Technical Note: DTI measurements of fractional anisotropy and mean diffusivity at 1.5 T: Comparison of two radiofrequency head coils with different functional designs and sensitivities

Purpose: Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the d...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 38; no. 6; pp. 3205 - 3211
Main Authors Giannelli, Marco, Belmonte, Gina, Toschi, Nicola, Pesaresi, Ilaria, Ghedin, Piero, Claudio Traino, Antonio, Bartolozzi, Carlo, Cosottini, Mirco
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.06.2011
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.3592013

Cover

Abstract Purpose: Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities. Methods: Fourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil-A) and an eight-channel array head coil (coil-B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively. Results: The overall SNR of coil-B was ∼30% higher than that of coil-A. When comparing DTI measurements (coil-B versus coil-A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference,p cor < 0.05, or trend of variation, p uncor < 0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor. Conclusions: In various gray and white matter structures, the eight-channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.
AbstractList Purpose: Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal‐to‐noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities. Methods: Fourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil‐A) and an eight‐channel array head coil (coil‐B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively. Results: The overall SNR of coil‐B was ∼30% higher than that of coil‐A. When comparing DTI measurements (coil‐B versus coil‐A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference,pcor < 0.05, or trend of variation, puncor < 0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor. Conclusions: In various gray and white matter structures, the eight‐channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.
Purpose: Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities. Methods: Fourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil-A) and an eight-channel array head coil (coil-B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively. Results: The overall SNR of coil-B was ∼30% higher than that of coil-A. When comparing DTI measurements (coil-B versus coil-A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference, p cor <0.05, or trend of variation, p uncor <0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor. Conclusions: In various gray and white matter structures, the eight-channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.
Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities. Fourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil-A) and an eight-channel array head coil (coil-B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively. The overall SNR of coil-B was 30% higher than that of coil-A. When comparing DTI measurements (coil-B versus coil-A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference, p(cor) < 0.05, or trend of variation, P(uncor) < 0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor. In various gray and white matter structures, the eight-channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.
Purpose: Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities. Methods: Fourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil-A) and an eight-channel array head coil (coil-B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively. Results: The overall SNR of coil-B was ∼30% higher than that of coil-A. When comparing DTI measurements (coil-B versus coil-A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference,p cor < 0.05, or trend of variation, p uncor < 0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor. Conclusions: In various gray and white matter structures, the eight-channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.
Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities.PURPOSEDiffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting signal-to-noise ratio (SNR) performance in magnetic resonance imaging (MRI) scanners. The aim of this study was to characterize the dependence of DTI measurements of fractional anisotropy (FA) and mean diffusivity (MD) on the choice of head coil, comparing two head coils with different functional designs and sensitivities.Fourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil-A) and an eight-channel array head coil (coil-B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively.METHODSFourteen healthy subjects underwent DTI acquisitions at 1.5 T. Every subject was scanned twice, using a standard quadrature birdcage head coil (coil-A) and an eight-channel array head coil (coil-B). FA and MD maps, estimated using both the linear least squares (LLS) and nonlinear least squares (NLLS) methods, were nonlinearly normalized into a standard space. Then, volumetric regions of interest encompassing typical white and gray matter structures [splenium of the corpus callosum (SCC), internal capsule (IC), cerebral peduncles (CP), middle cerebellar peduncles (MCP), globus pallidus (GP), thalamus (TH), caudate (CA), and putamen (PU)] were analyzed. Significant differences and trends of variation in DTI measurements were assessed by the Wilcoxon test for paired samples with and without Bonferroni correction for multiple comparisons, respectively.The overall SNR of coil-B was 30% higher than that of coil-A. When comparing DTI measurements (coil-B versus coil-A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference, p(cor) < 0.05, or trend of variation, P(uncor) < 0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor.RESULTSThe overall SNR of coil-B was 30% higher than that of coil-A. When comparing DTI measurements (coil-B versus coil-A), mean FA values (SCC, IC, and TH), mean MD values (IC, CP, GP, and TH), FA standard deviation (CP, MCP, GP, and CA), and MD standard deviation (IC, CP, TH, and PU) resulted decreased (significant difference, p(cor) < 0.05, or trend of variation, P(uncor) < 0.05) in several gray and white matter regions of the human brain. With the exception of CP, the results in terms of revealed significant difference or trend of variation were independent of the method (LLS and NLLS) used for estimating the diffusion tensor.In various gray and white matter structures, the eight-channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.CONCLUSIONSIn various gray and white matter structures, the eight-channel array head coil yielded more precise and accurate measurements of DTI derived indices compared to the standard quadrature birdcage head coil.
