Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology

Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has...

Full description

Saved in:
Bibliographic Details
Published inBrainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop) Vol. 12658; pp. 80 - 91
Main Authors Liu, Xiaofeng, Xing, Fangxu, Yang, Chao, Kuo, C.-C. Jay, El Fakhri, Georges, Woo, Jonghye
Format Book Chapter Journal Article
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030720834
3030720837
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-72084-1_8

Cover

Abstract Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient’s brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration’s similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.
AbstractList Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient’s brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration’s similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.
Author Xing, Fangxu
Yang, Chao
El Fakhri, Georges
Woo, Jonghye
Kuo, C.-C. Jay
Liu, Xiaofeng
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Liu
  fullname: Liu, Xiaofeng
  email: xliu61@mgh.harvard.edu
– sequence: 2
  givenname: Fangxu
  surname: Xing
  fullname: Xing, Fangxu
– sequence: 3
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
– sequence: 4
  givenname: C.-C. Jay
  surname: Kuo
  fullname: Kuo, C.-C. Jay
– sequence: 5
  givenname: Georges
  surname: El Fakhri
  fullname: El Fakhri, Georges
– sequence: 6
  givenname: Jonghye
  surname: Woo
  fullname: Woo, Jonghye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34013242$$D View this record in MEDLINE/PubMed
BookMark eNo1kNlO3DAUhl3KNgPzBJWQX8Ctl2M7uWxHLCNRtQJ6bYXYyQQmduo4QvP2OCxXXv5F53xLdOiDdwh9Y_Q7o1T_KHVBBKGCEs1pAYSZ4gtaivzx9pYHaMEUY0QIKL-iVbZ_agIO0SLfOSk1iGO0ZByU1FIV8hStxvGJUsolZaDVCToVQJngwBfI3u_73qXY1WQd_Jhi1Xln8SZG1067KuL7FKc6TdHhjR-ymDrf4iZE_Gu24t93G3zn2m5Opi54_NKlLX6Y-uz4W6Vt2IV2f46Ommo3utXHeYb-XV0-rG_I7Z_rzfrnLRlEqRJRjRYVKAZUN2DrWlIKpbJ5TlVJsJIXooSGUWdLwbW1NciirEEzxhrgAOIMXbz3DtNj76wZYtdXcW8-180G9m4Ys-RbF81jCM-jYdTM_E0GaoTJGM0bb5P55wz_KI3h_-TGZNwcqp3PK-_qbTUkF0ejpGBaS1PMLeIVfIaB6Q
ContentType Book Chapter
Journal Article
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
NPM
DEWEY 616.99281
DOI 10.1007/978-3-030-72084-1_8
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 3030720845
9783030720841
EISSN 1611-3349
Editor Crimi, Alessandro
Bakas, Spyridon
Editor_xml – sequence: 1
  fullname: Crimi, Alessandro
– sequence: 2
  fullname: Bakas, Spyridon
EndPage 91
ExternalDocumentID 34013242
EBC6531775_87_97
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB022544
– fundername: NIA NIH HHS
  grantid: R01 AG061445
– fundername: NIDCR NIH HHS
  grantid: R01 DE027989
– fundername: NIDCD NIH HHS
  grantid: R01 DC018511
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
NPM
ID FETCH-LOGICAL-p396t-6f73a461407f4dcc500496d2426a54d528394f10ed9327ddc4589c47111f42443
ISBN 9783030720834
3030720837
ISSN 0302-9743
IngestDate Thu Jan 02 22:41:05 EST 2025
Tue Jul 29 20:31:18 EDT 2025
Thu May 29 18:42:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image Inpainting
Brain Tumor
Registration
Contextual Learning
Irregular Structure
Deep Learning
Symmetry
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p396t-6f73a461407f4dcc500496d2426a54d528394f10ed9327ddc4589c47111f42443
Notes X. Liu and F. Xing—Contribute Equally.
OCLC 1246575685
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8130838
PMID 34013242
PQID EBC6531775_87_97
PageCount 12
ParticipantIDs pubmed_primary_34013242
springer_books_10_1007_978_3_030_72084_1_8
proquest_ebookcentralchapters_6531775_87_97
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I
PublicationTitle Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)
PublicationTitleAlternate Brainlesion
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002501476
ssj0002792
Score 2.0882552
Snippet Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor...
SourceID pubmed
springer
proquest
SourceType Index Database
Publisher
StartPage 80
SubjectTerms Brain tumor
Contextual learning
Deep learning
Image inpainting
Irregular structure
Registration
Symmetry
Title Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6531775&ppg=97
http://link.springer.com/10.1007/978-3-030-72084-1_8
https://www.ncbi.nlm.nih.gov/pubmed/34013242
Volume 12658
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9pAEF4BvVQ99N3QR7SHnoqMMF7b-NBDhZIGBChqSMVtZbxrQhtsBEZq-0v7czqzD5sQLunFQmuzXnaG2Xl-Q8jH2BVgNQTMiWIsyUkFAznIYrBaJfYcDTtCYr3zeBJcXLPhzJ_Van_3spZ2xbyd_DlaV_I_VIUxoCtWyT6AsuWkMACfgb5wBQrD9UD5vetmNXBEYNTfyq1Jzvh6u8xXShMclzmCwBJwCGoUgatik__UsQI4n3YaqVXNATLiBzauK7Xr0XKH35gt4zyV5mSD4Zlpf3IeZ4tfu1JcGIdz_ybOq7iQdsC2nX67NbRpOqb05PdqhV28Egd7haoOFaDzDjYbuVAZsVcK0BbDGoNsDTcLm-qp1zr-NgCWWJRwv9qRPN2t4InLuLipogRIAbn9PDJBkkleqNyzlu1jYcXavt-j6x74Pazf88BzWjnv7hjKHsqybsc6Tk3BGBwGYE5p-Sq1_A8Q1dHTKKpGputOU0Y70K3F7p07-6kmMK-D72KOy3t1Ug97rEEefTkbjr6X3r8uhnNRETQ6A8I46niXXhJWIdklhxonqvoJJXiWxkc-eOMxU-lemF9pT9Nn5AlW1FAsdYFNfE5qMntBnhr7hxoybGHIksaOvSTiKLvQkl1oyS60YhcK7EIVu1BgF7rPLhTZhSp2oSW7vCLX52fT_oVjGoM4ay8KCidIQy9moFh2wpSJJPHRzg0EapuxzwTiFUUsdTtSgHUSCpEwvxcloIa5boqFnd5r0sjyTJ4Q6gs37oKBKdjcZ_O0E6XYzG0O0kuC6h3IJmnZ3eQqfcHkTCd6y7Y8gEMsDH3eC3kUNskbveF8rbFiuIf-C1hYk3yyFOA4zZZbvHAgIfc4kJArEnIg4duHPPyOPK7-Hu9JA7ZdfgBFuZifGq47JfXJ5fgf05a3rw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Brainlesion%3A+Glioma%2C+Multiple+Sclerosis%2C+Stroke+and+Traumatic+Brain+Injuries&rft.au=Liu%2C+Xiaofeng&rft.au=Xing%2C+Fangxu&rft.au=Yang%2C+Chao&rft.au=Kuo%2C+C.-C.+Jay&rft.atitle=Symmetric-Constrained+Irregular+Structure+Inpainting+for+Brain+MRI+Registration+with+Tumor+Pathology&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030720834&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=80&rft.epage=91&rft_id=info:doi/10.1007%2F978-3-030-72084-1_8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6531775-l.jpg