Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation

To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volum...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning in Medical Imaging Vol. 12436; pp. 663 - 673
Main Authors Sun, Yue, Gao, Kun, Niu, Sijie, Lin, Weili, Li, Gang, Wang, Li
Format Book Chapter Journal Article
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030598600
3030598608
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-59861-7_67

Cover

Loading…
Abstract To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volume effect, infant cerebellum tissue segmentation is especially challenging, and the manual labels are hard to obtain and correct for learning-based methods. To the best of our knowledge, there is no work on the cerebellum segmentation for infant subjects less than 24 months of age. In this work, we develop a semi-supervised transfer learning framework guided by a confidence map for tissue segmentation of cerebellum MR images from 24-month-old to 6-month-old infants. Note that only 24-month-old subjects have reliable manual labels for training, due to their high tissue contrast. Through the proposed semi-supervised transfer learning, the labels from 24-month-old subjects are gradually propagated to the 18-, 12-, and 6-month-old subjects, which have a low tissue contrast. Comparison with the state-of-the-art methods demonstrates the superior performance of the proposed method, especially for 6-month-old subjects.
AbstractList To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volume effect, infant cerebellum tissue segmentation is especially challenging, and the manual labels are hard to obtain and correct for learning-based methods. To the best of our knowledge, there is no work on the cerebellum segmentation for infant subjects less than 24 months of age. In this work, we develop a semi-supervised transfer learning framework guided by a confidence map for tissue segmentation of cerebellum MR images from 24-month-old to 6-month-old infants. Note that only 24-month-old subjects have reliable manual labels for training, due to their high tissue contrast. Through the proposed semi-supervised transfer learning, the labels from 24-month-old subjects are gradually propagated to the 18-, 12-, and 6-month-old subjects, which have a low tissue contrast. Comparison with the state-of-the-art methods demonstrates the superior performance of the proposed method, especially for 6-month-old subjects.
Author Niu, Sijie
Sun, Yue
Wang, Li
Lin, Weili
Li, Gang
Gao, Kun
Author_xml – sequence: 1
  givenname: Yue
  surname: Sun
  fullname: Sun, Yue
– sequence: 2
  givenname: Kun
  surname: Gao
  fullname: Gao, Kun
– sequence: 3
  givenname: Sijie
  surname: Niu
  fullname: Niu, Sijie
– sequence: 4
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
– sequence: 5
  givenname: Gang
  surname: Li
  fullname: Li, Gang
– sequence: 6
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  email: li_wang@med.unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33598664$$D View this record in MEDLINE/PubMed
BookMark eNqNUUlOxDAQNDsDzA8QygcM3mLHRzRik0biwHC2HKczBCZOsBMkfsNbeBkeNokbp-6u7iqpqg_Qtu88IHRMySklRJ1pVWCOCSc414WkWBmpNtA0wTyBn5jaRBMqKcWcC731Z0fINpqknmGtBN9FB5QRJhQrlNpH0xgfCUkzE1QVe2if8zVHigma30Hb4Dj2EF6aCFW2CNbHGkI2Bxt845dZ3YX3txtfWz9kMwhQwmo1ttmiiXGE7A6WLfjBDk3nj9BObVcRpt_1EN1fXixm13h-e3UzO5_jXoh8wK7SrqhkSZTW1BHhClY4RmpFKHWyYrrOOaMUOBUCZFk5XlWEqTyXTNo8OT5EJ1-6_Vi2UJk-NK0Nr-bHVjpgXwcxrfwSgim77ikaSsw6a5OCM9ykuMxnrmaddSKJb9XQPY8QBwNrlkvugl25B9sPEKKRXGpeMKOSmEwP-D-Npdf80j4AuLqOAg
ContentType Book Chapter
Journal Article
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
CorporateAuthor UNC/UMN Baby Connectome Project Consortium
CorporateAuthor_xml – name: UNC/UMN Baby Connectome Project Consortium
