Data driven model discovery and interpretation for CAR T-cell killing using sparse identification and latent variables
In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate and interpret mathematical models of cancer cell growth and death hinge first on proposing a precise mathematical mod...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
13.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate and interpret mathematical models of cancer cell growth and death hinge first on proposing a precise mathematical model, then analyzing experimental data in the context of the chosen model. In this work, we present the first application of the sparse identification of non-linear dynamics (SINDy) algorithm to discover cell-cell interaction dynamics in in vitro experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we show how the model terms can be interpreted biologically in relation to different CAR T-cell functional responses, single or double CAR T-cell-cancer cell binding models, and density-dependent growth dynamics in either of the CAR T-cell or cancer cell populations. This data-driven model-discover based approach has the potential to improve the implementation and efficacy of CAR T-cell therapy in the clinic through an improved understanding of CAR T-cell dynamics.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Updated text, figures, and supplemental tables.* https://github.com/alexbbrummer/CART_SINDy |
---|---|
AbstractList | In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate and interpret mathematical models of cancer cell growth and death hinge first on proposing a precise mathematical model, then analyzing experimental data in the context of the chosen model. In this work, we present the first application of the sparse identification of non-linear dynamics (SINDy) algorithm to discover cell-cell interaction dynamics in in vitro experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we show how the model terms can be interpreted biologically in relation to different CAR T-cell functional responses, single or double CAR T-cell-cancer cell binding models, and density-dependent growth dynamics in either of the CAR T-cell or cancer cell populations. This data-driven model-discover based approach has the potential to improve the implementation and efficacy of CAR T-cell therapy in the clinic through an improved understanding of CAR T-cell dynamics.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Updated text, figures, and supplemental tables.* https://github.com/alexbbrummer/CART_SINDy |
Author | Rockne, Russell C Cho, Heyrim Adhikarla, Vikram Woodall, Ryan Gutova, Margarita B Xella, Agata Brown, Christine E Brummer, Alexander B |
Author_xml | – sequence: 1 givenname: Alexander surname: Brummer middlename: B fullname: Brummer, Alexander B – sequence: 2 givenname: Agata surname: Xella fullname: Xella, Agata – sequence: 3 givenname: Ryan surname: Woodall fullname: Woodall, Ryan – sequence: 4 givenname: Vikram surname: Adhikarla fullname: Adhikarla, Vikram – sequence: 5 givenname: Heyrim surname: Cho fullname: Cho, Heyrim – sequence: 6 givenname: Margarita surname: Gutova middlename: B fullname: Gutova, Margarita B – sequence: 7 givenname: Christine surname: Brown middlename: E fullname: Brown, Christine E – sequence: 8 givenname: Russell surname: Rockne middlename: C fullname: Rockne, Russell C |
BookMark | eNotjUtLxDAYRbPQhY7-AHcB1615tEmzHOoTBgTpfkiTrxKNSU3Sgv_eGWY258KFe-41uggxAEJ3lNSUEvrACGM1UfWBLelk012h9VEXjW1yKwT8Ey14bF02cYX0h3Ww2IUCaU5QdHEx4Ckm3G8_8FAZ8B5_O-9d-MRLPjLPOmXAzkIobnLmNDlavC6HDq86OT16yDfoctI-w-05N2h4fhr612r3_vLWb3fVLGlXKdWw1lrg1BgpldGNIBrMyFsw0FkuhCKSciZGOrWSCFCqnXjbNCBoY8TIN-j-pJ1T_F0gl_1XXFI4PO6ZpJIqQhjl_59SWek |
