Hole-Quality Inspection Using Machine Learning Based on Temperature Images Obtained Using Two-Color High-Speed Video for Cu Direct Laser Processes of a Printed Wiring Board
In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of simultaneously processing copper foil and insulation layer using a CO2 laser to process the blind via holes that electrically connect the mul...
Saved in:
Published in | International journal of automation technology Vol. 19; no. 5; pp. 851 - 860 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Co. Ltd
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1881-7629 1883-8022 |
DOI | 10.20965/ijat.2025.p0851 |
Cover
Abstract | In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of simultaneously processing copper foil and insulation layer using a CO2 laser to process the blind via holes that electrically connect the multilayered layers has become popular. However, laser processing is a noncontact process, and the board is a composite material, which makes it difficult to ensure quality. It is also difficult to observe the internal state of the processed holes from the outside, and the quality inspection of a large number of holes on a single board relies on destructive inspection via sampling. Therefore, we first propose and evaluate an inspection method using multiple machine-learning methods for multipulse machining. We then investigated whether the accuracy of the anomaly detection varied based on the machined hole parameters. |
---|---|
AbstractList | In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of simultaneously processing copper foil and insulation layer using a CO2 laser to process the blind via holes that electrically connect the multilayered layers has become popular. However, laser processing is a noncontact process, and the board is a composite material, which makes it difficult to ensure quality. It is also difficult to observe the internal state of the processed holes from the outside, and the quality inspection of a large number of holes on a single board relies on destructive inspection via sampling. Therefore, we first propose and evaluate an inspection method using multiple machine-learning methods for multipulse machining. We then investigated whether the accuracy of the anomaly detection varied based on the machined hole parameters. |
Author | Fujimoto Takuto Nakagawa Masao Hirogaki Toshiki Nowatari Soma Aoyama Eiichi |
Author_xml | – sequence: 1 fullname: Fujimoto Takuto – sequence: 2 fullname: Nowatari Soma – sequence: 3 fullname: Nakagawa Masao – sequence: 4 fullname: Hirogaki Toshiki – sequence: 5 fullname: Aoyama Eiichi |
BookMark | eNotUMtOwzAQtFCRKKV3jpY4pzhOHDtHKI9WCiqIAMfKSdatq9QOdiLEP_GRmNLTzs7szmj3HI2MNYDQZUxmlOQZu9Y72QdI2awjgsUnaBwLkUSCUDo64DjiGc3P0NR7XREWZ2nMEj5GPwvbQvQyyFb333hpfAd1r63Bb16bDX6S9VYbwAVIZ_6IW-mhwUEvYd-Bk_3gAC_3cgMer6pehuHmuFt-2WhuW-vwQm-20WsHQXrXDVisAjkf8J12IQ0XwdPhZ2dr8D74WIVlaLXpw8KHdodcK11zgU6VbD1Mj3WCyof7cr6IitXjcn5TRB0n4VAqYs5FSlTaEB6rmikZfqK4EhnnCWkaBRWVFcuyTCQgGFe0ylVa5QnLKSfJBF3923bOfg7g-_XODs6ExHVC04xTzjlLfgHKcnPL |
ContentType | Journal Article |
Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
DBID | 7SC 7SP 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.20965/ijat.2025.p0851 |
DatabaseName | Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1883-8022 |
EndPage | 860 |
GroupedDBID | 7SC 7SP 8FD 8FE 8FG ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU DWQXO EBS EJD GROUPED_DOAJ HCIFZ JQ2 JSF JSH L6V L7M L~C L~D M7S OK1 P2P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PUEGO RJT RZJ TUS |
