High-throughput Phenotyping with Temporal Sequences

ABSTRACT Objective High-throughput electronic phenotyping algorithms can accelerate translational research using data from electronic health record (EHR) systems. The temporal information buried in EHRs are often underutilized in developing computational phenotypic definitions. The objective of this...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Estiri, Hossein, Strasser, Zachary H, Murphy, Shawn N
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 10.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Objective High-throughput electronic phenotyping algorithms can accelerate translational research using data from electronic health record (EHR) systems. The temporal information buried in EHRs are often underutilized in developing computational phenotypic definitions. The objective of this study is to develop a high-throughput phenotyping method, leveraging temporal sequential patterns of discrete events from electronic health records. Materials and Methods We develop a representation mining algorithm to extract five classes of representations from EHR diagnosis and medication records: the aggregated vector of the records (AVR), the traditional immediate sequential patterns (SPM), the transitive sequential patterns (tSPM), as well as two hybrid classes of SPM+AVR and tSPM+AVR. A final small set of representations were selected from each class using the MSMR dimensionality reduction algorithm. Using EHR data on 10 phenotypes from Mass General Brigham Biobank, we trained regularized logistic regression algorithms, which we validated using labeled data. Results Phenotyping with temporal sequences resulted in a superior classification performance across all 10 phenotypes compared with the AVR representations that are conventionally used in electronic phenotyping. Although this study only utilizes the diagnosis and medication records, the high-throughput algorithm’s classification performance was superior or similar to the performance of previously published electronic phenotyping algorithms. We characterize and evaluate the top transitive sequences of diagnosis records paired with the records of risk factors, symptoms, complications, medications, or vaccinations. Discussion The proposed high-throughput phenotyping approach enables seamless discovery of sequential record combinations that may be difficult to assume from raw EHR data. A transitive sequence can offer a more accurate characterization of the phenotype, compared with its individual components. Additionally, the identified transitive sequences of a given phenotype reflect the actual lived experiences of the patients with that particular disease. Conclusion Sequential data representations provide a precise mechanism for incorporating raw EHR records into downstream Machine Learning. Competing Interest Statement The authors have declared no competing interest.
DOI:10.1101/590307