Data driven model discovery and interpretation for CAR T-cell killing using sparse identification and latent variables

In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate and interpret mathematical models of cancer cell growth and death hinge first on proposing a precise mathematical mod...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Brummer, Alexander B, Xella, Agata, Woodall, Ryan, Adhikarla, Vikram, Cho, Heyrim, Gutova, Margarita B, Brown, Christine E, Rockne, Russell C
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 13.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate and interpret mathematical models of cancer cell growth and death hinge first on proposing a precise mathematical model, then analyzing experimental data in the context of the chosen model. In this work, we present the first application of the sparse identification of non-linear dynamics (SINDy) algorithm to discover cell-cell interaction dynamics in in vitro experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we show how the model terms can be interpreted biologically in relation to different CAR T-cell functional responses, single or double CAR T-cell-cancer cell binding models, and density-dependent growth dynamics in either of the CAR T-cell or cancer cell populations. This data-driven model-discover based approach has the potential to improve the implementation and efficacy of CAR T-cell therapy in the clinic through an improved understanding of CAR T-cell dynamics.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Updated text, figures, and supplemental tables.* https://github.com/alexbbrummer/CART_SINDy
AbstractList In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate and interpret mathematical models of cancer cell growth and death hinge first on proposing a precise mathematical model, then analyzing experimental data in the context of the chosen model. In this work, we present the first application of the sparse identification of non-linear dynamics (SINDy) algorithm to discover cell-cell interaction dynamics in in vitro experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we show how the model terms can be interpreted biologically in relation to different CAR T-cell functional responses, single or double CAR T-cell-cancer cell binding models, and density-dependent growth dynamics in either of the CAR T-cell or cancer cell populations. This data-driven model-discover based approach has the potential to improve the implementation and efficacy of CAR T-cell therapy in the clinic through an improved understanding of CAR T-cell dynamics.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Updated text, figures, and supplemental tables.* https://github.com/alexbbrummer/CART_SINDy
Author Rockne, Russell C
Cho, Heyrim
Adhikarla, Vikram
Woodall, Ryan
Gutova, Margarita B
Xella, Agata
Brown, Christine E
Brummer, Alexander B
Author_xml – sequence: 1
  givenname: Alexander
  surname: Brummer
  middlename: B
  fullname: Brummer, Alexander B
– sequence: 2
  givenname: Agata
  surname: Xella
  fullname: Xella, Agata
– sequence: 3
  givenname: Ryan
  surname: Woodall
  fullname: Woodall, Ryan
– sequence: 4
  givenname: Vikram
  surname: Adhikarla
  fullname: Adhikarla, Vikram
– sequence: 5
  givenname: Heyrim
  surname: Cho
  fullname: Cho, Heyrim
– sequence: 6
  givenname: Margarita
  surname: Gutova
  middlename: B
  fullname: Gutova, Margarita B
– sequence: 7
  givenname: Christine
  surname: Brown
  middlename: E
  fullname: Brown, Christine E
– sequence: 8
  givenname: Russell
  surname: Rockne
  middlename: C
  fullname: Rockne, Russell C