Author Pesaresi, Ilaria
Giannelli, Marco
Belmonte, Gina
Ghedin, Piero
Bartolozzi, Carlo
Claudio Traino, Antonio
Toschi, Nicola
Cosottini, Mirco
Author_xml – sequence: 1
  givenname: Marco
  surname: Giannelli
  fullname: Giannelli, Marco
  email: m.giannelli@ao-pisa.toscana.it
  organization: Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
– sequence: 2
  givenname: Gina
  surname: Belmonte
  fullname: Belmonte, Gina
  organization: Unit of Medical Physics, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
– sequence: 3
  givenname: Nicola
  surname: Toschi
  fullname: Toschi, Nicola
  organization: Medical Physics Section, Faculty of Medicine, University of Rome “Tor Vergata,” 00133 Roma, Italy
– sequence: 4
  givenname: Ilaria
  surname: Pesaresi
  fullname: Pesaresi, Ilaria
  organization: Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
– sequence: 5
  givenname: Piero
  surname: Ghedin
  fullname: Ghedin, Piero
  organization: GE Medical Systems Italia, GE Healthcare, 20126 Milano, Italy
– sequence: 6
  givenname: Antonio
  surname: Claudio Traino
  fullname: Claudio Traino, Antonio
  organization: Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
– sequence: 7
  givenname: Carlo
  surname: Bartolozzi
  fullname: Bartolozzi, Carlo
  organization: Department of Oncology, Transplants and Advanced Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
– sequence: 8
  givenname: Mirco
  surname: Cosottini
  fullname: Cosottini, Mirco
  organization: Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; and Department of Neuroscience, University of Pisa, 56126 Pisa, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21815395$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9uFCEUxompsdvqhS9guDMxmRUG2JlpvDFr1Sb1z8V6TRAOLmYGRmC62Tfz8cp0t403Gq8Ogd853-H7ztCJDx4Qek7JklLavqZLJrqaUPYILWresIrXpDtBC0I6XtWciFN0ltJPQsiKCfIEnda0pYJ1YoF-b0BvvdOqx59Dhgv8bnOFB1BpijCAzwkHi21UOrvgC6S8SyHHMO7L0cykx8ZZOyV343K5zJguBd5c4HUYRhUL7ecReRdwVMYFG-HXBF7v8RaUwTq4PuGdy9u7MRCLJraTv9czkNwPn-7EEvjk8qzjID1Fj63qEzw71nP07f3lZv2xuv7y4Wr99roaefltBXqlWEcFcE2ahmnRqJoxykTLeQO6qVecNkBMrVhrqVKk00oz07TWCCAC2Dl6eZg7xlAWT1kOLmnoe-UhTEm2LeVN8ZkU8sWRnL4PYOQY3aDiXt6bXYDqAOxcD_uHd0rknKKk8pii_PR1LoV_c-CTdlnNhvy95yFGOccoS4ql_dV_t_8Lvgnxj91GY9ktY6bDCA
CODEN MPHYA6
Cites_doi 10.1002/jmri.v13:4
10.1002/mrm.v52:5
10.1006/jmrb.1994.1037
10.1002/nbm.v20:8
10.1002/mrm.v46:6
10.1088/0031-9155/52/7/R01
10.1016/j.jmr.2006.06.020
10.1002/nbm.v15:7/8
10.1002/(SICI)1522-2594(199909)42:31.0.CO;2-3
10.1016/j.mri.2008.01.034
10.1002/jmri.v26:2
10.1007/s00234-003-1114-x
10.1016/S0730-725X(98)00098-8
10.1016/S0006-3495(94)80775-1
10.1002/mrm.v48:1
10.1016/j.neuroimage.2004.07.051
10.1002/jmri.v26:3
10.1002/jmri.v13:5
10.1016/j.neuroimage.2007.02.056
10.1016/j.nic.2006.02.006
10.1148/radiol.2212001823
10.1002/mrm.v51:4
10.1002/jmri.v24:1
10.1002/mrm.v50:5
10.1109/TMI.2007.897415
10.1002/mrm.v55:4
10.1063/1.1695690
10.1016/S0730-725X(00)00153-3
10.1002/mrm.v36:6
10.1007/s00330-006-0175-8
10.1002/jmri.v19:4
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2011 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2011 American Association of Physicists in Medicine
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.3592013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3211
ExternalDocumentID 21815395
MP2013
Genre article
Journal Article
Comparative Study
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
LH4
ID FETCH-LOGICAL-p4063-ec6a3915e4c0773c57a2331358447ec726417e0d2a38f1aa09cac3d78fd5e05e3
ISSN 0094-2405
IngestDate Thu Sep 04 18:57:31 EDT 2025
Mon Jul 21 06:05:07 EDT 2025
Wed Jan 22 16:57:34 EST 2025
Fri Jun 21 00:20:00 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
Fri Jun 21 00:28:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords DTI
diffusion tensor imaging
fractional anisotropy
magnetic resonance imaging
mean diffusivity
Language English
License 0094-2405/2011/38(6)/3205/7/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p4063-ec6a3915e4c0773c57a2331358447ec726417e0d2a38f1aa09cac3d78fd5e05e3
Notes Telephone: 0039 050 993359; Fax: 0039 050 992513.