ID | FETCH-LOGICAL-p701-728177840f4d071fc5fa851f7f867730ddfeb2ab566683e857f2b9f4b93592703 |
IEDL.DBID | 8FG |
ISSN | 1881-7629 |
IngestDate | Sat Sep 06 06:26:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p701-728177840f4d071fc5fa851f7f867730ddfeb2ab566683e857f2b9f4b93592703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.20965/ijat.2025.p0851 |
PQID | 3246727775 |
PQPubID | 4911627 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3246727775 |
PublicationCentury | 2000 |
PublicationDate | 20250901 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 20250901 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | International journal of automation technology |
PublicationYear | 2025 |
Publisher | Fuji Technology Press Co. Ltd |
Publisher_xml | – name: Fuji Technology Press Co. Ltd |
SSID | ssib051641537 ssj0000557852 |
Score | 2.3257062 |
Snippet | In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 851 |
SubjectTerms | Anomalies Carbon dioxide Carbon dioxide lasers Circuit boards Composite materials Copper Inspection Laser processing Machine learning Machining Metal foils Printed circuits |
Title | Hole-Quality Inspection Using Machine Learning Based on Temperature Images Obtained Using Two-Color High-Speed Video for Cu Direct Laser Processes of a Printed Wiring Board |
URI | https://www.proquest.com/docview/3246727775 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn_ioZQ5eo_tImuQktrRWsSpaHzfZ7CZS0d3aKuLFX-SPdJLdqiB4WViGzUIy-eaRyTeE7KRK6lRwQxtMpJSJQFClVUATppNQxEYpz7bfO210r9jxLb-tEm7jqqxygokeqLMidTnyPTT87tBQCL4_fKaua5Q7Xa1aaEyT2RAtjdNz2Tmc6BPHUAA3tPjOuTi-Kemb8IRShhRxQJUnl5HjQNkbPCSuujLiu0PniPxBZ29yOotkofIV4aBc3CUyZfJlMv-LQXCFfHaLR0NLIox3OMrLi5NFDr4UAHq-VNJAxaJ6D000WhmgvG_QXy75lOHoCUFlDGfapQlQXH7bfytoC6FxBK4WhF4O0c7B9SAzBaCjC61XKOESTnDMEVQ3DnCcwkKCr46IIoObwcj_t0BNXCX9Trvf6tKqAQMdigDnJ5KhEBgBWpahJ2JTbhOcFyusI8GLgyyzGJcnGj3ChoyN5MJGWlmm3W3fCKFkjczkRW7WCTS4MEGkmI5RzkSSMB4HqCSKcxsoGW2Q2mSu76pNNL77WfLN_8VbZM4tW1n6VSMzL6NXs42-wouue4Wok9lm-_T8ou4jbnz2Ptpfk0a_9g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDyKWigwBziaZh07jg-oapdWu3R3QTRAb6s4sautSrLstqr6n-A_Mo4TQELi1mM0ii3Zn-dhz3wD8KrQqSmUtCwRqmBCRYppoyOWC5P3VWy1btj2J9Nk-Fm8P5Wna_Czq4XxaZWdTmwUdVkX_o58lwy_fzRUSu4tvjPfNcq_rnYtNAIsju3NNYVsq7ejd7S_rzk_OswGQ9Z2FWALRaGz4mlfKQprnCjJvLpCupy8DqecZ3aLo7J0FGzmhtycJI1tKpXjRjthfAkrp_NBw96BdeELWnuwfnA4_fipA7Ck2IM0iPp9yeMJrtKm608_TWnuhOvwVMo96cru_Dz36Zxcvll4z-cfc9DYuKMHcL91TnE_oOkhrNnqEWz8RVn4GH4M6wvLAvPGDY6qUKlZV9jkHuCkyc202NK2nuEBWckSSZ5ZctADgTOOvpEWW-EH4-8lSBz-za5rNiBdvESffMJOFmRY8cu8tDWSZ42DKwz6Gcc05hLbEgcap3aY06dnvijx63zZzFsT9Dchu429eQK9qq7sFmAilY24FiYmuVB5LmQcESq1lC7SKd-GnW6tZ-2pXc3-YOzp_8Uv4e4wm4xn49H0-Bnc81sY8s52oHe5vLLPyVG5NC9aeCDMbhmQvwA6S_hJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hole-Quality+Inspection+Using+Machine+Learning+Based+on+Temperature+Images+Obtained+Using+Two-Color+High-Speed+Video+for+Cu+Direct+Laser+Processes+of+a+Printed+Wiring+Board&rft.jtitle=International+journal+of+automation+technology&rft.au=Fujimoto+Takuto&rft.au=Nowatari+Soma&rft.au=Nakagawa+Masao&rft.au=Hirogaki+Toshiki&rft.date=2025-09-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1881-7629&rft.eissn=1883-8022&rft.volume=19&rft.issue=5&rft.spage=851&rft.epage=860&rft_id=info:doi/10.20965%2Fijat.2025.p0851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7629&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7629&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7629&client=summon |