BookMark eNotjUtLxDAYRbPQhY7-AHcB1615tEmzHOoTBgTpfkiTrxKNSU3Sgv_eGWY258KFe-41uggxAEJ3lNSUEvrACGM1UfWBLelk012h9VEXjW1yKwT8Ey14bF02cYX0h3Ww2IUCaU5QdHEx4Ckm3G8_8FAZ8B5_O-9d-MRLPjLPOmXAzkIobnLmNDlavC6HDq86OT16yDfoctI-w-05N2h4fhr612r3_vLWb3fVLGlXKdWw1lrg1BgpldGNIBrMyFsw0FkuhCKSciZGOrWSCFCqnXjbNCBoY8TIN-j-pJ1T_F0gl_1XXFI4PO6ZpJIqQhjl_59SWek
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FH
AAFGM
AAMXL
ABOIG
ABUWG
ADZZV
AFKRA
AFLLJ
AFOLM
AGAJT
AQTIP
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQCXX
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1101/2022.09.22.508748
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central Korea - hybrid linking
Natural Science Collection - hybrid linking
Biological Science Collection - hybrid linking
ProQuest Central (Alumni)
ProQuest Central (Alumni) - hybrid linking
ProQuest Central
SciTech Premium Collection - hybrid linking
ProQuest Central Student - hybrid linking
ProQuest Central Essentials - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Publicly Available Content Database
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p718-99425dde31cc779ca460aecb35ece8d3669071326b1f5706e995f3544e614c6b3
IEDL.DBID BENPR
IngestDate Thu Oct 10 17:55:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p718-99425dde31cc779ca460aecb35ece8d3669071326b1f5706e995f3544e614c6b3
OpenAccessLink https://www.proquest.com/docview/2717190021?pq-origsite=%requestingapplication%
PQID 2717190021
PQPubID 2050091
ParticipantIDs proquest_journals_2717190021
PublicationCentury 2000
PublicationDate 20221213
PublicationDateYYYYMMDD 2022-12-13
PublicationDate_xml – month: 12
  year: 2022
  text: 20221213
  day: 13
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
Score 1.7192488
Snippet In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Cancer
Cell culture
Cell death
Cell therapy
Chimeric antigen receptors
Glioblastoma
Glioblastoma cells
Lymphocytes T
Mathematical models
Tumors
Title Data driven model discovery and interpretation for CAR T-cell killing using sparse identification and latent variables
URI https://www.proquest.com/docview/2717190021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrwpKj6q5OA12GweuzmJ1pbioZRSobeyySZSlG3dXQv-e2fWFBHBSy77OMzOft_M5MsMITfBSu29SVgowIMld5zlKSyJczjyqC-5bQWyEz1-lk8LtYgFtzrKKneY2AJ1sXZYI79NIO8A8gJKutu8M5wahburcYTGPukmXGRZh3QfhpPpLG5fgrthcp9gJ1NYIRZJZfYHdFsmGR2S7jTf-OqI7PnymGwf8yanRYWQQ9uhNBSPyaKs8pNCjk9XvzSBFCJMOrif0TnDgjt9XbUdtSmK118oYENVe7oqogDo-xF8yxsElGVDt5AX40mp-oTMR8P5YMziJAS2Ae5gxsCfBTgkuHNpalwudT_3zgrlnc8KoTHFhbRSWx5U2tfeGBWEktID-TptxSnplOvSnxHqOPZb1y4oLaTKfJYGHeA-LU0RgrTnpLezzjJ6c738sf3F_5cvyQHaG-UeXPRIp6k-_BWQdmOv45f5AuFLmps
link.rule.ids 780,784,21388,27925,33744,43805
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgHWADAeKjgAfWiDqxnXhCUIoKlKqqgtStih0bVaC0JKES_5674AohJBYv-Rgul_fuzs93hFw4zaW1KgxcDh7MmWFBFsMSGoMjj7qc6UYgO5KDZ_4wFVNfcKu8rHKNiQ1Q5wuDNfLLEPIOIC-gpKvle4BTo3B31Y_Q2CRt7JwuWqR90x-NJ377EtwNk_sQO5nCCrFIzJM_oNswyd0OaY-zpS13yYYt9sjqNqszmpcIObQZSkPxmCzKKj8p5Ph0_ksTSCHCpL3rCU0DLLjT13nTUZuieP2FAjaUlaXz3AuAvh_Bt7xBQFnUdAV5MZ6UqvZJetdPe4PAT0IIlsAdgVLwZwEORcyYOFYm47KbWaMjYY1N8khiigtppdTMibgrrVLCRYJzC-RrpI4OSKtYFPaQUMOw37o0TsiIi8QmsZMO7pNc5c5xfUQ6a-vMvDdXsx_bH_9_-ZxsDdKn4Wx4P3o8Idtoe5R-sKhDWnX5YU-BwGt95r_SFz0nnYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+driven+model+discovery+and+interpretation+for+CAR+T-cell+killing+using+sparse+identification+and+latent+variables&rft.jtitle=bioRxiv&rft.au=Brummer%2C+Alexander+B&rft.au=Xella%2C+Agata&rft.au=Woodall%2C+Ryan&rft.au=Adhikarla%2C+Vikram&rft.date=2022-12-13&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft_id=info:doi/10.1101%2F2022.09.22.508748