m.giannelli@ao‐pisa.toscana.it
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.3592013
PMID 21815395
PQID 881470940
PQPubID 23479
PageCount 7
ParticipantIDs scitation_primary_10_1118_1_3592013
scitation_primary_10_1118_1_3592013Technical_Note_DTI
pubmed_primary_21815395
proquest_miscellaneous_881470940
wiley_primary_10_1118_1_3592013_MP2013
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2011
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Alexander, Lee, WU, Field (c33) 2006; 16
Jones, Basser (c7) 2004; 52
Della Nave, Magaudda, Michelucci, Capizzi, Calabrò, Guerrini, Gavazzi, Diciotti, Riguzzi, Daniele, Villari, Tassinari, Mascalchi (c25) 2007; 28
Le Bihan, Mangin, Poupon, Clark, Pappata, Molko, Chabriat (c3) 2001; 13
Poonawalla, Zhou (c15) 2004; 19
Bammer, Auer, Keeling, Augustin, Stables, Prokesch, Stollberger, Moseley, Fazekas (c20) 2002; 48
Koay, Chang, Carew, Pierpaoli, Basser (c27) 2006; 182
Larkman, Nunes (c19) 2007; 52
Koay, Chang, Pierpaoli, Basser (c28) 2007; 26
Huisman, Loenneker, Barta, Bellemann, Hennig, Fischer, Il (c32) 2006; 16
Stejskal, Tanner (c21) 1965; 42
Basser, Mattiello, Le Bihan (c2) 1994; 66
Jones, Horsfield, Simmons (c22) 1999; 42
Sundgren, Dong, Gomez, Mukherji, Maly, Welsh (c4) 2004; 46
Orbach, Wu, Law, Babb, Lee, Padua, Knopp (c18) 2006; 24
Landman, Farrell, Jones, Smith, Prince, Mori (c12) 2007; 36
Farrell, Landman, Jones, Smith, Prince, van Zijl, Mori (c13) 2007; 26
Anderson (c10) 2001; 46
Pierpaoli, Basser (c5) 1996; 36
Bastin, Armitage, Marshall (c8) 1998; 16
Behrens, Woolrich, Jenkinson, Johansen, Nunes, Clare, Matthews, Brady, Smith (c23) 2003; 50
Hunsche, Moseley, Stoeter, Hedehus (c34) 2001; 221
Koay, Carew, Alexander, Basser, Meyerand (c6) 2006; 55
Basser, Jones (c1) 2002; 15
Basser, Mattielo, Lebihan D (c26) 1994; 103
Hasan, Parker, Alexander (c31) 2001; 13
Giannelli, Cosottini, Michelassi, Lazzarotti, Belmonte, Bartolozzi, Lazzeri (c17) 2010; 11
Dietrich, Raya, Reeder, Reiser, Schoenberg (c30) 2007; 26
Jones (c14) 2004; 51
Skare, Li, Nordell, Ingvar (c9) 2000; 18
Landman, Farrell, Huang, Prince, Mori (c11) 2008; 26
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (c24) 2004; 23
Ni, Kavcic, Zhu, Ekholm, Zhong (c16) 2006; 27
Fushimi, Miki, Okada, Yamamoto, Mori, Hanakawa, Urayama, Aso, Fukuyama, Kikuta, Togashi (c35) 2007; 20
Ni, H.; Kavcic, V.; Zhu, T.; Ekholm, S.; Zhong, J. 2006; 27
Landman, B.; Farrell, J.; Huang, H.; Prince, J.; Mori, S. 2008; 26
Farrell, J.; Landman, B.; Jones, C.; Smith, S.; Prince, J.; van Zijl, P.; Mori, S. 2007; 26
Giannelli, M.; Cosottini, M.; Michelassi, M.; Lazzarotti, G.; Belmonte, G.; Bartolozzi, C.; Lazzeri, M. 2010; 11
