Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain

Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI tec...

Full description

Saved in:
Bibliographic Details
Published inInvestigative radiology
Main Authors Choi, Yangsean, Ko, Ji Su, Park, Ji Eun, Jeong, Geunu, Seo, Minkook, Jun, Yohan, Fujita, Shohei, Bilgic, Berkin
Format Journal Article
LanguageEnglish
Published United States 20.08.2024
Online AccessGet more information

Cover

Loading…
Abstract Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
AbstractList Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
Author Choi, Yangsean
Seo, Minkook
Jun, Yohan
Fujita, Shohei
Ko, Ji Su
Bilgic, Berkin
Park, Ji Eun
Jeong, Geunu
Author_xml – sequence: 1
  givenname: Yangsean
  surname: Choi
  fullname: Choi, Yangsean
  organization: From the Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea (Y.C., J.S.K., J.E.P.); AIRS Medical LLC, Seoul, Republic of Korea (G.J.); Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea (M.S.); Department of Radiology, Harvard Medical School, Boston, MA (Y.J., S.F., B.B.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (Y.J., S.F., B.B.); and Harvard/MIT Health Sciences and Technology, Cambridge, MA (B.B.)
– sequence: 2
  givenname: Ji Su
  surname: Ko
  fullname: Ko, Ji Su
– sequence: 3
  givenname: Ji Eun
  orcidid: 0000-0002-4419-4682
  surname: Park
  fullname: Park, Ji Eun
– sequence: 4
  givenname: Geunu
  surname: Jeong
  fullname: Jeong, Geunu
– sequence: 5
  givenname: Minkook
  surname: Seo
  fullname: Seo, Minkook
– sequence: 6
  givenname: Yohan
  surname: Jun
  fullname: Jun, Yohan
– sequence: 7
  givenname: Shohei
  surname: Fujita
  fullname: Fujita, Shohei
– sequence: 8
  givenname: Berkin
  surname: Bilgic
  fullname: Bilgic, Berkin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39159333$$D View this record in MEDLINE/PubMed
BookMark eNpNkNtqg0AQhpfS0hzaNyhlX8B0T7pu7xLTg2ApmNyHdR3TLbqKmoKXffNqD9C5mX-Yf74fZoHOXe0AoRtKVpQoeZcm8Yr8K0qpOENz6vPAI4ySGVp03fu4YJLwSzTjivqKcz5HnxsYapfj_g1wVLsPcL2tnS7xrm9Ppj-1o3xJ43scldZZM07rpilHMdlwXeAtQIMT0K2z7ojjSh8Bp2Bq130DJpce-bvBjRG9NRNtupsCN6227gpdFLrs4Pq3L9H-8WEfPXvJ61McrROv8QPuActIYUJfKALUEJGLUFOlOA0VkyAzIajgAQjBmCkgCPKcSaGV4LlkWhDFluj2B9ucsgryQ9PaSrfD4e8V7As3LGE_
ContentType Journal Article
Copyright Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.
DBID NPM
DOI 10.1097/RLI.0000000000001114
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1536-0210
ExternalDocumentID 39159333
Genre Journal Article
GroupedDBID ---
.-D
.Z2
0R~
4Q1
4Q2
4Q3
5GY
5RE
5VS
8L-
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ADGGA
ADHPY
AE6
AENEX
AFDTB
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJIOK
AJNWD
AJZMW
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BOYCO
BQLVK
C45
CS3
DIWNM
DU5
E.X
EBS
EEVPB
ERAAH
EX3
F2K
F2L
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
KD2
KMI
L-C
N9A
NPM
O9-
OAG
OAH
ODA
OL1
OLG
OLV
OLW
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
RIG
RLZ
RXW
S4R
S4S
TAF
TEORI
TSPGW
TWZ
V2I
VVN
W3M
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
ID FETCH-LOGICAL-p563-e2b0fc85490e1c04d48a199318927e7b441436e4422cfe66dd274a943d72a4092
IngestDate Sat Nov 02 12:27:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p563-e2b0fc85490e1c04d48a199318927e7b441436e4422cfe66dd274a943d72a4092
ORCID 0000-0002-4419-4682
PMID 39159333
ParticipantIDs pubmed_primary_39159333
PublicationCentury 2000
PublicationDate 2024-Aug-20
PublicationDateYYYYMMDD 2024-08-20
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Investigative radiology
PublicationTitleAlternate Invest Radiol
PublicationYear 2024
SSID ssj0002703
Score 2.3141234
Snippet Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in...
SourceID pubmed
SourceType Index Database
Title Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain
URI https://www.ncbi.nlm.nih.gov/pubmed/39159333
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcKSIjLxGAbAzb5wA1lS-3XJN4Nla8iyoF1EpyQmzh8SKQVapHgtv-c9-w4CQwQrAersh0n8vvlxR-_9zNjG5luhzm-N0EupQ4AUhnoNMIkwseWWqeJPc6nfxTt_4GDk85Jq3XfjC6ZDH-k98_GlfyPVTEP7UpRsu-wbNUoZuB_tC-maGFM32TjMvxkYs-ea7DHf1tRWCuo0T_u0aS_6wMgt-oNaxonbhsz9hqr55u9a2Lw0Iy01pV13M67Am9C2q7YXk0r0KVs95Wnw1eaHbdm80Znl4_W7LsXI0sdONXFOZ2OUvl6t_lziU6s3tByDG7M3JlWFQ9MyR_eM9Ni2lyvEEALsMJtvRjvY4n37Nis_3hwpwx8fNhzypLlDz0yNKtjz42vrVVJ4F5JJ6bxeukTXW1fNMNm4oQ85BGt85TfcIGO0Adaqvjnc4-zwOZ9E0-mJHZoMlhkH8o5Bd9yAPnIWqZYYvP9kjWxzP46nHA0Gm_ihNc44WjXX9yjhDdQwkc5J5RwjxJuUcIfo4QjSniFEmqNrqMbWpR8YoPdnUF3PyiP3gjGHXxTjRiGeZp0QIWmnYaQQaKJ6dlOlIhNPMQxNMjIAAiR5iaKskzEoBXILBYaQiU-s9liVJgVxnMFCkyM34kOzh7iXEkVylSGWLudQRZ9ZV9c352NnbzKme_V1RdL1thCjax1Npfj-2y-4eBwMvxu7fgAwWhiPg
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Conventional+Structural+MRI%3A+Clinical+Application+of+Deep+Learning+Image+Reconstruction+and+Synthetic+MRI+of+the+Brain&rft.jtitle=Investigative+radiology&rft.au=Choi%2C+Yangsean&rft.au=Ko%2C+Ji+Su&rft.au=Park%2C+Ji+Eun&rft.au=Jeong%2C+Geunu&rft.date=2024-08-20&rft.eissn=1536-0210&rft_id=info:doi/10.1097%2FRLI.0000000000001114&rft_id=info%3Apmid%2F39159333&rft_id=info%3Apmid%2F39159333&rft.externalDocID=39159333