Computational approaches for interpreting scRNA‐seq data
The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we c...
Saved in:
Published in | FEBS letters Vol. 591; no. 15; pp. 2213 - 2225 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis. |
---|---|
AbstractList | The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis. The recent developments in high‐throughput single‐cell RNA sequencing technology (sc RNA ‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which sc RNA ‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis. The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high-dimensional data mining techniques. Here, we consider biological questions for which scRNA-seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene-level analyses are particularly informative areas of computational analysis.The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high-dimensional data mining techniques. Here, we consider biological questions for which scRNA-seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene-level analyses are particularly informative areas of computational analysis. |
Author | Teichmann, Sarah A. Kar, Gozde Rostom, Raghd Svensson, Valentine |
AuthorAffiliation | 2 The European Bioinformatics Institute (EMBL‐EBI) Cambridge UK 1 Wellcome Trust Sanger Institute Cambridge UK |
AuthorAffiliation_xml | – name: 2 The European Bioinformatics Institute (EMBL‐EBI) Cambridge UK – name: 1 Wellcome Trust Sanger Institute Cambridge UK |
Author_xml | – sequence: 1 givenname: Raghd surname: Rostom fullname: Rostom, Raghd organization: Wellcome Trust Sanger Institute – sequence: 2 givenname: Valentine surname: Svensson fullname: Svensson, Valentine organization: The European Bioinformatics Institute (EMBL‐EBI) – sequence: 3 givenname: Sarah A. surname: Teichmann fullname: Teichmann, Sarah A. organization: Wellcome Trust Sanger Institute – sequence: 4 givenname: Gozde surname: Kar fullname: Kar, Gozde email: gkar@ebi.ac.uk organization: The European Bioinformatics Institute (EMBL‐EBI) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28524227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKw0AUhgdR7EXX7iRLN6lzSzLjQqilVaEoiK6H08lpG0kzaSZVuvMRfEafxN4sunJ1bj8_P-drkcPCFUjIGaMdRim_ZCoRoZCx6jAeK3lAmvvNIWlSymQYJVo0SMv7V7qaFdPHpMFVxCXnSZNc9dysXNRQZ66APICyrBzYKfpg7KogK2qsygrrrJgE3j49dL8-Pj3OgxRqOCFHY8g9nu5qm7wM-s-9u3D4eHvf6w7DUqhEhmiRIpOQ8HQEXDO0KUrB2VhzGwOkiBhjqnnEolgigoi5GCluNbUjoCoWbXK99S0XoxmmFou6gtyUVTaDamkcZObvpcimZuLeTBQlkdRrg4udQeXmC_S1mWXeYp5DgW7hDU-YElIoJf6VMk2pEixReiU9_x1rn-fntytBvBW8Zzku93dGzRqdWYMya1Bmg84M-jd804lvVRiOxQ |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2017 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. |
DBID | 24P CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1002/1873-3468.12684 |
DatabaseName | Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | R. Rostom et al |
EISSN | 1873-3468 |
EndPage | 2225 |
ExternalDocumentID | PMC5575496 28524227 FEB212684 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 CGR CUY CVF ECM EIF NPM PKN 7X8 AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY 7S9 L.6 5PM |
ID | FETCH-LOGICAL-p3874-ece0e14a72dba291ecde4321f92c6aadeee6ed9251564eea3623b82c90cba0863 |
IEDL.DBID | 24P |
ISSN | 0014-5793 1873-3468 |
IngestDate | Thu Aug 21 18:27:09 EDT 2025 Fri Jul 11 18:22:14 EDT 2025 Fri Jul 11 02:04:12 EDT 2025 Wed Feb 19 02:43:51 EST 2025 Wed Jan 22 17:10:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | single-cell analysis methods and tools single-cell genomics |
Language | English |
License | Attribution 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p3874-ece0e14a72dba291ecde4321f92c6aadeee6ed9251564eea3623b82c90cba0863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by Wilhelm Just |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12684 |
PMID | 28524227 |