Koay, C.; Chang, L.; Pierpaoli, C.; Basser, P.; Koay, C.; Chang, L.; Pierpaoli, C.; Basser, P. 2007 2007; 26 26
Basser, P.; Mattielo, J.; Lebihan D, D. 1994; 103
Bastin, M.; Armitage, P.; Marshall, I. 1998; 16
Stejskal, E.; Tanner, J. 1965; 42
Le Bihan, D.; Mangin, J.; Poupon, C.; Clark, C.; Pappata, S.; Molko, N.; Chabriat, H. 2001; 13
Alexander, A.; Lee, J.; WU, Y.; Field, A. 2006; 16
Landman, B.; Farrell, J.; Jones, C.; Smith, S.; Prince, J.; Mori, S. 2007; 36
Jones, D. 2004; 51
Poonawalla, A.; Zhou, H. 2004; 19
Hasan, K.; Parker, D.; Alexander, A. 2001; 13
Fushimi, Y.; Miki, Y.; Okada, T.; Yamamoto, A.; Mori, N.; Hanakawa, T.; Urayama, S.; Aso, T.; Fukuyama, H.; Kikuta, K.; Togashi, K. 2007; 20
Orbach, D.; Wu, C.; Law, M.; Babb, J.; Lee, R.; Padua, A.; Knopp, E. 2006; 24
Hunsche, S.; Moseley, M.; Stoeter, P.; Hedehus, M. 2001; 221
Dietrich, O.; Raya, J.; Reeder, S.; Reiser, M.; Schoenberg, S. 2007; 26
Skare, S.; Li, T.; Nordell, B.; Ingvar, M. 2000; 18
Anderson, A. 2001; 46
Jones, D.; Horsfield, M.; Simmons, A. 1999; 42
Behrens, T.; Woolrich, M.; Jenkinson, M.; Johansen, H.; Nunes, R.; Clare, S.; Matthews, P.; Brady, J.; Smith, S. 2003; 50
Basser, P.; Mattiello, J.; Le Bihan, D. 1994; 66
Basser, P.; Jones, D. 2002; 15
Pierpaoli, C.; Basser, P. 1996; 36
Della Nave, R.; Magaudda, A.; Michelucci, R.; Capizzi, G.; Calabrò, A.; Guerrini, L.; Gavazzi, C.; Diciotti, S.; Riguzzi, P.; Daniele, O.; Villari, N.; Tassinari, C.; Mascalchi, M. 2007; 28
Jones, D.; Basser, P. 2004; 52
Sundgren, P.; Dong, Q.; Gomez, D.; Mukherji, S.; Maly, P.; Welsh, R. 2004; 46
Huisman, T.; Loenneker, T.; Barta, G.; Bellemann, M.; Hennig, J.; Fischer, J.; Il, K. 2006; 16
Koay, C.; Carew, J.; Alexander, A.; Basser, P.; Meyerand, M. 2006; 55
Bammer, R.; Auer, M.; Keeling, S.; Augustin, M.; Stables, L.; Prokesch, R.; Stollberger, R.; Moseley, M.; Fazekas, F. 2002; 48
Larkman, D.; Nunes, R. 2007; 52
Koay, C.; Chang, L.; Carew, J.; Pierpaoli, C.; Basser, P. 2006; 182
Smith, S.; Jenkinson, M.; Woolrich, M.; Beckmann, C.; Behrens, T.; Johansen, H.; Bannister, P.; De Luca, M.; Drobnjak, I.; Flitney, D.; Niazy, R.; Saunders, J.; Vickers, J.; Zhang, Y.; De Stefano, N.; Brady, J.; Matthews, P. 2004; 23
2001; 221
2010; 11
2002; 15
2006; 55
2006; 16
2004; 23
2004; 46
1994; 66
2006
1999; 42
2007; 52
1996; 36
2003; 50
2001; 46
2007; 36
1998; 16
2007; 28
2004; 52
1965; 42
2002; 48
2000; 18
2004; 51
1994; 103
2004; 19
2006; 24
2006; 27
2008; 26
2006; 182
2007; 20
2001; 13
2007; 26
2007; 26 26
References_xml – volume: 48
  start-page: 128
  year: 2002
  ident: c20
  article-title: Diffusion tensor imaging using single-shot SENSE-EPI
  publication-title: Magn. Reson. Med.