ContentType | Paper |
Copyright | 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FH AAFGM AAMXL ABOIG ABUWG ADZZV AFKRA AFLLJ AFOLM AGAJT AQTIP AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PIMPY PQCXX PQEST PQQKQ PQUKI PRINS |
DOI | 10.1101/2022.09.22.508748 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central Korea - hybrid linking Natural Science Collection - hybrid linking Biological Science Collection - hybrid linking ProQuest Central (Alumni) ProQuest Central (Alumni) - hybrid linking ProQuest Central SciTech Premium Collection - hybrid linking ProQuest Central Student - hybrid linking ProQuest Central Essentials - hybrid linking ProQuest Women's & Gender Studies - hybrid linking ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Publicly Available Content Database ProQuest Central - hybrid linking ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PIMPY PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-p718-99425dde31cc779ca460aecb35ece8d3669071326b1f5706e995f3544e614c6b3 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 17:55:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p718-99425dde31cc779ca460aecb35ece8d3669071326b1f5706e995f3544e614c6b3 |
OpenAccessLink | https://www.proquest.com/docview/2717190021?pq-origsite=%requestingapplication% |
PQID | 2717190021 |
PQPubID | 2050091 |
ParticipantIDs | proquest_journals_2717190021 |
PublicationCentury | 2000 |
PublicationDate | 20221213 |
PublicationDateYYYYMMDD | 2022-12-13 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221213 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
Score | 1.7192488 |
Snippet | In the development of cell-based cancer therapies, quantitative mathematical models of cellular interactions are instrumental in understanding treatment... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Cancer Cell culture Cell death Cell therapy Chimeric antigen receptors Glioblastoma Glioblastoma cells Lymphocytes T Mathematical models Tumors |
Title | Data driven model discovery and interpretation for CAR T-cell killing using sparse identification and latent variables |
URI | https://www.proquest.com/docview/2717190021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrwpKj6q5OA12GweuzmJ1pbioZRSobeyySZSlG3dXQv-e2fWFBHBSy77OMzOft_M5MsMITfBSu29SVgowIMld5zlKSyJczjyqC-5bQWyEz1-lk8LtYgFtzrKKneY2AJ1sXZYI79NIO8A8gJKutu8M5wahburcYTGPukmXGRZh3QfhpPpLG5fgrthcp9gJ1NYIRZJZfYHdFsmGR2S7jTf-OqI7PnymGwf8yanRYWQQ9uhNBSPyaKs8pNCjk9XvzSBFCJMOrif0TnDgjt9XbUdtSmK118oYENVe7oqogDo-xF8yxsElGVDt5AX40mp-oTMR8P5YMziJAS2Ae5gxsCfBTgkuHNpalwudT_3zgrlnc8KoTHFhbRSWx5U2tfeGBWEktID-TptxSnplOvSnxHqOPZb1y4oLaTKfJYGHeA-LU0RgrTnpLezzjJ6c738sf3F_5cvyQHaG-UeXPRIp6k-_BWQdmOv45f5AuFLmps |
link.rule.ids | 780,784,21388,27925,33744,43805 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgHWADAeKjgAfWiDqxnXhCUIoKlKqqgtStih0bVaC0JKES_5674AohJBYv-Rgul_fuzs93hFw4zaW1KgxcDh7MmWFBFsMSGoMjj7qc6UYgO5KDZ_4wFVNfcKu8rHKNiQ1Q5wuDNfLLEPIOIC-gpKvle4BTo3B31Y_Q2CRt7JwuWqR90x-NJ377EtwNk_sQO5nCCrFIzJM_oNswyd0OaY-zpS13yYYt9sjqNqszmpcIObQZSkPxmCzKKj8p5Ph0_ksTSCHCpL3rCU0DLLjT13nTUZuieP2FAjaUlaXz3AuAvh_Bt7xBQFnUdAV5MZ6UqvZJetdPe4PAT0IIlsAdgVLwZwEORcyYOFYm47KbWaMjYY1N8khiigtppdTMibgrrVLCRYJzC-RrpI4OSKtYFPaQUMOw37o0TsiIi8QmsZMO7pNc5c5xfUQ6a-vMvDdXsx_bH_9_-ZxsDdKn4Wx4P3o8Idtoe5R-sKhDWnX5YU-BwGt95r_SFz0nnYM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+driven+model+discovery+and+interpretation+for+CAR+T-cell+killing+using+sparse+identification+and+latent+variables&rft.jtitle=bioRxiv&rft.au=Brummer%2C+Alexander+B&rft.au=Xella%2C+Agata&rft.au=Woodall%2C+Ryan&rft.au=Adhikarla%2C+Vikram&rft.date=2022-12-13&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft_id=info:doi/10.1101%2F2022.09.22.508748 |