PQID | 1900831789 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575496 proquest_miscellaneous_2718343883 proquest_miscellaneous_1900831789 pubmed_primary_28524227 wiley_primary_10_1002_1873_3468_12684_FEB212684 |
PublicationCentury | 2000 |
PublicationDate | August 2017 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2017 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2004; 20 2017; 2 2015; 347 2015; 31 2015; 33 2013; 63 2008; 9 2016; 32 1903; 2 2014; 24 2008; 5 2011; 12 2003; 19 2016; 147 2016; 34 2013; 1048 2013; 14 2010; 26 2013; 10 2017; 33 2006; 28 2007; 8 2014; 15 2012; 28 2014; 7 2016; 48 2014; 11 2010; 6 2016; 44 2015; 163 2015; 12 2015; 161 2015; 6 2015; 16 2015; 523 2010 2017; 65 2013; 500 2015; 11 2002; 3 1901; 2 2015; 525 2016; 17 2014; 111 2016; 14 2016; 13 2016; 12 2014; 157 1963; 58 2016; 7 2015; 25 2017; 14 2013; 31 1951; 13 2013; 498 2017 2016 2015 2017; 18 2014 2012; 7 2016; 25 2014; 343 2014; 32 20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78 26489834 - Nat Commun. 2015 Oct 22;6:8687 28263961 - Nat Methods. 2017 Apr;14 (4):381-387 27412011 - Hum Mol Genet. 2016 Oct 1;25(R2):R141-R148 26740580 - Nucleic Acids Res. 2016 May 5;44(8):e73 28263960 - Nat Methods. 2017 Apr;14 (4):414-416 22257669 - Bioinformatics. 2012 Mar 15;28(6):882-3 26107944 - PLoS Comput Biol. 2015 Jun 24;11(6):e1004333 22343431 - Nat Protoc. 2012 Feb 16;7(3):500-7 23360624 - Genome Biol. 2013 Jan 28;14(1):R7 26752769 - Nat Methods. 2016 Mar;13(3):229-232 25042786 - Nat Methods. 2014 Aug;11(8):817-820 28652613 - Nat Commun. 2017 Jun 26;8(1):36 27668657 - Nat Genet. 2016 Nov;48(11):1430-1435 27782827 - Genome Biol. 2016 Oct 25;17 (1):222 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53 24813893 - Cell Rep. 2014 May 22;7(4):1130-42 26287467 - Nature. 2015 Sep 10;525(7568):251-5 24836921 - Nat Methods. 2014 Jul;11(7):740-2 24658644 - Nat Biotechnol. 2014 Apr;32(4):381-386 24408435 - Science. 2014 Jan 10;343(6167):193-6 18806792 - Nat Methods. 2008 Oct;5(10):877-9 25150836 - Nat Biotechnol. 2014 Sep;32(9):896-902 23929113 - Methods Mol Biol. 2013;1048:323-52 25294822 - Nucleic Acids Res. 2014 Dec 1;42(21):null 25700174 - Science. 2015 Mar 6;347(6226):1138-42 27870852 - PLoS Comput Biol. 2016 Nov 21;12 (11):e1005212 25805722 - Bioinformatics. 2015 Jun 15;31(12):1974-80 27356503 - Nat Commun. 2016 Jun 30;7:11988 28114287 - Nat Methods. 2017 Mar;14 (3):309-315 25628217 - Nat Rev Genet. 2015 Mar;16(3):133-45 21599902 - BMC Bioinformatics. 2011 May 20;12:180 27797772 - Bioinformatics. 2017 Mar 1;33(5):757-759 25512504 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5643-50 26887813 - Genome Biol. 2016 Feb 17;17 :29 26743507 - Bioinformatics. 2016 May 1;32(9):1408-10 26668002 - Bioinformatics. 2016 Apr 15;32(8):1241-3 26551575 - Immunology. 2016 Feb;147(2):133-40 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559 28345074 - Sci Immunol. 2017 Mar 3;2(9) 25599176 - Nat Biotechnol. 2015 Feb;33(2):155-60 28088763 - Bioinformatics. 2017 Apr 15;33(8):1179-1186 26653891 - Genome Biol. 2015 Dec 10;16:278 26527291 - Genome Biol. 2015 Nov 02;16:241 26000488 - Cell. 2015 May 21;161(5):1202-1214 25516281 - Genome Biol. 2014;15(12):550 25599178 - Nat Biotechnol. 2015 Mar;33(3):285-289 27136076 - Nat Biotechnol. 2016 Jun;34(6):637-45 12724294 - Bioinformatics. 2003 May 1;19(7):842-50 27571553 - Nat Methods. 2016 Oct;13(10 ):845-8 28825705 - Nat Methods. 2017 Aug 21;:null 28011787 - Bioinformatics. 2017 Apr 15;33(8):1241-1242 16632515 - Biostatistics. 2007 Jan;8(1):118-27 28212749 - Mol Cell. 2017 Feb 16;65(4):631-643.e4 27890926 - Nat Rev Genet. 2017 Jan;18(1):2-3 26544934 - Cell. 2015 Nov 5;163(4):799-810 14693816 - Bioinformatics. 2004 Jan 1;20(1):105-14 16929727 - IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1393-403 23892778 - Nature. 2013 Aug 29;500(7464):593-7 24363023 - Nat Methods. 2014 Feb;11(2):163-6 24747814 - Nat Methods. 