– volume: 16
  start-page: 773
  year: 1998
  ident: c8
  article-title: A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging
  publication-title: Magn. Reson. Imaging
– volume: 42
  start-page: 515
  year: 1999
  ident: c22
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 176
  year: 2010
  ident: c17
  article-title: Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 46
  start-page: 339
  year: 2004
  ident: c4
  article-title: Diffusion tensor imaging of the brain: Review of clinical applications
  publication-title: Neuroradiology
– volume: 51
  start-page: 807
  year: 2004
  ident: c14
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study
  publication-title: Magn. Reson. Med.
– volume: 13
  start-page: 769
  year: 2001
  ident: c31
  article-title: Comparison of gradient encoding schemes for diffusion tensor MRI
  publication-title: J. Magn. Reson. Imaging
– volume: 103
  start-page: 247
  year: 1994
  ident: c26
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson. B
– volume: 182
  start-page: 115
  year: 2006
  ident: c27
  article-title: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging
  publication-title: J. Magn. Reson.
– volume: 23
  start-page: 208
  year: 2004
  ident: c24
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 55
  start-page: 930
  year: 2006
  ident: c6
  article-title: Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 1017
  year: 2007
  ident: c28
  article-title: Error propagation framework for diffusion tensor imaging via diffusion tensor representations
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 790
  year: 2008
  ident: c11
  article-title: Diffusion tensor imaging at low SNR: Nonmonotonic behaviours of tensor contrasts
  publication-title: Magn. Reson. Imaging
– volume: 66
  start-page: 259
  year: 1994
  ident: c2
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys J
– volume: 36
  start-page: 1123
  year: 2007
  ident: c12
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
– volume: 52
  start-page: 979
  year: 2004
  ident: c7
  article-title: ‘Squashing peanuts and smashing pumpkins’: How noise distorts diffusion-weighted MR data
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 756
  year: 2007
  ident: c13
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: J. Magn. Reson. Imaging
– volume: 27
  start-page: 1776
  year: 2006
  ident: c16
  article-title: Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain
  publication-title: AJNR Am J. Neuroradiol.
– volume: 18
  start-page: 659
  year: 2000
  ident: c9
  article-title: Noise considerations in the determination of diffusion tensor anisotropy
  publication-title: Magn Reson Imaging
– volume: 46
  start-page: 1174
  year: 2001
  ident: c10
  article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 50
  start-page: 1077
  year: 2003
  ident: c23
  article-title: Characterization and propagation of uncertainty in diffusion weighted MR images
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 1424
  year: 2007
  ident: c28
  publication-title: Erratum in: IEEE Trans. Med. Imaging
– volume: 13
  start-page: 534
  year: 2001
  ident: c3
  article-title: Diffusion tensor imaging: Concepts and applications
  publication-title: J. Magn. Reson. Imaging
– volume: 20
  start-page: 743
  year: 2007
  ident: c35
  article-title: Fractional anisotropy and mean diffusivity: Comparison between 3.0-T and 1.5-T diffusion tensor imaging with parallel imaging using histogram and region of interest analysis
  publication-title: NMR Biomed.
– volume: 15
  start-page: 456
  year: 2002
  ident: c1
  article-title: Diffusion-tensor MRI: Theory, experimental design and data analysis —A technical review
  publication-title: NMR Biomed.
– volume: 42
  start-page: 288
  year: 1965
  ident: c21
  article-title: Spin diffusion measurements: Spin echoes in the presence of a time dependent field gradient
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 489
  year: 2004
  ident: c15
  article-title: Analytical error propagation in diffusion anisotropy calculations
  publication-title: J. Magn. Reson. Imaging
– volume: 28
  start-page: 479
  year: 2007
  ident: c25
  article-title: Whole-brain histogram and voxel-based analyses of apparent diffusion coefficient and magnetization transfer ratio in celiac disease, epilepsy, and cerebral calcifications syndrome
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 26
  start-page: 375
  year: 2007
  ident: c30
  article-title: Measurement of signal-to-noise ratios in MR images: Influence of multi-channel coils, parallel imaging, and reconstruction filters
  publication-title: J. Magn. Reson. Imaging
– volume: 52
  start-page: R15
  year: 2007
  ident: c19
  article-title: Parallel magnetic resonance imaging
  publication-title: Phys. Med. Biol.
– volume: 221
  start-page: 550
  year: 2001
  ident: c34
  article-title: Diffusion-tensor MR imaging at 1.5 and 3.0 T: Initial observations
  publication-title: Radiology
– volume: 16
  start-page: 299
  year: 2006
  ident: c33
  article-title: Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging
  publication-title: Neuroimaging Clin. N Am.
