XQ0EkjKhFTiMz1U-qzlLsy8zzJUbQOI-7jjarcLMMsTVlCJcL8lGkaaAyNKFPcZSh2ARY5QyRThsX6ReuuXTiwHZ4XzuoNDA5M_TP84VOBFQ-LCvKuEG61P0SMxX_Vtytj-1Ou9GN_NBkWP7P2wrtchZW8UiW1qWutQUn31uHB7E4zDHaSj4IefH98kvNpvx4eJNcj9WhZc0ROSD2ZaEPSJG2dDOy7L0l6itTMHPP3p2c7c5w09CifFr0BnXmochPKvZee3gISuAnlioqMmglcQiQqkzqgXiCZCDM_2YZKoZ84D7JBPHOJbTj-o7PZKUQ5VtPxVNPcC8Od_6UdwFKjc9uMm1etm11YpqaLxTawVKA87I_0HpYhQ7mfG59APGd3-wHCRe38 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Teachers%E2%80%99+Diagnostic+Judgments+by+Bayesian+Reasoning+and+Approximative+Heuristics&rft.jtitle=Research+in+Subject-matter+Teaching+and+Learning+%28RISTAL%29&rft.au=Loibl%2C+Katharina&rft.au=Leuders%2C+Timo&rft.date=2021-12-01&rft.pub=Sciendo&rft.eissn=2616-7697&rft.volume=4&rft.issue=1&rft.spage=88&rft.epage=108&rft_id=info:doi/10.23770%2Frt1844&rft.externalDBID=n%2Fa&rft.externalDocID=10_23770_rt18444188 |