A Novel Approach to Speech Recognition by Using Generalized Regression Neural Networks

Speech recognition has been a subject of active research in the last few decades. In this paper, the applicability of a special model of Generalized Regression Neural Networks as a classifier is studied. A Generalized Regression Neural Network (GRNN) is often used for function approximation. It has...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer science issues Vol. 8; no. 2; p. 484
Main Authors Revada, Lakshmi Kanaka Venkateswarlu, Rambatla, Vasantha Kumari, Ande, Koti Verra Nagayya
Format Journal Article
LanguageEnglish
Published Mahebourg International Journal of Computer Science Issues (IJCSI) 01.03.2011
Subjects
Online AccessGet full text
ISSN1694-0814
1694-0784

Cover

Loading…
Abstract Speech recognition has been a subject of active research in the last few decades. In this paper, the applicability of a special model of Generalized Regression Neural Networks as a classifier is studied. A Generalized Regression Neural Network (GRNN) is often used for function approximation. It has a radial basis layer and a special linear layer. This network uses a competitive function for computing final result. The proposed network has been tested on one digit numbers dataset and produced significantly lower recognition error rate in comparison with common pattern classifiers. All of classifiers use Linear Predictive Cepstral Coefficients and Mel - Frequency Cepstral Coefficients. Results for proposed network shows that LPCC features yield better performance when compared to MFCC. It is found that the performance of Generalized Regression Neural Networks is superior to the other classifiers namely Linear and Multilayer Perceptron Neural Networks.
AbstractList Speech recognition has been a subject of active research in the last few decades. In this paper, the applicability of a special model of Generalized Regression Neural Networks as a classifier is studied. A Generalized Regression Neural Network (GRNN) is often used for function approximation. It has a radial basis layer and a special linear layer. This network uses a competitive function for computing final result. The proposed network has been tested on one digit numbers dataset and produced significantly lower recognition error rate in comparison with common pattern classifiers. All of classifiers use Linear Predictive Cepstral Coefficients and Mel - Frequency Cepstral Coefficients. Results for proposed network shows that LPCC features yield better performance when compared to MFCC. It is found that the performance of Generalized Regression Neural Networks is superior to the other classifiers namely Linear and Multilayer Perceptron Neural Networks.
Author Revada, Lakshmi Kanaka Venkateswarlu
Ande, Koti Verra Nagayya
Rambatla, Vasantha Kumari
Author_xml – sequence: 1
  givenname: Lakshmi
  surname: Revada
  middlename: Kanaka Venkateswarlu
  fullname: Revada, Lakshmi Kanaka Venkateswarlu
– sequence: 2
  givenname: Vasantha
  surname: Rambatla
  middlename: Kumari
  fullname: Rambatla, Vasantha Kumari
– sequence: 3
  givenname: Koti
  surname: Ande
  middlename: Verra Nagayya
  fullname: Ande, Koti Verra Nagayya
BookMark eNpdjk9LxDAUxIOs4LrudwievBSa5k_zjsuiq7CsoKvXkqavtWtNatMq-umNqBff5TfMDI85JTPnHR6ROVMgkjTXYvanNRMnZBnCIY0npGJKz8njiu78G3Z01feDN_aJjp7e94hR3aH1jWvH1jtaftCH0LqGbtDhYLr2E6tYaAYM4Tvf4RTdiPHdD8_hjBzXpgu4_OWC7K8u9-vrZHu7uVmvtkmv0jwxWlRS1qUF1DVwGVEpYyxniqcSBLMoEEuT2UrWkIMGUeYGQUYHswz4glz8vI3bXycMY_HSBotdZxz6KRSMCxBCMshj9fxf9eCnwcVxBWRMZBKA8y_jfV45
ContentType Journal Article
Copyright Copyright International Journal of Computer Science Issues (IJCSI) Mar 2011
Copyright_xml – notice: Copyright International Journal of Computer Science Issues (IJCSI) Mar 2011
DBID 3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
D1I
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KB.
L7M
L~C
L~D
M0N
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DatabaseName ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Materials Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Middle East & Africa Database
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1694-0784
EndPage 484
ExternalDocumentID 2586116281