– volume: 36
  start-page: 893
  year: 1996
  ident: c5
  article-title: Toward a quantitative assessment of diffusion anisotropy
  publication-title: Magn. Reson. Med.
– volume: 16
  start-page: 1651
  year: 2006
  ident: c32
  article-title: Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars
  publication-title: Eur. Radiol.
– volume: 24
  start-page: 16
  year: 2006
  ident: c18
  article-title: Comparing real-world advantages for the clinical neuroradiologist between a high field (3T), a phased array (1.5T) vs a single-channel 1.5T MR system
  publication-title: J. Magn. Reson. Imaging
– volume: 13
  start-page: 534-546
  year: 2001
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v13:4
– volume: 52
  start-page: 979-993
  year: 2004
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v52:5
– volume: 103
  start-page: 247-54
  year: 1994
  publication-title: J. Magn. Reson. B
  doi: 10.1006/jmrb.1994.1037
– volume: 20
  start-page: 743-748
  year: 2007
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.v20:8
– volume: 46
  start-page: 1174-1188
  year: 2001
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v46:6
– volume: 52
  start-page: R15-R55
  year: 2007
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/7/R01
– volume: 182
  start-page: 115-125
  year: 2006
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.06.020
– volume: 28
  start-page: 479-485
  year: 2007
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 15
  start-page: 456-467
  year: 2002
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.v15:7/8
– volume: 42
  start-page: 515-525
  year: 1999
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:31.0.CO;2-3
– volume: 26
  start-page: 790-800
  year: 2008
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.01.034
– volume: 26
  start-page: 375-385
  year: 2007
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v26:2
– volume: 46
  start-page: 339-350
  year: 2004
  publication-title: Neuroradiology
  doi: 10.1007/s00234-003-1114-x
– volume: 16
  start-page: 773-785
  year: 1998
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(98)00098-8
– volume: 66
  start-page: 259-267
  year: 1994
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 48
  start-page: 128-136
  year: 2002
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v48:1
– volume: 23
  start-page: 208-219
  year: 2004
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 26
  start-page: 756-767
  year: 2007
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v26:3
– volume: 13
  start-page: 769-780
  year: 2001
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v13:5
– volume: 36
  start-page: 1123-1138
  year: 2007
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 11
  start-page: 176-190
  year: 2010
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 27
  start-page: 1776-1781
  year: 2006
  publication-title: AJNR Am J. Neuroradiol.
– volume: 16
  start-page: 299-309
  year: 2006
  publication-title: Neuroimaging Clin. N Am.
  doi: 10.1016/j.nic.2006.02.006
– volume: 221
  start-page: 550-556
  year: 2001
  publication-title: Radiology
  doi: 10.1148/radiol.2212001823
– volume: 51
  start-page: 807-815
  year: 2004
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v51:4
– volume: 24
  start-page: 16-24
  year: 2006
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v24:1
– volume: 50
  start-page: 1077-1088
  year: 2003
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v50:5
– volume: 26 26
  start-page: 1017-1034 1424
  year: 2007 2007
  publication-title: IEEE Trans. Med. Imaging Erratum in: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.897415
– volume: 55
  start-page: 930-936
  year: 2006
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v55:4
– volume: 42
  start-page: 288-292
  year: 1965
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1695690
– volume: 18
  start-page: 659-669
  year: 2000
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(00)00153-3
– volume: 36
  start-page: 893-906
  year: 1996
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.v36:6
– volume: 16
  start-page: 1651-1658
  year: 2006
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-006-0175-8
– volume: 19
  start-page: 489-498
  year: 2004
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.v19:4
– volume: 46
  start-page: 339
  year: 2004
  end-page: 350
  article-title: Diffusion tensor imaging of the brain: Review of clinical applications
  publication-title: Neuroradiology
– volume: 55
  start-page: 930
  year: 2006
  end-page: 936
  article-title: Investigation of anomalous estimates of tensor‐derived quantities in diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 24
  start-page: 16
  year: 2006
  end-page: 24
  article-title: Comparing real‐world advantages for the clinical neuroradiologist between a high field (3T), a phased array (1.5T) vs a single‐channel 1.5T MR system
  publication-title: J. Magn. Reson. Imaging
– start-page: 2759
  year: 2006
  article-title: Camino: open‐source diffusion‐MRI reconstruction and processing
– volume: 103
  start-page: 247
  year: 1994
  end-page: 54
  article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson. B
– volume: 13
  start-page: 769
  year: 2001
  end-page: 780
  article-title: Comparison of gradient encoding schemes for diffusion tensor MRI
  publication-title: J. Magn. Reson. Imaging
– volume: 20
  start-page: 743
  year: 2007
  end-page: 748
  article-title: Fractional anisotropy and mean diffusivity: Comparison between 3.0‐T and 1.5‐T diffusion tensor imaging with parallel imaging using histogram and region of interest analysis
  publication-title: NMR Biomed.
