Hole-Quality Inspection Using Machine Learning Based on Temperature Images Obtained Using Two-Color High-Speed Video for Cu Direct Laser Processes of a Printed Wiring Board

In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of simultaneously processing copper foil and insulation layer using a CO2 laser to process the blind via holes that electrically connect the mul...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automation technology Vol. 19; no. 5; pp. 851 - 860
Main Authors Fujimoto Takuto, Nowatari Soma, Nakagawa Masao, Hirogaki Toshiki, Aoyama Eiichi
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Co. Ltd 01.09.2025
Subjects
Online AccessGet full text
ISSN1881-7629
1883-8022
DOI10.20965/ijat.2025.p0851

Cover

Abstract In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of simultaneously processing copper foil and insulation layer using a CO2 laser to process the blind via holes that electrically connect the multilayered layers has become popular. However, laser processing is a noncontact process, and the board is a composite material, which makes it difficult to ensure quality. It is also difficult to observe the internal state of the processed holes from the outside, and the quality inspection of a large number of holes on a single board relies on destructive inspection via sampling. Therefore, we first propose and evaluate an inspection method using multiple machine-learning methods for multipulse machining. We then investigated whether the accuracy of the anomaly detection varied based on the machined hole parameters.
AbstractList In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of simultaneously processing copper foil and insulation layer using a CO2 laser to process the blind via holes that electrically connect the multilayered layers has become popular. However, laser processing is a noncontact process, and the board is a composite material, which makes it difficult to ensure quality. It is also difficult to observe the internal state of the processed holes from the outside, and the quality inspection of a large number of holes on a single board relies on destructive inspection via sampling. Therefore, we first propose and evaluate an inspection method using multiple machine-learning methods for multipulse machining. We then investigated whether the accuracy of the anomaly detection varied based on the machined hole parameters.
Author Fujimoto Takuto
Nakagawa Masao
Hirogaki Toshiki
Nowatari Soma
Aoyama Eiichi
Author_xml – sequence: 1
  fullname: Fujimoto Takuto
– sequence: 2
  fullname: Nowatari Soma
– sequence: 3
  fullname: Nakagawa Masao
– sequence: 4
  fullname: Hirogaki Toshiki
– sequence: 5
  fullname: Aoyama Eiichi
BookMark eNotUMtOwzAQtFCRKKV3jpY4pzhOHDtHKI9WCiqIAMfKSdatq9QOdiLEP_GRmNLTzs7szmj3HI2MNYDQZUxmlOQZu9Y72QdI2awjgsUnaBwLkUSCUDo64DjiGc3P0NR7XREWZ2nMEj5GPwvbQvQyyFb333hpfAd1r63Bb16bDX6S9VYbwAVIZ_6IW-mhwUEvYd-Bk_3gAC_3cgMer6pehuHmuFt-2WhuW-vwQm-20WsHQXrXDVisAjkf8J12IQ0XwdPhZ2dr8D74WIVlaLXpw8KHdodcK11zgU6VbD1Mj3WCyof7cr6IitXjcn5TRB0n4VAqYs5FSlTaEB6rmikZfqK4EhnnCWkaBRWVFcuyTCQgGFe0ylVa5QnLKSfJBF3923bOfg7g-_XODs6ExHVC04xTzjlLfgHKcnPL
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID 7SC
7SP
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.20965/ijat.2025.p0851
DatabaseName Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1883-8022
EndPage 860
GroupedDBID 7SC
7SP
8FD
8FE
8FG
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
GROUPED_DOAJ
HCIFZ
JQ2
JSF
JSH
L6V
L7M
L~C
L~D
M7S
OK1
P2P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PUEGO
