Accounting for errors in data improves timing in single-cell cancer evolution

Single-cell sequencing provides a new way to explore the evolutionary history of cells. Compared to traditional bulk sequencing, where a population of heterogeneous cells is pooled to form a single observation, single-cell sequencing isolates and amplifies genetic material from individual cells, the...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Chen, Kylie, Moravec, Jiri C, Gavryushkin, Alex, Welch, David, Drummond, Alexei J
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 11.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-cell sequencing provides a new way to explore the evolutionary history of cells. Compared to traditional bulk sequencing, where a population of heterogeneous cells is pooled to form a single observation, single-cell sequencing isolates and amplifies genetic material from individual cells, thereby preserving the information about the origin of the sequences. However, single-cell data is more error-prone than bulk sequencing data due to the limited genomic material available per cell. Here, we present error and mutation models for evolutionary inference of single-cell data within a mature and extensible Bayesian framework, BEAST2. Our framework enables integration with biologically informative models such as relaxed molecular clocks and population dynamic models. Our simulations show that modeling errors increase the accuracy of relative divergence times and substitution parameters. We reconstruct the phylogenetic history of a colorectal cancer patient and a healthy patient from single-cell DNA sequencing data. We find that the estimated times of terminal splitting events are shifted forward in time compared to models which ignore errors. We observed that not accounting for errors can overestimate the phylogenetic diversity in single-cell DNA sequencing data. We estimate that 30-50% of the apparent diversity can be attributed to error. Our work enables a full Bayesian approach capable of accounting for errors in the data within the integrative Bayesian software framework BEAST2. Competing Interest Statement The authors have declared no competing interest.
AbstractList Single-cell sequencing provides a new way to explore the evolutionary history of cells. Compared to traditional bulk sequencing, where a population of heterogeneous cells is pooled to form a single observation, single-cell sequencing isolates and amplifies genetic material from individual cells, thereby preserving the information about the origin of the sequences. However, single-cell data is more error-prone than bulk sequencing data due to the limited genomic material available per cell. Here, we present error and mutation models for evolutionary inference of single-cell data within a mature and extensible Bayesian framework, BEAST2. Our framework enables integration with biologically informative models such as relaxed molecular clocks and population dynamic models. Our simulations show that modeling errors increase the accuracy of relative divergence times and substitution parameters. We reconstruct the phylogenetic history of a colorectal cancer patient and a healthy patient from single-cell DNA sequencing data. We find that the estimated times of terminal splitting events are shifted forward in time compared to models which ignore errors. We observed that not accounting for errors can overestimate the phylogenetic diversity in single-cell DNA sequencing data. We estimate that 30-50% of the apparent diversity can be attributed to error. Our work enables a full Bayesian approach capable of accounting for errors in the data within the integrative Bayesian software framework BEAST2. Competing Interest Statement The authors have declared no competing interest.
Author Chen, Kylie
Gavryushkin, Alex
Welch, David
Moravec, Jiri C
Drummond, Alexei J
Author_xml – sequence: 1
  givenname: Kylie
  surname: Chen
  fullname: Chen, Kylie
– sequence: 2