– volume: 26 26
  start-page: 1017 1424
  year: 2007
  end-page: 1034
  article-title: Error propagation framework for diffusion tensor imaging via diffusion tensor representations
  publication-title: IEEE Trans. Med. Imaging IEEE Trans. Med. Imaging
– volume: 51
  start-page: 807
  year: 2004
  end-page: 815
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 208
  year: 2004
  end-page: 219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 28
  start-page: 479
  year: 2007
  end-page: 485
  article-title: Whole‐brain histogram and voxel‐based analyses of apparent diffusion coefficient and magnetization transfer ratio in celiac disease, epilepsy, and cerebral calcifications syndrome
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 221
  start-page: 550
  year: 2001
  end-page: 556
  article-title: Diffusion‐tensor MR imaging at 1.5 and 3.0 T: Initial observations
  publication-title: Radiology
– volume: 26
  start-page: 375
  year: 2007
  end-page: 385
  article-title: Measurement of signal‐to‐noise ratios in MR images: Influence of multi‐channel coils, parallel imaging, and reconstruction filters
  publication-title: J. Magn. Reson. Imaging
– volume: 16
  start-page: 773
  year: 1998
  end-page: 785
  article-title: A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging
  publication-title: Magn. Reson. Imaging
– volume: 182
  start-page: 115
  year: 2006
  end-page: 125
  article-title: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging
  publication-title: J. Magn. Reson.
– volume: 19
  start-page: 489
  year: 2004
  end-page: 498
  article-title: Analytical error propagation in diffusion anisotropy calculations
  publication-title: J. Magn. Reson. Imaging
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  article-title: Diffusion tensor imaging: Concepts and applications
  publication-title: J. Magn. Reson. Imaging
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys J
– volume: 46
  start-page: 1174
  year: 2001
  end-page: 1188
  article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 756
  year: 2007
  end-page: 767
  article-title: Effects of signal‐to‐noise ratio on the accuracy and reproducibility of diffusion tensor imaging‐derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: J. Magn. Reson. Imaging
– volume: 42
  start-page: 288
  year: 1965
  end-page: 292
  article-title: Spin diffusion measurements: Spin echoes in the presence of a time dependent field gradient
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 893
  year: 1996
  end-page: 906
  article-title: Toward a quantitative assessment of diffusion anisotropy
  publication-title: Magn. Reson. Med.
– volume: 16
  start-page: 1651
  year: 2006
  end-page: 1658
  article-title: Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars
  publication-title: Eur. Radiol.
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  article-title: Characterization and propagation of uncertainty in diffusion weighted MR images
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 790
  year: 2008
  end-page: 800
  article-title: Diffusion tensor imaging at low SNR: Nonmonotonic behaviours of tensor contrasts
  publication-title: Magn. Reson. Imaging
– volume: 15
  start-page: 456
  year: 2002
  end-page: 467
  article-title: Diffusion‐tensor MRI: Theory, experimental design and data analysis —A technical review
  publication-title: NMR Biomed.
– volume: 11
  start-page: 176
  year: 2010
  end-page: 190
  article-title: Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 52
  start-page: R15
  year: 2007
  end-page: R55
  article-title: Parallel magnetic resonance imaging
  publication-title: Phys. Med. Biol.
– volume: 52
  start-page: 979
  year: 2004
  end-page: 993
  article-title: ‘Squashing peanuts and smashing pumpkins’: How noise distorts diffusion‐weighted MR data
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 1123
  year: 2007
  end-page: 1138
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI‐derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
– volume: 16
  start-page: 299
  year: 2006
  end-page: 309
  article-title: Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging
  publication-title: Neuroimaging Clin. N Am.
– volume: 27
  start-page: 1776
  year: 2006
  end-page: 1781
  article-title: Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain
  publication-title: AJNR Am J. Neuroradiol.