DBID FFUUA
NPM
DEWEY 006.31
DOI 10.1007/978-3-030-59861-7_67
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030598617
3030598616
EISSN 1611-3349
Editor Liu, Mingxia
Cao, Xiaohuan
Yan, Pingkun
Lian, Chunfeng
Editor_xml – sequence: 1
  fullname: Liu, Mingxia
– sequence: 2
  fullname: Cao, Xiaohuan
– sequence: 3
  fullname: Yan, Pingkun
– sequence: 4
  fullname: Lian, Chunfeng
EndPage 673
ExternalDocumentID 33598664
EBC6369382_710_678
EBC6362974_710_678
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH117943
– fundername: NIMH NIH HHS
  grantid: U01 MH110274
– fundername: NIMH NIH HHS
  grantid: R01 MH116225
– fundername: NIMH NIH HHS
  grantid: K01 MH109773
GroupedDBID 38.
AABBV
ACGCR
AEDXK
AEJLV
AEJNW
AEKFX
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
FFUUA
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
NPM
ID FETCH-LOGICAL-p445t-cd9c8d6b07991c04c828c20f7011c6d29f53211e3144e6bdc3dd02755626a5303
ISBN 9783030598600
3030598608
ISSN 0302-9743
IngestDate Thu Jan 02 22:41:04 EST 2025
Tue Jul 29 20:40:12 EDT 2025
Mon Apr 14 21:46:24 EDT 2025
Thu May 29 16:51:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Infant cerebellum segmentation
Confidence map
Semi-supervised learning
LCCallNum QA75.5-76.95
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p445t-cd9c8d6b07991c04c828c20f7011c6d29f53211e3144e6bdc3dd02755626a5303
OCLC 1202472877
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7885085
PMID 33598664
PQID EBC6362974_710_678
PageCount 11
ParticipantIDs pubmed_primary_33598664
springer_books_10_1007_978_3_030_59861_7_67
proquest_ebookcentralchapters_6369382_710_678
proquest_ebookcentralchapters_6362974_710_678
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
– name: Germany
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings
PublicationTitle Machine Learning in Medical Imaging
PublicationTitleAlternate Mach Learn Med Imaging
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002424178
ssj0002792
Score 2.0004222
Snippet To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)...
SourceID pubmed
springer
proquest
SourceType Index Database
Publisher
StartPage 663
SubjectTerms Confidence map
Infant cerebellum segmentation
Semi-supervised learning
Title Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6362974&ppg=678
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6369382&ppg=678
http://link.springer.com/10.1007/978-3-030-59861-7_67
https://www.ncbi.nlm.nih.gov/pubmed/33598664
Volume 12436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEICt7nJBPbRQ2kIL8qGckKs8HCc5blfLS4Aq8RA3K7GdqodNV5vdS38Nv4Vfxkwck2zYQ-kliiI7svwl45mxZ4aQb2BtFalOU8YzLRj3dc7gRrFUKS-HJUr4deW5yytxesvP76P7tqJeHV2yyL-rv2vjSv6HKjwDrhgl-wqyzy-FB3APfOEKhOHaU35X3axNhSE8BmlchtQ6MsVtu5xN6-JD3e_h2kx_s2o5Q9lQgZZZL1KFmbf9QX09HAeHI--sLGC-j8ZmbnBbYjkFoogHBMuvaROrVHbdBYHXcxc4d2HP4djxeY1OVkzMECVCmgjPW5GZAbd5S15I4O6hC-jKsK_PYmmLbqwmvBa2ek8v4fXkx1jAsgqGjgT1BzomAzKIk2hINkaT84u7ZxcaRrb4cYIRO26Qic2p1A66Ey25bkzr7IoXe-K1qnHznrzF8BOKcSEw3C3yxpTb5F1jLNBGFFcfyEUPKHVAqQNKAejjg4VJW5jUwqRdmDvk9nhyMz5lTWkMNuM8WjClU5VoAX8T6PfK4woMZxV4RQziWgkdpEUUgmlvQrCXjci1CrXGDWrQdkUWwfR8JMPyT2k-E2q4X6CnQicZ5or0sliYLFNZoGKR6SDcJcxNkaw38JtTw8rOQyV7sP6lfRomQdv-k513ObP5VWSIWSWF4LvkyIGQ-KJKuhzbgFKGElDKGqVElHuvHOcXstn-H1_JcDFfmn1QMBf5QfOhHZDB1c_LJ3mFd48
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Medical+Imaging&rft.atitle=Semi-supervised+Transfer+Learning+for%C2%A0Infant+Cerebellum+Tissue+Segmentation&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030598600&rft.volume=12436&rft_id=info:doi/10.1007%2F978-3-030-59861-7_67&rft.externalDBID=678&rft.externalDocID=EBC6362974_710_678
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6362974-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6369382-l.jpg