RJT
RZJ
TUS
ID FETCH-LOGICAL-p701-728177840f4d071fc5fa851f7f867730ddfeb2ab566683e857f2b9f4b93592703
IEDL.DBID 8FG
ISSN 1881-7629
IngestDate Sat Sep 06 06:26:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p701-728177840f4d071fc5fa851f7f867730ddfeb2ab566683e857f2b9f4b93592703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.20965/ijat.2025.p0851
PQID 3246727775
PQPubID 4911627
PageCount 10
ParticipantIDs proquest_journals_3246727775
PublicationCentury 2000
PublicationDate 20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 20250901
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle International journal of automation technology
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
SSID ssib051641537
ssj0000557852
Score 2.3257062
Snippet In recent years, as electronic devices have become smaller and more powerful, printed wiring boards have been required to have higher densities. The method of...
SourceID proquest
SourceType Aggregation Database
StartPage 851
SubjectTerms Anomalies
Carbon dioxide
Carbon dioxide lasers
Circuit boards
Composite materials
Copper
Inspection
Laser processing
Machine learning
Machining
Metal foils
Printed circuits
Title Hole-Quality Inspection Using Machine Learning Based on Temperature Images Obtained Using Two-Color High-Speed Video for Cu Direct Laser Processes of a Printed Wiring Board
URI https://www.proquest.com/docview/3246727775
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn_ioZQ5eo_tImuQktrRWsSpaHzfZ7CZS0d3aKuLFX-SPdJLdqiB4WViGzUIy-eaRyTeE7KRK6lRwQxtMpJSJQFClVUATppNQxEYpz7bfO210r9jxLb-tEm7jqqxygokeqLMidTnyPTT87tBQCL4_fKaua5Q7Xa1aaEyT2RAtjdNz2Tmc6BPHUAA3tPjOuTi-Kemb8IRShhRxQJUnl5HjQNkbPCSuujLiu0PniPxBZ29yOotkofIV4aBc3CUyZfJlMv-LQXCFfHaLR0NLIox3OMrLi5NFDr4UAHq-VNJAxaJ6D000WhmgvG_QXy75lOHoCUFlDGfapQlQXH7bfytoC6FxBK4WhF4O0c7B9SAzBaCjC61XKOESTnDMEVQ3DnCcwkKCr46IIoObwcj_t0BNXCX9Trvf6tKqAQMdigDnJ5KhEBgBWpahJ2JTbhOcFyusI8GLgyyzGJcnGj3ChoyN5MJGWlmm3W3fCKFkjczkRW7WCTS4MEGkmI5RzkSSMB4HqCSKcxsoGW2Q2mSu76pNNL77WfLN_8VbZM4tW1n6VSMzL6NXs42-wouue4Wok9lm-_T8ou4jbnz2Ptpfk0a_9g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDyKWigwBziaZh07jg-oapdWu3R3QTRAb6s4sautSrLstqr6n-A_Mo4TQELi1mM0ii3Zn-dhz3wD8KrQqSmUtCwRqmBCRYppoyOWC5P3VWy1btj2J9Nk-Fm8P5Wna_Czq4XxaZWdTmwUdVkX_o58lwy_fzRUSu4tvjPfNcq_rnYtNAIsju3NNYVsq7ejd7S_rzk_OswGQ9Z2FWALRaGz4mlfKQprnCjJvLpCupy8DqecZ3aLo7J0FGzmhtycJI1tKpXjRjthfAkrp_NBw96BdeELWnuwfnA4_fipA7Ck2IM0iPp9yeMJrtKm608_TWnuhOvwVMo96cru_Dz36Zxcvll4z-cfc9DYuKMHcL91TnE_oOkhrNnqEWz8RVn4GH4M6wvLAvPGDY6qUKlZV9jkHuCkyc202NK2nuEBWckSSZ5ZctADgTOOvpEWW-EH4-8lSBz-za5rNiBdvESffMJOFmRY8cu8tDWSZ42DKwz6Gcc05hLbEgcap3aY06dnvijx63zZzFsT9Dchu429eQK9qq7sFmAilY24FiYmuVB5LmQcESq1lC7SKd-GnW6tZ-2pXc3-YOzp_8Uv4e4wm4xn49H0-Bnc81sY8s52oHe5vLLPyVG5NC9aeCDMbhmQvwA6S_hJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hole-Quality+Inspection+Using+Machine+Learning+Based+on+Temperature+Images+Obtained+Using+Two-Color+High-Speed+Video+for+Cu+Direct+Laser+Processes+of+a+Printed+Wiring+Board&rft.jtitle=International+journal+of+automation+technology&rft.au=Fujimoto+Takuto&rft.au=Nowatari+Soma&rft.au=Nakagawa+Masao&rft.au=Hirogaki+Toshiki&rft.date=2025-09-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1881-7629&rft.eissn=1883-8022&rft.volume=19&rft.issue=5&rft.spage=851&rft.epage=860&rft_id=info:doi/10.20965%2Fijat.2025.p0851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7629&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7629&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7629&client=summon