– volume: 18
  start-page: 659
  year: 2000
  end-page: 669
  article-title: Noise considerations in the determination of diffusion tensor anisotropy
  publication-title: Magn Reson Imaging
– volume: 48
  start-page: 128
  year: 2002
  end-page: 136
  article-title: Diffusion tensor imaging using single‐shot SENSE‐EPI
  publication-title: Magn. Reson. Med.
SSID ssj0006350
Score 2.1408536
Snippet Purpose: Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for...
Diffusion tensor imaging (DTI) is highly sensitive to noise and improvement of radiofrequency coil technology represents a straightforward way for augmenting...
SourceID proquest
pubmed
wiley
scitation
SourceType Aggregation Database
Index Database
Publisher
Enrichment Source
StartPage 3205
SubjectTerms Adult
Anisotropy
Applied neuroscience
biodiffusion
Biomedical imaging
biomedical measurement
biomedical MRI
Brain
Computer software
data acquisition
Diffusion
diffusion tensor imaging
Diffusion Tensor Imaging - instrumentation
DTI
Equipment Design
Female
fractional anisotropy
Humans
Image Processing, Computer-Assisted
Instrumentation
least mean squares methods
Magnetic anisotropy
Magnetic fields
magnetic resonance imaging
Male
mean diffusivity
Medical image noise
medical image processing
Medical imaging
Radio Waves
Tensor methods
Young Adult
Title Technical Note: DTI measurements of fractional anisotropy and mean diffusivity at 1.5 T: Comparison of two radiofrequency head coils with different functional designs and sensitivities
URI http://dx.doi.org/10.1118/1.3592013
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3592013
https://www.ncbi.nlm.nih.gov/pubmed/21815395
https://www.proquest.com/docview/881470940
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9swFIBF1rLbw9i6S7Mbgo29GKe2ZUdO38q6rR1LKSyFvhlFlsHQ2MFxOrZftp-3cyT5kpFCtxfH2I6U5HyRzzk-F0Lez6NJIOVYuGHqh7AJpStYJt104qVhzOLARlucjU8uwq-X0eVg0K8QvK7nI_lra17J_0gVjoFcMUv2HyTbDgoHYB_kC1uQMGxvJ2NdgBV_5aKsdZL58ezUWXRuPx2nkVUmeUFXBchXZV2VS1N1aYFueGyRsl6ZHhKidvxR5MxwKNnvUOjUP0qnEmleZpUJvv6JOiamxOVXNkOu6bVSO3iztDOmOkLEFIJeYbC87lbRRC42raTs0yLjZtF-YMzNFqZrSOuq-AIoY1RObpOMZNk6E9TVAstsaS-_bQhufOdgvOct8aK7Eaww70qfOQXbPhd974ffi9JqVvRJiE-Iov6KzuIeuf3lmQXmwi33DcyF8EcM0PVMcmyPn-VCA4TaUMRMT9C_inQ3p-6Q3YBzjBfYPTqefvveKgWg15lsKPtxbZErmPegnVUXpjbjbLN3HpL7oBWZAI1NU0rrQrPH5JE1YuiRIfIJGahij9yb2jCNPXL33AjyKfndIkoR0UMKgNI-oLTMaAco7QCF3RSvLGgPUCpqCoDS2SHt8MQhAE-6iSdFPKnGkyKetMWTdnhSi6eebAPPZ-Ti86fZxxPXNgtxl6CTMlfBgoPNDlQoPc6ZjLgIGPMZKNghV5KD4u9z5aWBYHHmC-FNpJAs5XGWRsqLFHtOdoqyUPuEijlX4wysTk-IMFB8gkYJH4-VLzwOghoS2ggngcUYn7CJQpXrVRLHfsixIuWQvDBCS5amaEzSSHZI3rVSbE8aSzxO_MSiMCTRLa5qRZicgQgTkODW0a_LqntPskyzIfmg6bl55GR6ji8vb_war8iD7u_4muzU1Vq9AfW8nr-16P8Bz0Lolw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+DTI+measurements+of+fractional+anisotropy+and+mean+diffusivity+at+1.5+T%3A+comparison+of+two+radiofrequency+head+coils+with+different+functional+designs+and+sensitivities&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Giannelli%2C+Marco&rft.au=Belmonte%2C+Gina&rft.au=Toschi%2C+Nicola&rft.au=Pesaresi%2C+Ilaria&rft.date=2011-06-01&rft.issn=0094-2405&rft.volume=38&rft.issue=6&rft.spage=3205&rft_id=info:doi/10.1118%2F1.3592013&rft_id=info%3Apmid%2F21815395&rft.externalDocID=21815395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon