Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation
To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volum...
Saved in:
Published in | Machine Learning in Medical Imaging Vol. 12436; pp. 663 - 673 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter Journal Article |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2020
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030598600 3030598608 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-59861-7_67 |
Cover
Loading…
Abstract | To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volume effect, infant cerebellum tissue segmentation is especially challenging, and the manual labels are hard to obtain and correct for learning-based methods. To the best of our knowledge, there is no work on the cerebellum segmentation for infant subjects less than 24 months of age. In this work, we develop a semi-supervised transfer learning framework guided by a confidence map for tissue segmentation of cerebellum MR images from 24-month-old to 6-month-old infants. Note that only 24-month-old subjects have reliable manual labels for training, due to their high tissue contrast. Through the proposed semi-supervised transfer learning, the labels from 24-month-old subjects are gradually propagated to the 18-, 12-, and 6-month-old subjects, which have a low tissue contrast. Comparison with the state-of-the-art methods demonstrates the superior performance of the proposed method, especially for 6-month-old subjects. |
---|---|
AbstractList | To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volume effect, infant cerebellum tissue segmentation is especially challenging, and the manual labels are hard to obtain and correct for learning-based methods. To the best of our knowledge, there is no work on the cerebellum segmentation for infant subjects less than 24 months of age. In this work, we develop a semi-supervised transfer learning framework guided by a confidence map for tissue segmentation of cerebellum MR images from 24-month-old to 6-month-old infants. Note that only 24-month-old subjects have reliable manual labels for training, due to their high tissue contrast. Through the proposed semi-supervised transfer learning, the labels from 24-month-old subjects are gradually propagated to the 18-, 12-, and 6-month-old subjects, which have a low tissue contrast. Comparison with the state-of-the-art methods demonstrates the superior performance of the proposed method, especially for 6-month-old subjects. |
Author | Niu, Sijie Sun, Yue Wang, Li Lin, Weili Li, Gang Gao, Kun |
Author_xml | – sequence: 1 givenname: Yue surname: Sun fullname: Sun, Yue – sequence: 2 givenname: Kun surname: Gao fullname: Gao, Kun – sequence: 3 givenname: Sijie surname: Niu fullname: Niu, Sijie – sequence: 4 givenname: Weili surname: Lin fullname: Lin, Weili – sequence: 5 givenname: Gang surname: Li fullname: Li, Gang – sequence: 6 givenname: Li surname: Wang fullname: Wang, Li email: li_wang@med.unc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33598664$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUUlOxDAQNDsDzA8QygcM3mLHRzRik0biwHC2HKczBCZOsBMkfsNbeBkeNokbp-6u7iqpqg_Qtu88IHRMySklRJ1pVWCOCSc414WkWBmpNtA0wTyBn5jaRBMqKcWcC731Z0fINpqknmGtBN9FB5QRJhQrlNpH0xgfCUkzE1QVe2if8zVHigma30Hb4Dj2EF6aCFW2CNbHGkI2Bxt845dZ3YX3txtfWz9kMwhQwmo1ttmiiXGE7A6WLfjBDk3nj9BObVcRpt_1EN1fXixm13h-e3UzO5_jXoh8wK7SrqhkSZTW1BHhClY4RmpFKHWyYrrOOaMUOBUCZFk5XlWEqTyXTNo8OT5EJ1-6_Vi2UJk-NK0Nr-bHVjpgXwcxrfwSgim77ikaSsw6a5OCM9ykuMxnrmaddSKJb9XQPY8QBwNrlkvugl25B9sPEKKRXGpeMKOSmEwP-D-Npdf80j4AuLqOAg |
ContentType | Book Chapter Journal Article |
Copyright | Springer Nature Switzerland AG 2020 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 |
CorporateAuthor | UNC/UMN Baby Connectome Project Consortium |
CorporateAuthor_xml | – name: UNC/UMN Baby Connectome Project Consortium |
DBID | FFUUA NPM |
DEWEY | 006.31 |
