Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain
Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI tec...
Saved in:
Published in | Investigative radiology |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.08.2024
|
Online Access | Get more information |
Cover
Loading…
Abstract | Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods. |
---|---|
AbstractList | Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods. |
Author | Choi, Yangsean Seo, Minkook Jun, Yohan Fujita, Shohei Ko, Ji Su Bilgic, Berkin Park, Ji Eun Jeong, Geunu |
Author_xml | – sequence: 1 givenname: Yangsean surname: Choi fullname: Choi, Yangsean organization: From the Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea (Y.C., J.S.K., J.E.P.); AIRS Medical LLC, Seoul, Republic of Korea (G.J.); Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea (M.S.); Department of Radiology, Harvard Medical School, Boston, MA (Y.J., S.F., B.B.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (Y.J., S.F., B.B.); and Harvard/MIT Health Sciences and Technology, Cambridge, MA (B.B.) – sequence: 2 givenname: Ji Su surname: Ko fullname: Ko, Ji Su – sequence: 3 givenname: Ji Eun orcidid: 0000-0002-4419-4682 surname: Park fullname: Park, Ji Eun – sequence: 4 givenname: Geunu surname: Jeong fullname: Jeong, Geunu – sequence: 5 givenname: Minkook surname: Seo fullname: Seo, Minkook – sequence: 6 givenname: Yohan surname: Jun fullname: Jun, Yohan – sequence: 7 givenname: Shohei surname: Fujita fullname: Fujita, Shohei – sequence: 8 givenname: Berkin surname: Bilgic fullname: Bilgic, Berkin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39159333$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkNtqg0AQhpfS0hzaNyhlX8B0T7pu7xLTg2ApmNyHdR3TLbqKmoKXffNqD9C5mX-Yf74fZoHOXe0AoRtKVpQoeZcm8Yr8K0qpOENz6vPAI4ySGVp03fu4YJLwSzTjivqKcz5HnxsYapfj_g1wVLsPcL2tnS7xrm9Ppj-1o3xJ43scldZZM07rpilHMdlwXeAtQIMT0K2z7ojjSh8Bp2Bq130DJpce-bvBjRG9NRNtupsCN6227gpdFLrs4Pq3L9H-8WEfPXvJ61McrROv8QPuActIYUJfKALUEJGLUFOlOA0VkyAzIajgAQjBmCkgCPKcSaGV4LlkWhDFluj2B9ucsgryQ9PaSrfD4e8V7As3LGE_ |
ContentType | Journal Article |
Copyright | Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved. |
DBID | NPM |
DOI | 10.1097/RLI.0000000000001114 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1536-0210 |
ExternalDocumentID | 39159333 |
Genre | Journal Article |
GroupedDBID | --- .-D .Z2 0R~ 4Q1 4Q2 4Q3 5GY 5RE 5VS 8L- AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ADGGA ADHPY AE6 AENEX AFDTB AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJIOK AJNWD AJZMW AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK C45 CS3 DIWNM DU5 E.X EBS EEVPB ERAAH EX3 F2K F2L F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 KD2 KMI L-C N9A NPM O9- OAG OAH ODA OL1 OLG OLV OLW OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P RIG RLZ RXW S4R S4S TAF TEORI TSPGW TWZ V2I VVN W3M WH7 WOQ WOW X3V X3W YFH YOC ZFV |
ID | FETCH-LOGICAL-p563-e2b0fc85490e1c04d48a199318927e7b441436e4422cfe66dd274a943d72a4092 |
IngestDate | Sat Nov 02 12:27:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p563-e2b0fc85490e1c04d48a199318927e7b441436e4422cfe66dd274a943d72a4092 |
ORCID | 0000-0002-4419-4682 |
PMID | 39159333 |
ParticipantIDs | pubmed_primary_39159333 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug-20 |
PublicationDateYYYYMMDD | 2024-08-20 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Investigative radiology |
PublicationTitleAlternate | Invest Radiol |
PublicationYear | 2024 |
SSID | ssj0002703 |
Score | 2.3141234 |
Snippet | Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in... |
SourceID | pubmed |
SourceType | Index Database |
Title | Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39159333 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcKSIjLxGAbAzb5wA1lS-3XJN4Nla8iyoF1EpyQmzh8SKQVapHgtv-c9-w4CQwQrAersh0n8vvlxR-_9zNjG5luhzm-N0EupQ4AUhnoNMIkwseWWqeJPc6nfxTt_4GDk85Jq3XfjC6ZDH-k98_GlfyPVTEP7UpRsu-wbNUoZuB_tC-maGFM32TjMvxkYs-ea7DHf1tRWCuo0T_u0aS_6wMgt-oNaxonbhsz9hqr55u9a2Lw0Iy01pV13M67Am9C2q7YXk0r0KVs95Wnw1eaHbdm80Znl4_W7LsXI0sdONXFOZ2OUvl6t_lziU6s3tByDG7M3JlWFQ9MyR_eM9Ni2lyvEEALsMJtvRjvY4n37Nis_3hwpwx8fNhzypLlDz0yNKtjz42vrVVJ4F5JJ6bxeukTXW1fNMNm4oQ85BGt85TfcIGO0Adaqvjnc4-zwOZ9E0-mJHZoMlhkH8o5Bd9yAPnIWqZYYvP9kjWxzP46nHA0Gm_ihNc44WjXX9yjhDdQwkc5J5RwjxJuUcIfo4QjSniFEmqNrqMbWpR8YoPdnUF3PyiP3gjGHXxTjRiGeZp0QIWmnYaQQaKJ6dlOlIhNPMQxNMjIAAiR5iaKskzEoBXILBYaQiU-s9liVJgVxnMFCkyM34kOzh7iXEkVylSGWLudQRZ9ZV9c352NnbzKme_V1RdL1thCjax1Npfj-2y-4eBwMvxu7fgAwWhiPg |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Conventional+Structural+MRI%3A+Clinical+Application+of+Deep+Learning+Image+Reconstruction+and+Synthetic+MRI+of+the+Brain&rft.jtitle=Investigative+radiology&rft.au=Choi%2C+Yangsean&rft.au=Ko%2C+Ji+Su&rft.au=Park%2C+Ji+Eun&rft.au=Jeong%2C+Geunu&rft.date=2024-08-20&rft.eissn=1536-0210&rft_id=info:doi/10.1097%2FRLI.0000000000001114&rft_id=info%3Apmid%2F39159333&rft_id=info%3Apmid%2F39159333&rft.externalDocID=39159333 |