2014 Jun;11(6):637-40 26000487 - Cell. 2015 May 21;161(5):1187-1201 24766814 - Cell. 2014 Apr 24;157(3):714-25 26430160 - Genome Res. 2015 Oct;25(10):1499-507 24056876 - Nat Methods. 2013 Nov;10(11):1093-5 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 25664528 - Nat Biotechnol. 2015 Mar;33(3):269-276 26083756 - Nature. 2015 Jul 23;523(7561):486-90 26600239 - PLoS Comput Biol. 2015 Nov 24;11(11):e1004575 23816787 - Methods. 2013 Sep 1;63(1):41-9 28346451 - Nat Methods. 2017 May;14 (5):483-486 23685454 - Nature. 2013 Jun 13;498(7453):236-40 27669167 - Nat Biotechnol. 2016 Dec;34(12 ):1287-1291 26804912 - Cell Rep. 2016 Feb 2;14 (4):966-77 25915121 - Nat Methods. 2015 Jun;12(6):519-22 24299736 - Genome Res. 2014 Mar;24(3):496-510 |
References_xml | – volume: 31 start-page: 46 year: 2013 end-page: 53 article-title: Differential analysis of gene regulation at transcript resolution with RNA‐seq publication-title: Nat Biotechnol – volume: 32 start-page: 381 year: 2014 end-page: 386 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat Biotechnol – volume: 1048 start-page: 323 year: 2013 end-page: 352 article-title: Single‐neuron transcriptome and methylome sequencing for epigenomic analysis of aging publication-title: Methods Mol Biol – volume: 12 start-page: 180 year: 2011 article-title: A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression publication-title: BMC Bioinformat – volume: 65 start-page: e4 issue: 631–643 year: 2017 article-title: Comparative analysis of single‐Cell RNA sequencing methods publication-title: Mol Cell – volume: 25 start-page: 1499 year: 2015 end-page: 1507 article-title: The first five years of single‐cell cancer genomics and beyond publication-title: Genome Res – volume: 34 start-page: 637 year: 2016 end-page: 645 article-title: Wishbone identifies bifurcating developmental trajectories from single‐cell data publication-title: Nat Biotechnol – volume: 11 start-page: 163 year: 2014 end-page: 166 article-title: Quantitative single‐cell RNA‐seq with unique molecular identifiers publication-title: Nat Methods – volume: 14 start-page: 309 year: 2017 end-page: 315 article-title: Single‐cell mRNA quantification and differential analysis with Census publication-title: Nat Methods – volume: 525 start-page: 251 year: 2015 end-page: 255 article-title: Single‐cell messenger RNA sequencing reveals rare intestinal cell types publication-title: Nature – year: 2016 article-title: Ouija: Incorporating prior knowledge in single‐cell trajectory learning using Bayesian nonlinear factor analysis publication-title: bioRxiv – volume: 14 start-page: 414 year: 2017 end-page: 416 article-title: Visualization and analysis of single‐cell RNA‐seq data by kernel‐based similarity learning publication-title: Nat Methods – volume: 7 start-page: 11988 year: 2016 article-title: Mpath maps multi‐branching single‐cell trajectories revealing progenitor cell progression during development publication-title: Nat Commun – volume: 32 start-page: 896 year: 2014 end-page: 902 article-title: Normalization of RNA‐seq data using factor analysis of control genes or samples publication-title: Nat Biotechnol – year: 2017 article-title: Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression publication-title: bioRxiv – volume: 11 start-page: 817 year: 2014 end-page: 820 article-title: Single‐cell genome‐wide bisulfite sequencing for assessing epigenetic heterogeneity publication-title: Nat Methods – volume: 147 start-page: 133 year: 2016 end-page: 140 article-title: Single‐cell technologies to study the immune system publication-title: Immunology – volume: 33 start-page: 757 year: 2017 end-page: 759 article-title: ImpulseDE: Detection of differentially expressed genes in time series data using impulse models publication-title: Bioinformatics – volume: 28 start-page: 882 year: 2012 end-page: 883 article-title: The sva package for removing batch effects and other unwanted variation in high‐throughput experiments publication-title: Bioinformatics – volume: 24 start-page: 496 year: 2014 end-page: 510 article-title: From single‐cell to cell‐pool transcriptomes: stochasticity in gene expression and RNA splicing publication-title: Genome Res – volume: 34 start-page: 1287 year: 2016 end-page: 1291 article-title: Modeling of RNA‐seq fragment sequence bias reduces systematic errors in transcript abundance estimation publication-title: Nat Biotechnol – volume: 63 start-page: 41 year: 2013 end-page: 49 article-title: Kraken: a set of tools for quality control and analysis of high‐throughput sequence data publication-title: Methods – volume: 44 start-page: e73 year: 2016 article-title: Robust detection of alternative splicing in a population of single cells publication-title: Nucleic Acids Res – year: 2016 article-title: scater: Pre‐processing, quality control, normalisation and visualisation of single‐cell RNA‐seq data in R publication-title: bioRxiv – volume: 2 start-page: eaal2192 year: 2017 article-title: Temporal mixture modelling of single‐cell RNA‐seq data resolves a CD4+ T cell fate bifurcation publication-title: Sci Immunol – year: 2014 article-title: svaseq: Removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res – volume: 12 start-page: 519 year: 2015 end-page: 522 article-title: G&T‐seq: Parallel sequencing of single‐cell genomes and transcriptomes publication-title: Nat Methods – volume: 13 start-page: 229 year: 2016 end-page: 232 article-title: Parallel single‐cell sequencing links transcriptional and epigenetic heterogeneity publication-title: Nat Methods – volume: 163 start-page: 799 year: 2015 end-page: 810 article-title: Design and analysis of single‐cell sequencing experiments publication-title: Cell – volume: 3 start-page: 583 year: 2002 end-page: 617 article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – volume: 161 start-page: 1202 year: 2015 end-page: 1214 article-title: Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets publication-title: Cell – volume: 11 start-page: e1004333 year: 2015 article-title: BASiCS: Bayesian analysis of single‐cell sequencing data publication-title: PLoS Comput Biol – volume: 33 start-page: 155 year: 2015 end-page: 160 article-title: Computational analysis of cell‐to‐cell heterogeneity in single‐cell RNA‐sequencing data reveals hidden subpopulations of cells publication-title: Nat Biotechnol – volume: 13 start-page: 238 year: 1951 end-page: 241 article-title: The interpretation of interaction in contingency tables publication-title: J R Stat Soc Series B Stat Methodol – volume: 31 start-page: 1974 year: 2015 end-page: 1980 article-title: Identification of cell types from single‐cell transcriptomes using a novel clustering method publication-title: Bioinformatics – volume: 20 start-page: 105 year: 2004 end-page: 114 article-title: Adjustment of systematic microarray data biases publication-title: Bioinformatics – year: 2017 article-title: Reversed graph embedding resolves complex single‐cell developmental trajectories publication-title: bioRxiv – volume: 6 start-page: 8687 year: 2015 article-title: Characterizing noise structure in single‐cell RNA‐seq distinguishes genuine from technical stochastic allelic expression publication-title: Nat Commun – volume: 2 start-page: eaal2192 year: 2017 article-title: Single‐cell RNA‐seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria publication-title: Sci Immunol – volume: 11 start-page: e1004575 year: 2015 article-title: SINCERA: A pipeline for single‐cell RNA‐seq profiling analysis publication-title: PLoS Comput Biol – year: 2016 article-title: Isolator: accurate and stable analysis of isoform‐level expression in RNA‐Seq experiments publication-title: bioRxiv – volume: 2 start-page: 559 year: 1901 