DOI | 10.1007/978-3-030-59861-7_67 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783030598617 3030598616 |
EISSN | 1611-3349 |
Editor | Liu, Mingxia Cao, Xiaohuan Yan, Pingkun Lian, Chunfeng |
Editor_xml | – sequence: 1 fullname: Liu, Mingxia – sequence: 2 fullname: Cao, Xiaohuan – sequence: 3 fullname: Yan, Pingkun – sequence: 4 fullname: Lian, Chunfeng |
EndPage | 673 |
ExternalDocumentID | 33598664 EBC6369382_710_678 EBC6362974_710_678 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH117943 – fundername: NIMH NIH HHS grantid: U01 MH110274 – fundername: NIMH NIH HHS grantid: R01 MH116225 – fundername: NIMH NIH HHS grantid: K01 MH109773 |
GroupedDBID | 38. AABBV ACGCR AEDXK AEJLV AEJNW AEKFX ALMA_UNASSIGNED_HOLDINGS APEJL AVCSZ AZTDL BBABE CYNQG CZZ DACMV ESBCR FFUUA I4C IEZ OAOFD OPOMJ SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 NPM |
ID | FETCH-LOGICAL-p445t-cd9c8d6b07991c04c828c20f7011c6d29f53211e3144e6bdc3dd02755626a5303 |
ISBN | 9783030598600 3030598608 |
ISSN | 0302-9743 |
IngestDate | Thu Jan 02 22:41:04 EST 2025 Tue Jul 29 20:40:12 EDT 2025 Mon Apr 14 21:46:24 EDT 2025 Thu May 29 16:51:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Infant cerebellum segmentation Confidence map Semi-supervised learning |
LCCallNum | QA75.5-76.95 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p445t-cd9c8d6b07991c04c828c20f7011c6d29f53211e3144e6bdc3dd02755626a5303 |
OCLC | 1202472877 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7885085 |
PMID | 33598664 |
PQID | EBC6362974_710_678 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_33598664 springer_books_10_1007_978_3_030_59861_7_67 proquest_ebookcentralchapters_6369382_710_678 proquest_ebookcentralchapters_6362974_710_678 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham – name: Germany |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings |
PublicationTitle | Machine Learning in Medical Imaging |
PublicationTitleAlternate | Mach Learn Med Imaging |
PublicationYear | 2020 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002424178 ssj0002792 |
Score | 2.0004222 |
Snippet | To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)... |
SourceID | pubmed springer proquest |
SourceType | Index Database Publisher |
StartPage | 663 |
SubjectTerms | Confidence map Infant cerebellum segmentation Semi-supervised learning |
Title | Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6362974&ppg=678 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6369382&ppg=678 http://link.springer.com/10.1007/978-3-030-59861-7_67 https://www.ncbi.nlm.nih.gov/pubmed/33598664 |
Volume | 12436 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEICt7nJBPbRQ2kIL8qGckKs8HCc5blfLS4Aq8RA3K7GdqodNV5vdS38Nv4Vfxkwck2zYQ-kliiI7svwl45mxZ4aQb2BtFalOU8YzLRj3dc7gRrFUKS-HJUr4deW5yytxesvP76P7tqJeHV2yyL-rv2vjSv6HKjwDrhgl-wqyzy-FB3APfOEKhOHaU35X3axNhSE8BmlchtQ6MsVtu5xN6-JD3e_h2kx_s2o5Q9lQgZZZL1KFmbf9QX09HAeHI--sLGC-j8ZmbnBbYjkFoogHBMuvaROrVHbdBYHXcxc4d2HP4djxeY1OVkzMECVCmgjPW5GZAbd5S15I4O6hC-jKsK_PYmmLbqwmvBa2ek8v4fXkx1jAsgqGjgT1BzomAzKIk2hINkaT84u7ZxcaRrb4cYIRO26Qic2p1A66Ey25bkzr7IoXe-K1qnHznrzF8BOKcSEw3C3yxpTb5F1jLNBGFFcfyEUPKHVAqQNKAejjg4VJW5jUwqRdmDvk9nhyMz5lTWkMNuM8WjClU5VoAX8T6PfK4woMZxV4RQziWgkdpEUUgmlvQrCXjci1CrXGDWrQdkUWwfR8JMPyT2k-E2q4X6CnQicZ5or0sliYLFNZoGKR6SDcJcxNkaw38JtTw8rOQyV7sP6lfRomQdv-k513ObP5VWSIWSWF4LvkyIGQ-KJKuhzbgFKGElDKGqVElHuvHOcXstn-H1_JcDFfmn1QMBf5QfOhHZDB1c_LJ3mFd48 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Medical+Imaging&rft.atitle=Semi-supervised+Transfer+Learning+for%C2%A0Infant+Cerebellum+Tissue+Segmentation&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030598600&rft.volume=12436&rft_id=info:doi/10.1007%2F978-3-030-59861-7_67&rft.externalDBID=678&rft.externalDocID=EBC6362974_710_678 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6362974-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6369382-l.jpg |