  givenname: Jiri
  surname: Moravec
  middlename: C
  fullname: Moravec, Jiri C
– sequence: 3
  givenname: Alex
  surname: Gavryushkin
  fullname: Gavryushkin, Alex
– sequence: 4
  givenname: David
  surname: Welch
  fullname: Welch, David
– sequence: 5
  givenname: Alexei
  surname: Drummond
  middlename: J
  fullname: Drummond, Alexei J
BookMark eNotTktrAyEY9NAe2rQ_oDeh5936-Vj1GEJfkNBL7sF1NWwwmqqb319LCwMDw7zu0U1M0SH0BKQHIPBCCYWesB5kz5nQZLhDu7W1aYl1jkfsU8Yu55QLniOeTDV4Pl9yurqC63z-tTS9NA6usy4EbE20roWuKSx1TvEB3XoTinv85xXav73uNx_d9uv9c7PedhcJQ8ckp9RMQviRcyWEpJQ7NygtvKFGqmkCD1bJkTUMwAg1Vo1SWQae6lGzFXr-q23nvhdX6uGUlhzb4oEKwpUUWgj2AyX0SpY
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FH
AAFGM
AAMXL
ABOIG
ABUWG
ADZZV
AFKRA
AFLLJ
AFOLM
AGAJT
AQTIP
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQCXX
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1101/2021.03.17.435906
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central Korea - hybrid linking
Natural Science Collection - hybrid linking
Biological Science Collection - hybrid linking
ProQuest Central (Alumni Edition)
ProQuest Central (Alumni) - hybrid linking
ProQuest Central
SciTech Premium Collection - hybrid linking
ProQuest Central Student - hybrid linking
ProQuest Central Essentials - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
Publicly Available Content Database
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p716-37422ad55fb448557224ee6895fa2a78dd1f1c87b37b361302ac8b78c31f29b93
IEDL.DBID BENPR
IngestDate Thu Oct 10 16:43:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p716-37422ad55fb448557224ee6895fa2a78dd1f1c87b37b361302ac8b78c31f29b93
OpenAccessLink https://www.proquest.com/docview/2504875955?pq-origsite=%requestingapplication%
PQID 2504875955
PQPubID 2050091
ParticipantIDs proquest_journals_2504875955
PublicationCentury 2000
PublicationDate 20220511
PublicationDateYYYYMMDD 2022-05-11
PublicationDate_xml – month: 05
  year: 2022
  text: 20220511
  day: 11
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
Score 1.7016282
Snippet Single-cell sequencing provides a new way to explore the evolutionary history of cells. Compared to traditional bulk sequencing, where a population of...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Bayesian analysis
Cancer
Colorectal carcinoma
Divergence
Evolutionary genetics
Genetic diversity
Genotypes
Mathematical models
Molecular modelling
Mutation
Phylogeny
Title Accounting for errors in data improves timing in single-cell cancer evolution
URI https://www.proquest.com/docview/2504875955
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA26e_GmqPhRJQev0U12s8meBKWlCJYiFXorm2RWCrKtu9Xf70xJ6UEQctqwhySTeW8mwzzG7iCXAUJZCUJrgXidCYQREI0tco_2Re2HqNpiUo7fi5e5nseEWx_LKnc-ceuow8pTjvyBWm0ht660flx_CVKNotfVKKFxyFKFkYJKWPo0nEzf4vMlmhsF95LamEpzj8ygyso_TneLJKNjlk7rNXQn7ADaU_a6F2vgyB45dN2q6_my5VS5yZfbiB96viHtrQ_6TqH9JwjKt3NPJ4Y__UTzOWOz0XD2PBZR4ECsMUzBu10oVQetG1dQjxaDcApQ2ko3taqNDUE20lvjchzE81XtrTPW57JRlavyc5a0qxYuGEeOnLmi1D54XYTMOLyoFnDBSCDwlMwlG-wWvYhG2i_2W3r1__Q1O1JU9U9NS-WAJZvuG24QizfuNm74L5uJiiI
link.rule.ids 783,787,21402,27939,33758,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20PehNUfGj6h68rmaTbHZzEpSWqm0pUqG3kv2IFCRtk-rvd6Zs6UEQckrIYXdn572ZnX0DcOcT4bzLck5ozRGvI44w4nmp08SifZH8EFVbjLL-R_o6ldOQcGtCWeXWJ24ctVtYypE_kNQWcutcysflilPXKDpdDS009qFNUlVo1e2n7mj8Ho4v0dwouBckYyrUPTKDPMr-ON0NkvSOoD0ulr4-hj1fncBw16yBIXtkvq4XdcPmFaPKTTbfRPy-YWvqvfVJ7ym0__Kc8u3M0orhTz_BfE5h0utOnvs8NDjgSwxTcG-ncVw4KUuTkkaLQjj1PtO5LIu4UNo5UQqrlUnwIZ4fF1YbpW0iyjg3eXIGrWpR-XNgyJEjk2bSOitTFymDG1V7HDASCFwldQGd7aBnwUib2W5KL___fAsH_clwMBu8jN6u4DCmGwAkYCo60FrX3_4acXltbsLk_wJNb40c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+errors+in+data+improves+timing+in+single-cell+cancer+evolution&rft.jtitle=bioRxiv&rft.au=Chen%2C+Kylie&rft.au=Moravec%2C+Jiri+C&rft.au=Gavryushkin%2C+Alex&rft.au=Welch%2C+David&rft.date=2022-05-11&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft_id=info:doi/10.1101%2F2021.03.17.435906