Genre General Information
GroupedDBID .DC
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8R4
8R5
ABJCF
ABUWG
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CWDGH
D1I
DWQXO
E3Z
GNUQQ
HCIFZ
JQ2
K6V
K7-
KB.
KQ8
L7M
L~C
L~D
M0N
OK1
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
Q2X
Q9U
RNS
TR2
PUEGO
ID FETCH-LOGICAL-p607-a84d55fbc9e8f9359e8d6aac316305941ce4eeba2cd5f979894b7ae95a2ce2293
IEDL.DBID 8FG
ISSN 1694-0814
IngestDate Sun Aug 24 04:11:36 EDT 2025
Fri Jul 25 19:09:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p607-a84d55fbc9e8f9359e8d6aac316305941ce4eeba2cd5f979894b7ae95a2ce2293
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 921425993
PQPubID 55228
PageCount 1
ParticipantIDs proquest_miscellaneous_1349445197
proquest_journals_921425993
PublicationCentury 2000
PublicationDate 20110301
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 20110301
  day: 01
PublicationDecade 2010
PublicationPlace Mahebourg
PublicationPlace_xml – name: Mahebourg
PublicationTitle International journal of computer science issues
PublicationYear 2011
Publisher International Journal of Computer Science Issues (IJCSI)
Publisher_xml – name: International Journal of Computer Science Issues (IJCSI)
SSID ssj0000456168
Score 1.7563398
Snippet Speech recognition has been a subject of active research in the last few decades. In this paper, the applicability of a special model of Generalized Regression...
SourceID proquest
SourceType Aggregation Database
StartPage 484
SubjectTerms Approximation
Classifiers
Computer science
Mathematical analysis
Mathematical models
Networks
Neural networks
Regression
Speech recognition
Title A Novel Approach to Speech Recognition by Using Generalized Regression Neural Networks
URI https://www.proquest.com/docview/921425993
https://www.proquest.com/docview/1349445197
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRiDKUhcI_pMmhMaaGNCokJjoN2mJnERl3bQDQl-PXGb7sCBW5VGjRS7tmV__kzIlZ-ByMNIMhPGhkWh8liSm4jJXCVaS-Mpjf3OjymfvEQP83jusDmVg1W2NrE21KbUmCO_lsgNFltverP8YDg0CourboLGNun61tGggifj-02KBaMVv2mG40iAm2Crzh-LW7uR8T7ZdfEfHTYCOyBbUBySvXa2AnW_2hF5HdK0_AK705F-01VJn5cA9mnagn7KgqpvWlf9qeOPfv8BYze8NfDWgiL5hj0vbdDe1TGZjUezuwlzMxDYknuCZUlk4jhXWkKSYxMtJIZnmQ5tGIVMK76GCEBlgTZxLgWyqSuRgYztCgTWlZ-QTlEWcEpopCLuad9wYaMGKwEVZHkgtPB1LoBz0yP99moWTo-rxebWe-Ry89YqIFYVsgLKdbVAfkNkOZPi7N8v9MlOk49F_NY56aw-13BhHfpKDWqxDUj3dpQ-TX8BQX-meQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwELUqGGDhG1HKh5FgjGgSJ44HhCqgtLTNAAV1i2L7gliSQlpQ-U38SHxN0oGBrVuUWInkO58v5_feEXJux8ATlwlLu562mCubVpBoZolEBkoJ3ZQK-c6D0O88s4eRN6qRn4oLg7DKKibOA7XOFNbILwVqg3lmN70ev1vYNAoPV6sOGoVX9GD2Zf7Y8qvurTHvheO074Y3HatsKmCN_Sa34oBpz0ukEhAkyEqFQPtxrFyTl6B0ia2AAcjYUdpLBEd5csljEJ65A46D0ksm4K8y1xUIIAza94uKDiZHdsG981FvN0Bm0J8AP9-12ltko0w3aavwj21Sg3SHbFatHGi5snfJS4uG2SeYkaXGOJ1k9GkMYK4eK4xRllI5o3OQAS3lqt--QZsBrwWaNqWo9WG-Fxbg8nyPDJcxO_tkJc1SOCCUSeY3la19bpIUY3DpxInDFbdVwsH3dZ00qqmJymWTRwsj18nZ4qnxdzzEiFPIpnmEcoooqib44b9vOCVrneGgH_W7Ya9B1otSMELHjsjK5GMKxyaXmMiTuQkpiZbsMr8CQuIj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELaqIiEW3ohSHkaCMWreTgaEKkpoKUQICuoWxfYZsSSFtqDyy_h5-JqkAwNbtyixEsn3-Xw5f_cdIWdWCkw5bmhIx5OG63DTCJR0jVDxQIhQmlxgvfN97Hef3duhN6yRn6oWBmmVlU-cO2qZC8yRt0LUBvP0btpSJSvioRNdjt4NbCCFB61VN40CIX2Yfem_t_FFr6NNfW7b0fXgqmuUDQaMkW8yIw1c6XmKixAChRWqEEg_TYWjYxSUMbEEuAA8tYX0VMhQqpyzFEJP3wHbRhkm7fxXmBOY2DshiG4W2R0MlKyiDs9H7d0Aq4T-OPv5DhZtkvUy9KTtAitbpAbZNtmo2jrQcpXvkJc2jfNP0CNLvXE6yenTCEBfPVZ8ozyjfEbnhANaSle_fYPUA14LZm1GUfdDfy8uiObjXTJYxuzskXqWZ7BPqMtd3xSW9JkOWLTxuZ0qmwlmCcXA92WDNKupScolNE4WBm-Q08VTjX080EgzyKfjBKUVUWAtZAf_vuGErGqwJHe9uN8ka0VWGFlkh6Q--ZjCkQ4rJvx4bkFKkiUj5hfLqeZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+to+Speech+Recognition+by+Using+Generalized+Regression+Neural+Networks&rft.jtitle=International+journal+of+computer+science+issues&rft.au=Revada%2C+Lakshmi+Kanaka+Venkateswarlu&rft.au=Rambatla%2C+Vasantha+Kumari&rft.au=Ande%2C+Koti+Verra+Nagayya&rft.date=2011-03-01&rft.issn=1694-0814&rft.eissn=1694-0784&rft.volume=8&rft.issue=2&rft.spage=484&rft.epage=484&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1694-0814&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1694-0814&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1694-0814&client=summon