end-page: 572 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Philos Mag Series 6 – volume: 111 start-page: E5643 year: 2014 end-page: E5650 article-title: Bifurcation analysis of single‐cell gene expression data reveals epigenetic landscape publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 1393 year: 2006 end-page: 1403 article-title: Diffusion maps and coarse‐graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 5 start-page: 877 year: 2008 end-page: 879 article-title: Imaging individual mRNA molecules using multiple singly labeled probes publication-title: Nat Methods – year: 2016 article-title: Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments publication-title: bioRxiv – volume: 18 start-page: 2 year: 2017 end-page: 3 article-title: Cancer genomics: single‐cell RNA‐seq to decipher tumour architecture publication-title: Nat Rev Genet – volume: 8 start-page: 118 year: 2007 end-page: 127 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 11 start-page: 740 year: 2014 end-page: 742 article-title: Bayesian approach to single‐cell differential expression analysis publication-title: Nat Methods – volume: 6 start-page: 468 year: 2010 end-page: 478 article-title: Tracing the derivation of embryonic stem cells from the inner cell mass by single‐cell RNA‐Seq analysis publication-title: Cell Stem Cell – volume: 500 start-page: 593 year: 2013 end-page: 597 article-title: Genetic programs in human and mouse early embryos revealed by single‐cell RNA sequencing publication-title: Nature – volume: 523 start-page: 486 year: 2015 end-page: 490 article-title: Single‐cell chromatin accessibility reveals principles of regulatory variation publication-title: Nature – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 17 start-page: 29 year: 2016 article-title: Classification of low quality cells from single‐cell RNA‐seq data publication-title: Genome Biol – volume: 7 start-page: 500 year: 2012 end-page: 507 article-title: Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses publication-title: Nat Protoc – volume: 16 start-page: 241 year: 2015 article-title: ZIFA: Dimensionality reduction for zero‐inflated single‐cell gene expression analysis publication-title: Genome Biol – volume: 2 start-page: 121 year: 1903 end-page: 134 article-title: Notes on the theory of association of attributes in statistics publication-title: Biometrika – volume: 19 start-page: 842 year: 2003 end-page: 850 article-title: Reconstructing the temporal ordering of biological samples using microarray data publication-title: Bioinformatics – volume: 14 start-page: R7 year: 2013 article-title: Inferring the kinetics of stochastic gene expression from single‐cell RNA‐sequencing data publication-title: Genome Biol – volume: 33 start-page: 285 year: 2015 end-page: 289 article-title: Integrated genome and transcriptome sequencing of the same cell publication-title: Nat Biotechnol – volume: 48 start-page: 1430 year: 2016 end-page: 1435 article-title: Analysis of allelic expression patterns in clonal somatic cells by single‐cell RNA‐seq publication-title: Nat Genet – volume: 11 start-page: 637 year: 2014 end-page: 640 article-title: Validation of noise models for single‐cell transcriptomics publication-title: Nat Methods – volume: 7 start-page: 1130 year: 2014 end-page: 1142 article-title: Single‐cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis publication-title: Cell Rep – volume: 13 start-page: 845 year: 2016 end-page: 848 article-title: Diffusion pseudotime robustly reconstructs lineage branching publication-title: Nat Methods – year: 2016 – volume: 16 start-page: 278 year: 2015 article-title: MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single‐cell RNA sequencing data publication-title: Genome Biol – volume: 33 start-page: 269 year: 2015 end-page: 276 article-title: Decoding the regulatory network of early blood development from single‐cell gene expression measurements publication-title: Nat Biotechnol – volume: 10 start-page: 1093 year: 2013 end-page: 1095 article-title: Accounting for technical noise in single‐cell RNA‐seq experiments publication-title: Nat Methods – year: 2010 – volume: 25 start-page: R141 year: 2016 end-page: R148 article-title: Genetics and immunity in the era of single‐cell genomics publication-title: Hum Mol Genet – volume: 343 start-page: 193 year: 2014 end-page: 196 article-title: Single‐cell RNA‐seq reveals dynamic, random monoallelic gene expression in mammalian cells publication-title: Science – volume: 161 start-page: 1187 year: 2015 end-page: 1201 article-title: Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells publication-title: Cell – volume: 9 start-page: 85 year: 2008 article-title: Visualizing data using t‐SNE publication-title: J Mach Learn Res – start-page: 765 year: 2015 end-page: 774 – volume: 17 start-page: 222 year: 2016 article-title: A statistical approach for identifying differential distributions in single‐cell RNA‐seq experiments publication-title: Genome Biol – volume: 15 start-page: 550 year: 2014 article-title: Differential analysis of count data–the DESeq2 package publication-title: Genome Biol – year: 2016 article-title: SC3 – consensus clustering of single‐cell RNA‐Seq data publication-title: bioRxiv – volume: 32 start-page: 1241 year: 2016 end-page: 1243 article-title: destiny: Diffusion maps for large‐scale single‐cell data in R publication-title: Bioinformatics – volume: 58 start-page: 236 year: 1963 end-page: 244 article-title: Hierarchical grouping to optimize an objective function publication-title: J Am Stat Assoc – volume: 14 start-page: 966 year: 2016 end-page: 977 article-title: Single‐cell RNA‐sequencing reveals a continuous spectrum of differentiation in hematopoietic cells publication-title: Cell Rep – volume: 157 start-page: 714 year: 2014 end-page: 725 article-title: Single‐cell trajectory detection uncovers progression and regulatory coordination in human B cell development publication-title: Cell – volume: 498 start-page: 236 year: 2013 end-page: 240 article-title: Single‐cell transcriptomics reveals bimodality in expression and splicing in immune cells publication-title: Nature – volume: 16 start-page: 133 year: 2015 end-page: 145 article-title: Computational and analytical challenges in single‐cell transcriptomics publication-title: Nat Rev Genet – volume: 32 start-page: 1408 year: 2016 end-page: 1410 article-title: OEFinder: A user interface to identify and visualize ordering effects in single‐cell RNA‐seq data publication-title: Bioinformatics – volume: 347 start-page: 1138 year: 2015 end-page: 1142 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq publication-title: Science – volume: 12 start-page: e1005212 year: 2016 article-title: Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference publication-title: PLoS Comput Biol – volume: 33 start-page: 1241 year: 2017 end-page: 1242 article-title: switchde: Inference of switch‐like differential expression along single‐cell trajectories publication-title: Bioinformatics – volume: 14 start-page: 381 year: 2017 end-page: 387 article-title: Power analysis of single‐cell RNA‐sequencing experiments publication-title: Nat Methods – volume: 9 start-page: 559 year: 2008 article-title: WGCNA: An R package for weighted correlation network analysis publication-title: BMC Bioinformat – reference: 26804912 - Cell Rep. 2016 Feb 2;14 (4):966-77 – reference: 27668657 - Nat Genet. 2016 Nov;48(11):1430-1435 – reference: 28212749 - Mol Cell. 2017 Feb 16;65(4):631-643.e4 – reference: 28263960 - Nat Methods. 2017 Apr;14 (4):414-416 – reference: 26489834 - Nat Commun. 2015 Oct 22;6:8687 – reference: 25599178 - Nat Biotechnol. 2015 Mar;33(3):285-289 – reference: 27797772 - Bioinformatics. 2017 Mar 1;33(5):757-759 – reference: 25512504 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5643-50 – reference: 26668002 - Bioinformatics. 2016 Apr 15;32(8):1241-3 – reference: 25805722 - Bioinformatics. 2015 Jun 15;31(12):1974-80 – reference: 24056876 - Nat Methods. 2013 Nov;10(11):1093-5 – reference: 24658644 - Nat Biotechnol. 2014 Apr;32(4):381-386 – reference: 22343431 - Nat Protoc. 2012 Feb 16;7(3):500-7 – reference: 28114287 - Nat Methods. 2017 Mar;14 (3):309-315 – reference: 26740580 - Nucleic Acids Res. 2016 May 5;44(8):e73 – reference: 27782827 - Genome Biol. 2016 Oct 25;17 (1):222 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 28825705 - Nat Methods. 2017 Aug 21;:null – reference: 14693816 - Bioinformatics. 2004 Jan 1;20(1):105-14 – reference: 26743507 - Bioinformatics. 2016 May 1;32(9):1408-10 – reference: 26083756 - Nature. 2015 Jul 23;523(7561):486-90 – reference: 26000488 - Cell. 2015 May 21;161(5):1202-1214 – reference: 27412011 - Hum Mol Genet. 2016 Oct 1;25(R2):R141-R148 – reference: 25599176 - Nat Biotechnol. 2015 Feb;33(2):155-60 – reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27 – reference: 25150836 - Nat Biotechnol. 2014 Sep;32(9):896-902 – reference: 27669167 - Nat Biotechnol. 2016 Dec;34(12 ):1287-1291 – reference: 24766814 - Cell. 2014 Apr 24;157(3):714-25 – reference: 28346451 - Nat Methods. 2017 May;14 (5):483-486 – reference: 24813893 - Cell Rep. 2014 May 22;7(4):1130-42 – reference: 28088763 - Bioinformatics. 2017 Apr 15;33(8):1179-1186 – reference: 24408435 - Science. 2014 Jan 10;343(6167):193-6 – reference: 12724294 - Bioinformatics. 2003 May 1;19(7):842-50 – reference: 26600239 - PLoS Comput Biol. 2015 Nov 24;11(11):e1004575 – reference: 23929113 - Methods Mol Biol. 2013;1048:323-52 – reference: 25664528 - Nat Biotechnol. 2015 Mar;33(3):269-276 – reference: 27870852 - PLoS Comput Biol. 2016 Nov 21;12 (11):e1005212 – reference: 26430160 - Genome Res. 2015 Oct;25(10):1499-507 – reference: 23816787 - Methods. 2013 Sep 1;63(1):41-9 – reference: 28011787 - Bioinformatics. 2017 Apr 15;33(8):1241-1242 – reference: 27890926 - Nat Rev Genet. 2017 Jan;18(1):2-3 – reference: 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559 – reference: 25915121 - Nat Methods. 2015 Jun;12(6):519-22 – reference: 27356503 - Nat Commun. 2016 Jun 30;7:11988 – reference: 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53 – reference: 26653891 - Genome Biol. 2015 Dec 10;16:278 – reference: 24836921 - Nat Methods. 2014 Jul;11(7):740-2 – reference: 28652613 - Nat Commun. 2017 Jun 26;8(1):36 – reference: 26527291 - Genome Biol. 2015 Nov 02;16:241 – reference: 28345074 - Sci Immunol. 2017 Mar 3;2(9): – reference: 18806792 - Nat Methods. 2008 Oct;5(10):877-9 – reference: 24363023 - Nat Methods. 2014 Feb;11(2):163-6 – reference: 25294822 - Nucleic Acids Res. 2014 Dec 1;42(21):null – reference: 26107944 - PLoS Comput Biol. 2015 Jun 24;11(6):e1004333 – reference: 21599902 - BMC Bioinformatics. 2011 May 20;12:180 – reference: 20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78 – reference: 25042786 - Nat Methods. 2014 Aug;11(8):817-820 – reference: 24299736 - Genome Res. 2014 Mar;24(3):496-510 – reference: 26752769 - Nat Methods. 2016 Mar;13(3):229-232 – reference: 27136076 - Nat Biotechnol. 2016 Jun;34(6):637-45 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 28263961 - Nat Methods. 2017 Apr;14 (4):381-387 – reference: 26287467 - Nature. 2015 Sep 10;525(7568):251-5 – reference: 26000487 - Cell. 2015 May 21;161(5):1187-1201 – reference: 25700174 - Science. 2015 Mar 6;347(6226):1138-42 – reference: 26544934 - Cell. 2015 Nov 5;163(4):799-810 – reference: 27571553 - Nat Methods. 2016 Oct;13(10 ):845-8 – reference: 24747814 - Nat Methods. 2014 Jun;11(6):637-40 – reference: 26551575 - Immunology. 2016 Feb;147(2):133-40 – reference: 16929727 - IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1393-403 – reference: 23892778 - Nature. 2013 Aug 29;500(7464):593-7 – reference: 23685454 - Nature. 2013 Jun 13;498(7453):236-40 – reference: 22257669 - Bioinformatics. 2012 Mar 15;28(6):882-3 – reference: 23360624 - Genome Biol. 2013 Jan 28;14(1):R7 – reference: 26887813 - Genome Biol. 2016 Feb 17;17 :29 – reference: 25628217 - Nat Rev Genet. 2015 Mar;16(3):133-45 |
SSID | ssj0001819 |
Score | 2.5280795 |
SecondaryResourceType | review_article |
Snippet | The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data... The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data... The recent developments in high‐throughput single‐cell RNA sequencing technology (sc RNA ‐seq) have enabled the generation of vast amounts of transcriptomic... |
SourceID | pubmedcentral proquest pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2213 |
SubjectTerms | Animals Cluster Analysis Computational Biology - methods Gene Expression genes Humans Review RNA Sequence Analysis, RNA - methods Single-Cell Analysis - methods single‐cell analysis methods and tools single‐cell genomics transcriptomics |
Title | Computational approaches for interpreting scRNA‐seq data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12684 https://www.ncbi.nlm.nih.gov/pubmed/28524227 https://www.proquest.com/docview/1900831789 https://www.proquest.com/docview/2718343883 https://pubmed.ncbi.nlm.nih.gov/PMC5575496 |
Volume | 591 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0xIDRcEMsMNJuMhLhlumM7ccytQbQQSAgh0Mwtsp2K6ANhCRy48Ql8I19C2ek0MMCBm6XYUeKyXc_l51cAWyUqUaAzUazKJJLO0pyTqKLYGSutJZBvA0H2OD04l4f_kpZN6O_CNPoQ44CbnxlhvfYT3Ni6-yoaGmdKREKm2Z_YK5b8gCl_wdaz-rg8GS_G5MAaBBzLKKGx2Kr79Hj3vxd8BjE_MiXfItjgggZzMDvCjqzfGHseJrBagMV-Rfvmywe2zQKbM4TJF2B6ty393Gtzui3CTpPEYRQAZK2gONaMsCsbtgREcmesdqfH_efHpxpvmKeR_oLzwf7Z3kE0yp4QXYtMyQgd9jCWRvHCGq5jdAVKweNSc5caUyBiioUmfJOkEtGQJxM24073nDW00RG_YbK6qnAZmC6lKpKyZxJ_KKips1KNheHS0gbapmkHNtuuy-mH_JGDqfDqvs4JbvhUZirTX9fh5B6FFFkmOrDUdHd-3Uht5DxLCENw1QH1zhDjCl4d-_2TangRVLITAqJS07d1g8nGLRqdZp578-fe_Hkwfz7Y3-WhtPLtFqsww723D7zANZi8u73HdcIqd3YjjMYNmOofnf49egGKWeO1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61VBW9VOWndKGlrlRxC7uxHTvmtiBW2wKrCoHEzbKdieDQQLtw6I1H6DP2STp2Nlso5dCbpdhRMuPxfB6PvwH4WKMWFQaX5bouMhk82ZxEneXBeek9gXyfEmQnanwqP58VZ3fuwrT8EPOAW7SMtF5HA48B6f4f1tC81CITUpXbeaQseQrPpOI6VjHg8st8NSYP1kLgXGYFTcaO3mfA-3-94F8Y82Gq5F0Im3zQ6BW8nIFHNmy1vQRPsFmGlWFDG-evP9gWS-mcKU6-DM93u9biXlfUbQV22ioOswgg6xjFccoIvLKLLgOR_BmbhuPJ8Nftzyl-YzGPdBVOR_sne-NsVj4huxKllhkGHGAuneaVd9zkGCqUgue14UE5VyGiwsoQwCmURHTkyoQveTCD4B3tdMRrWGguG3wDzNRSV0U9cEU8FTQkLGWwclx62kF7pXrwoROdpR-KZw6uwcubqSW8EWuZ6dI83oeTfxRSlKXowVorbnvVcm1YXhYEIrjugb6niHmHSI99_0lzcZ5osgtCotLQt_WTyuYjWqJmbqP6bVS_Teq3o_1dnlrr_z3iPSyOT44O7eGnycEGvODR9ackwbewcP39Bt8RcLn2m2lm_gazMOV- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VUGkvFZ_t0hZcCXELu7GdOO5toaz40gohkHqzbGei7qFhYeHQW39Cf2N_CWNnsy3QHrhZih0lHtvz7Hl-A7BdoRIlepukqsoS6R3NOYkqSb110jkC-S4SZIf54aU8_pq1bMJwF6bRh5gduIWZEdfrMMHHZdX9IxqaFkokQubFbhoUS-ZgIYT8AquLy7PZYkwOrEHAqUwyGoutuk-Pdx-94F8Q8ylT8m8EG13QYAneTLEj6zfGXoYXWK_Aar-mffP3H2yHRTZnPCZfgZd7benVfpvTbRU-N0kcpgeArBUUxwkj7MpGLQGR3Bmb-PNh__fPXxO8ZoFGugaXg4OL_cNkmj0hGYtCyQQ99jCVVvHSWa5T9CVKwdNKc59bWyJijqUmfJPlEtGSJxOu4F73vLO00RHrMF9f1fgOmK6kKrOqZ7MQFNTUWbnG0nLpaAPt8rwDn9quM_RDIeRga7y6mxiCGyGVmSr0_-twco9CiqIQHXjbdLcZN1IbhhcZYQiuOqAeGGJWIahjP3xSj75FleyMgKjU9G3daLJZi0anmZtgfhPMb6L5zeBgj8fSxrNbbMHi2ZeBOT0anryH1zw4_kgR_ADztzd3-JFgy63bjAPzHnAC5LA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approaches+for+interpreting+scRNA%E2%80%90seq+data&rft.jtitle=FEBS+letters&rft.au=Rostom%2C+Raghd&rft.au=Svensson%2C+Valentine&rft.au=Teichmann%2C+Sarah+A&rft.au=Kar%2C+Gozde&rft.date=2017-08-01&rft.issn=0014-5793&rft.volume=591&rft.issue=15+p.2213-2225&rft.spage=2213&rft.epage=2225&rft_id=info:doi/10.1002%2F1873-3468.12684&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |