Computational approaches for interpreting scRNA‐seq data

The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we c...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 591; no. 15; pp. 2213 - 2225
Main Authors Rostom, Raghd, Svensson, Valentine, Teichmann, Sarah A., Kar, Gozde
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis.
AbstractList The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis.
The recent developments in high‐throughput single‐cell RNA sequencing technology (sc RNA ‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which sc RNA ‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis.
The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high-dimensional data mining techniques. Here, we consider biological questions for which scRNA-seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene-level analyses are particularly informative areas of computational analysis.The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high-dimensional data mining techniques. Here, we consider biological questions for which scRNA-seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene-level analyses are particularly informative areas of computational analysis.
Author Teichmann, Sarah A.
Kar, Gozde
Rostom, Raghd
Svensson, Valentine
AuthorAffiliation 2 The European Bioinformatics Institute (EMBL‐EBI) Cambridge UK
1 Wellcome Trust Sanger Institute Cambridge UK
AuthorAffiliation_xml – name: 2 The European Bioinformatics Institute (EMBL‐EBI) Cambridge UK
– name: 1 Wellcome Trust Sanger Institute Cambridge UK
Author_xml – sequence: 1
  givenname: Raghd
  surname: Rostom
  fullname: Rostom, Raghd
  organization: Wellcome Trust Sanger Institute
– sequence: 2
  givenname: Valentine
  surname: Svensson
  fullname: Svensson, Valentine
  organization: The European Bioinformatics Institute (EMBL‐EBI)
– sequence: 3
  givenname: Sarah A.
  surname: Teichmann
  fullname: Teichmann, Sarah A.
  organization: Wellcome Trust Sanger Institute
– sequence: 4
  givenname: Gozde
  surname: Kar
  fullname: Kar, Gozde
  email: gkar@ebi.ac.uk
  organization: The European Bioinformatics Institute (EMBL‐EBI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28524227$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKw0AUhgdR7EXX7iRLN6lzSzLjQqilVaEoiK6H08lpG0kzaSZVuvMRfEafxN4sunJ1bj8_P-drkcPCFUjIGaMdRim_ZCoRoZCx6jAeK3lAmvvNIWlSymQYJVo0SMv7V7qaFdPHpMFVxCXnSZNc9dysXNRQZ66APICyrBzYKfpg7KogK2qsygrrrJgE3j49dL8-Pj3OgxRqOCFHY8g9nu5qm7wM-s-9u3D4eHvf6w7DUqhEhmiRIpOQ8HQEXDO0KUrB2VhzGwOkiBhjqnnEolgigoi5GCluNbUjoCoWbXK99S0XoxmmFou6gtyUVTaDamkcZObvpcimZuLeTBQlkdRrg4udQeXmC_S1mWXeYp5DgW7hDU-YElIoJf6VMk2pEixReiU9_x1rn-fntytBvBW8Zzku93dGzRqdWYMya1Bmg84M-jd804lvVRiOxQ
ContentType Journal Article
Copyright 2017 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Copyright_xml – notice: 2017 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1002/1873-3468.12684
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate R. Rostom et al
EISSN 1873-3468
EndPage 2225
ExternalDocumentID PMC5575496
28524227
FEB212684
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
7S9
L.6
5PM
ID FETCH-LOGICAL-p3874-ece0e14a72dba291ecde4321f92c6aadeee6ed9251564eea3623b82c90cba0863
IEDL.DBID 24P
ISSN 0014-5793
1873-3468
IngestDate Thu Aug 21 18:27:09 EDT 2025
Fri Jul 11 18:22:14 EDT 2025
Fri Jul 11 02:04:12 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Wed Jan 22 17:10:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords single-cell analysis methods and tools
single-cell genomics
Language English
License Attribution
2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3874-ece0e14a72dba291ecde4321f92c6aadeee6ed9251564eea3623b82c90cba0863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by Wilhelm Just
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12684
PMID 28524227
PQID 1900831789
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575496
proquest_miscellaneous_2718343883
proquest_miscellaneous_1900831789
pubmed_primary_28524227
wiley_primary_10_1002_1873_3468_12684_FEB212684
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2017
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2004; 20
2017; 2
2015; 347
2015; 31
2015; 33
2013; 63
2008; 9
2016; 32
1903; 2
2014; 24
2008; 5
2011; 12
2003; 19
2016; 147
2016; 34
2013; 1048
2013; 14
2010; 26
2013; 10
2017; 33
2006; 28
2007; 8
2014; 15
2012; 28
2014; 7
2016; 48
2014; 11
2010; 6
2016; 44
2015; 163
2015; 12
2015; 161
2015; 6
2015; 16
2015; 523
2010
2017; 65
2013; 500
2015; 11
2002; 3
1901; 2
2015; 525
2016; 17
2014; 111
2016; 14
2016; 13
2016; 12
2014; 157
1963; 58
2016; 7
2015; 25
2017; 14
2013; 31
1951; 13
2013; 498
2017
2016
2015
2017; 18
2014
2012; 7
2016; 25
2014; 343
2014; 32
20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78
26489834 - Nat Commun. 2015 Oct 22;6:8687
28263961 - Nat Methods. 2017 Apr;14 (4):381-387
27412011 - Hum Mol Genet. 2016 Oct 1;25(R2):R141-R148
26740580 - Nucleic Acids Res. 2016 May 5;44(8):e73
28263960 - Nat Methods. 2017 Apr;14 (4):414-416
22257669 - Bioinformatics. 2012 Mar 15;28(6):882-3
26107944 - PLoS Comput Biol. 2015 Jun 24;11(6):e1004333
22343431 - Nat Protoc. 2012 Feb 16;7(3):500-7
23360624 - Genome Biol. 2013 Jan 28;14(1):R7
26752769 - Nat Methods. 2016 Mar;13(3):229-232
25042786 - Nat Methods. 2014 Aug;11(8):817-820
28652613 - Nat Commun. 2017 Jun 26;8(1):36
27668657 - Nat Genet. 2016 Nov;48(11):1430-1435
27782827 - Genome Biol. 2016 Oct 25;17 (1):222
23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53
24813893 - Cell Rep. 2014 May 22;7(4):1130-42
26287467 - Nature. 2015 Sep 10;525(7568):251-5
24836921 - Nat Methods. 2014 Jul;11(7):740-2
24658644 - Nat Biotechnol. 2014 Apr;32(4):381-386
24408435 - Science. 2014 Jan 10;343(6167):193-6
18806792 - Nat Methods. 2008 Oct;5(10):877-9
25150836 - Nat Biotechnol. 2014 Sep;32(9):896-902
23929113 - Methods Mol Biol. 2013;1048:323-52
25294822 - Nucleic Acids Res. 2014 Dec 1;42(21):null
25700174 - Science. 2015 Mar 6;347(6226):1138-42
27870852 - PLoS Comput Biol. 2016 Nov 21;12 (11):e1005212
25805722 - Bioinformatics. 2015 Jun 15;31(12):1974-80
27356503 - Nat Commun. 2016 Jun 30;7:11988
28114287 - Nat Methods. 2017 Mar;14 (3):309-315
25628217 - Nat Rev Genet. 2015 Mar;16(3):133-45
21599902 - BMC Bioinformatics. 2011 May 20;12:180
27797772 - Bioinformatics. 2017 Mar 1;33(5):757-759
25512504 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5643-50
26887813 - Genome Biol. 2016 Feb 17;17 :29
26743507 - Bioinformatics. 2016 May 1;32(9):1408-10
26668002 - Bioinformatics. 2016 Apr 15;32(8):1241-3
26551575 - Immunology. 2016 Feb;147(2):133-40
19114008 - BMC Bioinformatics. 2008 Dec 29;9:559
28345074 - Sci Immunol. 2017 Mar 3;2(9)
25599176 - Nat Biotechnol. 2015 Feb;33(2):155-60
28088763 - Bioinformatics. 2017 Apr 15;33(8):1179-1186
26653891 - Genome Biol. 2015 Dec 10;16:278
26527291 - Genome Biol. 2015 Nov 02;16:241
26000488 - Cell. 2015 May 21;161(5):1202-1214
25516281 - Genome Biol. 2014;15(12):550
25599178 - Nat Biotechnol. 2015 Mar;33(3):285-289
27136076 - Nat Biotechnol. 2016 Jun;34(6):637-45
12724294 - Bioinformatics. 2003 May 1;19(7):842-50
27571553 - Nat Methods. 2016 Oct;13(10 ):845-8
28825705 - Nat Methods. 2017 Aug 21;:null
28011787 - Bioinformatics. 2017 Apr 15;33(8):1241-1242
16632515 - Biostatistics. 2007 Jan;8(1):118-27
28212749 - Mol Cell. 2017 Feb 16;65(4):631-643.e4
27890926 - Nat Rev Genet. 2017 Jan;18(1):2-3
26544934 - Cell. 2015 Nov 5;163(4):799-810
14693816 - Bioinformatics. 2004 Jan 1;20(1):105-14
16929727 - IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1393-403
23892778 - Nature. 2013 Aug 29;500(7464):593-7
24363023 - Nat Methods. 2014 Feb;11(2):163-6
24747814 - Nat Methods. 2014 Jun;11(6):637-40
26000487 - Cell. 2015 May 21;161(5):1187-1201
24766814 - Cell. 2014 Apr 24;157(3):714-25
26430160 - Genome Res. 2015 Oct;25(10):1499-507
24056876 - Nat Methods. 2013 Nov;10(11):1093-5
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
25664528 - Nat Biotechnol. 2015 Mar;33(3):269-276
26083756 - Nature. 2015 Jul 23;523(7561):486-90
26600239 - PLoS Comput Biol. 2015 Nov 24;11(11):e1004575
23816787 - Methods. 2013 Sep 1;63(1):41-9
28346451 - Nat Methods. 2017 May;14 (5):483-486
23685454 - Nature. 2013 Jun 13;498(7453):236-40
27669167 - Nat Biotechnol. 2016 Dec;34(12 ):1287-1291
26804912 - Cell Rep. 2016 Feb 2;14 (4):966-77
25915121 - Nat Methods. 2015 Jun;12(6):519-22
24299736 - Genome Res. 2014 Mar;24(3):496-510
References_xml – volume: 31
  start-page: 46
  year: 2013
  end-page: 53
  article-title: Differential analysis of gene regulation at transcript resolution with RNA‐seq
  publication-title: Nat Biotechnol
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat Biotechnol
– volume: 1048
  start-page: 323
  year: 2013
  end-page: 352
  article-title: Single‐neuron transcriptome and methylome sequencing for epigenomic analysis of aging
  publication-title: Methods Mol Biol
– volume: 12
  start-page: 180
  year: 2011
  article-title: A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression
  publication-title: BMC Bioinformat
– volume: 65
  start-page: e4
  issue: 631–643
  year: 2017
  article-title: Comparative analysis of single‐Cell RNA sequencing methods
  publication-title: Mol Cell
– volume: 25
  start-page: 1499
  year: 2015
  end-page: 1507
  article-title: The first five years of single‐cell cancer genomics and beyond
  publication-title: Genome Res
– volume: 34
  start-page: 637
  year: 2016
  end-page: 645
  article-title: Wishbone identifies bifurcating developmental trajectories from single‐cell data
  publication-title: Nat Biotechnol
– volume: 11
  start-page: 163
  year: 2014
  end-page: 166
  article-title: Quantitative single‐cell RNA‐seq with unique molecular identifiers
  publication-title: Nat Methods
– volume: 14
  start-page: 309
  year: 2017
  end-page: 315
  article-title: Single‐cell mRNA quantification and differential analysis with Census
  publication-title: Nat Methods
– volume: 525
  start-page: 251
  year: 2015
  end-page: 255
  article-title: Single‐cell messenger RNA sequencing reveals rare intestinal cell types
  publication-title: Nature
– year: 2016
  article-title: Ouija: Incorporating prior knowledge in single‐cell trajectory learning using Bayesian nonlinear factor analysis
  publication-title: bioRxiv
– volume: 14
  start-page: 414
  year: 2017
  end-page: 416
  article-title: Visualization and analysis of single‐cell RNA‐seq data by kernel‐based similarity learning
  publication-title: Nat Methods
– volume: 7
  start-page: 11988
  year: 2016
  article-title: Mpath maps multi‐branching single‐cell trajectories revealing progenitor cell progression during development
  publication-title: Nat Commun
– volume: 32
  start-page: 896
  year: 2014
  end-page: 902
  article-title: Normalization of RNA‐seq data using factor analysis of control genes or samples
  publication-title: Nat Biotechnol
– year: 2017
  article-title: Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression
  publication-title: bioRxiv
– volume: 11
  start-page: 817
  year: 2014
  end-page: 820
  article-title: Single‐cell genome‐wide bisulfite sequencing for assessing epigenetic heterogeneity
  publication-title: Nat Methods
– volume: 147
  start-page: 133
  year: 2016
  end-page: 140
  article-title: Single‐cell technologies to study the immune system
  publication-title: Immunology
– volume: 33
  start-page: 757
  year: 2017
  end-page: 759
  article-title: ImpulseDE: Detection of differentially expressed genes in time series data using impulse models
  publication-title: Bioinformatics
– volume: 28
  start-page: 882
  year: 2012
  end-page: 883
  article-title: The sva package for removing batch effects and other unwanted variation in high‐throughput experiments
  publication-title: Bioinformatics
– volume: 24
  start-page: 496
  year: 2014
  end-page: 510
  article-title: From single‐cell to cell‐pool transcriptomes: stochasticity in gene expression and RNA splicing
  publication-title: Genome Res
– volume: 34
  start-page: 1287
  year: 2016
  end-page: 1291
  article-title: Modeling of RNA‐seq fragment sequence bias reduces systematic errors in transcript abundance estimation
  publication-title: Nat Biotechnol
– volume: 63
  start-page: 41
  year: 2013
  end-page: 49
  article-title: Kraken: a set of tools for quality control and analysis of high‐throughput sequence data
  publication-title: Methods
– volume: 44
  start-page: e73
  year: 2016
  article-title: Robust detection of alternative splicing in a population of single cells
  publication-title: Nucleic Acids Res
– year: 2016
  article-title: scater: Pre‐processing, quality control, normalisation and visualisation of single‐cell RNA‐seq data in R
  publication-title: bioRxiv
– volume: 2
  start-page: eaal2192
  year: 2017
  article-title: Temporal mixture modelling of single‐cell RNA‐seq data resolves a CD4+ T cell fate bifurcation
  publication-title: Sci Immunol
– year: 2014
  article-title: svaseq: Removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 519
  year: 2015
  end-page: 522
  article-title: G&T‐seq: Parallel sequencing of single‐cell genomes and transcriptomes
  publication-title: Nat Methods
– volume: 13
  start-page: 229
  year: 2016
  end-page: 232
  article-title: Parallel single‐cell sequencing links transcriptional and epigenetic heterogeneity
  publication-title: Nat Methods
– volume: 163
  start-page: 799
  year: 2015
  end-page: 810
  article-title: Design and analysis of single‐cell sequencing experiments
  publication-title: Cell
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  article-title: Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
– volume: 11
  start-page: e1004333
  year: 2015
  article-title: BASiCS: Bayesian analysis of single‐cell sequencing data
  publication-title: PLoS Comput Biol
– volume: 33
  start-page: 155
  year: 2015
  end-page: 160
  article-title: Computational analysis of cell‐to‐cell heterogeneity in single‐cell RNA‐sequencing data reveals hidden subpopulations of cells
  publication-title: Nat Biotechnol
– volume: 13
  start-page: 238
  year: 1951
  end-page: 241
  article-title: The interpretation of interaction in contingency tables
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 31
  start-page: 1974
  year: 2015
  end-page: 1980
  article-title: Identification of cell types from single‐cell transcriptomes using a novel clustering method
  publication-title: Bioinformatics
– volume: 20
  start-page: 105
  year: 2004
  end-page: 114
  article-title: Adjustment of systematic microarray data biases
  publication-title: Bioinformatics
– year: 2017
  article-title: Reversed graph embedding resolves complex single‐cell developmental trajectories
  publication-title: bioRxiv
– volume: 6
  start-page: 8687
  year: 2015
  article-title: Characterizing noise structure in single‐cell RNA‐seq distinguishes genuine from technical stochastic allelic expression
  publication-title: Nat Commun
– volume: 2
  start-page: eaal2192
  year: 2017
  article-title: Single‐cell RNA‐seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria
  publication-title: Sci Immunol
– volume: 11
  start-page: e1004575
  year: 2015
  article-title: SINCERA: A pipeline for single‐cell RNA‐seq profiling analysis
  publication-title: PLoS Comput Biol
– year: 2016
  article-title: Isolator: accurate and stable analysis of isoform‐level expression in RNA‐Seq experiments
  publication-title: bioRxiv
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Philos Mag Series 6
– volume: 111
  start-page: E5643
  year: 2014
  end-page: E5650
  article-title: Bifurcation analysis of single‐cell gene expression data reveals epigenetic landscape
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 1393
  year: 2006
  end-page: 1403
  article-title: Diffusion maps and coarse‐graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 5
  start-page: 877
  year: 2008
  end-page: 879
  article-title: Imaging individual mRNA molecules using multiple singly labeled probes
  publication-title: Nat Methods
– year: 2016
  article-title: Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments
  publication-title: bioRxiv
– volume: 18
  start-page: 2
  year: 2017
  end-page: 3
  article-title: Cancer genomics: single‐cell RNA‐seq to decipher tumour architecture
  publication-title: Nat Rev Genet
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 11
  start-page: 740
  year: 2014
  end-page: 742
  article-title: Bayesian approach to single‐cell differential expression analysis
  publication-title: Nat Methods
– volume: 6
  start-page: 468
  year: 2010
  end-page: 478
  article-title: Tracing the derivation of embryonic stem cells from the inner cell mass by single‐cell RNA‐Seq analysis
  publication-title: Cell Stem Cell
– volume: 500
  start-page: 593
  year: 2013
  end-page: 597
  article-title: Genetic programs in human and mouse early embryos revealed by single‐cell RNA sequencing
  publication-title: Nature
– volume: 523
  start-page: 486
  year: 2015
  end-page: 490
  article-title: Single‐cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 17
  start-page: 29
  year: 2016
  article-title: Classification of low quality cells from single‐cell RNA‐seq data
  publication-title: Genome Biol
– volume: 7
  start-page: 500
  year: 2012
  end-page: 507
  article-title: Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
  publication-title: Nat Protoc
– volume: 16
  start-page: 241
  year: 2015
  article-title: ZIFA: Dimensionality reduction for zero‐inflated single‐cell gene expression analysis
  publication-title: Genome Biol
– volume: 2
  start-page: 121
  year: 1903
  end-page: 134
  article-title: Notes on the theory of association of attributes in statistics
  publication-title: Biometrika
– volume: 19
  start-page: 842
  year: 2003
  end-page: 850
  article-title: Reconstructing the temporal ordering of biological samples using microarray data
  publication-title: Bioinformatics
– volume: 14
  start-page: R7
  year: 2013
  article-title: Inferring the kinetics of stochastic gene expression from single‐cell RNA‐sequencing data
  publication-title: Genome Biol
– volume: 33
  start-page: 285
  year: 2015
  end-page: 289
  article-title: Integrated genome and transcriptome sequencing of the same cell
  publication-title: Nat Biotechnol
– volume: 48
  start-page: 1430
  year: 2016
  end-page: 1435
  article-title: Analysis of allelic expression patterns in clonal somatic cells by single‐cell RNA‐seq
  publication-title: Nat Genet
– volume: 11
  start-page: 637
  year: 2014
  end-page: 640
  article-title: Validation of noise models for single‐cell transcriptomics
  publication-title: Nat Methods
– volume: 7
  start-page: 1130
  year: 2014
  end-page: 1142
  article-title: Single‐cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
  publication-title: Cell Rep
– volume: 13
  start-page: 845
  year: 2016
  end-page: 848
  article-title: Diffusion pseudotime robustly reconstructs lineage branching
  publication-title: Nat Methods
– year: 2016
– volume: 16
  start-page: 278
  year: 2015
  article-title: MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single‐cell RNA sequencing data
  publication-title: Genome Biol
– volume: 33
  start-page: 269
  year: 2015
  end-page: 276
  article-title: Decoding the regulatory network of early blood development from single‐cell gene expression measurements
  publication-title: Nat Biotechnol
– volume: 10
  start-page: 1093
  year: 2013
  end-page: 1095
  article-title: Accounting for technical noise in single‐cell RNA‐seq experiments
  publication-title: Nat Methods
– year: 2010
– volume: 25
  start-page: R141
  year: 2016
  end-page: R148
  article-title: Genetics and immunity in the era of single‐cell genomics
  publication-title: Hum Mol Genet
– volume: 343
  start-page: 193
  year: 2014
  end-page: 196
  article-title: Single‐cell RNA‐seq reveals dynamic, random monoallelic gene expression in mammalian cells
  publication-title: Science
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  article-title: Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– volume: 9
  start-page: 85
  year: 2008
  article-title: Visualizing data using t‐SNE
  publication-title: J Mach Learn Res
– start-page: 765
  year: 2015
  end-page: 774
– volume: 17
  start-page: 222
  year: 2016
  article-title: A statistical approach for identifying differential distributions in single‐cell RNA‐seq experiments
  publication-title: Genome Biol
– volume: 15
  start-page: 550
  year: 2014
  article-title: Differential analysis of count data–the DESeq2 package
  publication-title: Genome Biol
– year: 2016
  article-title: SC3 – consensus clustering of single‐cell RNA‐Seq data
  publication-title: bioRxiv
– volume: 32
  start-page: 1241
  year: 2016
  end-page: 1243
  article-title: destiny: Diffusion maps for large‐scale single‐cell data in R
  publication-title: Bioinformatics
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
– volume: 14
  start-page: 966
  year: 2016
  end-page: 977
  article-title: Single‐cell RNA‐sequencing reveals a continuous spectrum of differentiation in hematopoietic cells
  publication-title: Cell Rep
– volume: 157
  start-page: 714
  year: 2014
  end-page: 725
  article-title: Single‐cell trajectory detection uncovers progression and regulatory coordination in human B cell development
  publication-title: Cell
– volume: 498
  start-page: 236
  year: 2013
  end-page: 240
  article-title: Single‐cell transcriptomics reveals bimodality in expression and splicing in immune cells
  publication-title: Nature
– volume: 16
  start-page: 133
  year: 2015
  end-page: 145
  article-title: Computational and analytical challenges in single‐cell transcriptomics
  publication-title: Nat Rev Genet
– volume: 32
  start-page: 1408
  year: 2016
  end-page: 1410
  article-title: OEFinder: A user interface to identify and visualize ordering effects in single‐cell RNA‐seq data
  publication-title: Bioinformatics
– volume: 347
  start-page: 1138
  year: 2015
  end-page: 1142
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq
  publication-title: Science
– volume: 12
  start-page: e1005212
  year: 2016
  article-title: Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference
  publication-title: PLoS Comput Biol
– volume: 33
  start-page: 1241
  year: 2017
  end-page: 1242
  article-title: switchde: Inference of switch‐like differential expression along single‐cell trajectories
  publication-title: Bioinformatics
– volume: 14
  start-page: 381
  year: 2017
  end-page: 387
  article-title: Power analysis of single‐cell RNA‐sequencing experiments
  publication-title: Nat Methods
– volume: 9
  start-page: 559
  year: 2008
  article-title: WGCNA: An R package for weighted correlation network analysis
  publication-title: BMC Bioinformat
– reference: 26804912 - Cell Rep. 2016 Feb 2;14 (4):966-77
– reference: 27668657 - Nat Genet. 2016 Nov;48(11):1430-1435
– reference: 28212749 - Mol Cell. 2017 Feb 16;65(4):631-643.e4
– reference: 28263960 - Nat Methods. 2017 Apr;14 (4):414-416
– reference: 26489834 - Nat Commun. 2015 Oct 22;6:8687
– reference: 25599178 - Nat Biotechnol. 2015 Mar;33(3):285-289
– reference: 27797772 - Bioinformatics. 2017 Mar 1;33(5):757-759
– reference: 25512504 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5643-50
– reference: 26668002 - Bioinformatics. 2016 Apr 15;32(8):1241-3
– reference: 25805722 - Bioinformatics. 2015 Jun 15;31(12):1974-80
– reference: 24056876 - Nat Methods. 2013 Nov;10(11):1093-5
– reference: 24658644 - Nat Biotechnol. 2014 Apr;32(4):381-386
– reference: 22343431 - Nat Protoc. 2012 Feb 16;7(3):500-7
– reference: 28114287 - Nat Methods. 2017 Mar;14 (3):309-315
– reference: 26740580 - Nucleic Acids Res. 2016 May 5;44(8):e73
– reference: 27782827 - Genome Biol. 2016 Oct 25;17 (1):222
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 28825705 - Nat Methods. 2017 Aug 21;:null
– reference: 14693816 - Bioinformatics. 2004 Jan 1;20(1):105-14
– reference: 26743507 - Bioinformatics. 2016 May 1;32(9):1408-10
– reference: 26083756 - Nature. 2015 Jul 23;523(7561):486-90
– reference: 26000488 - Cell. 2015 May 21;161(5):1202-1214
– reference: 27412011 - Hum Mol Genet. 2016 Oct 1;25(R2):R141-R148
– reference: 25599176 - Nat Biotechnol. 2015 Feb;33(2):155-60
– reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27
– reference: 25150836 - Nat Biotechnol. 2014 Sep;32(9):896-902
– reference: 27669167 - Nat Biotechnol. 2016 Dec;34(12 ):1287-1291
– reference: 24766814 - Cell. 2014 Apr 24;157(3):714-25
– reference: 28346451 - Nat Methods. 2017 May;14 (5):483-486
– reference: 24813893 - Cell Rep. 2014 May 22;7(4):1130-42
– reference: 28088763 - Bioinformatics. 2017 Apr 15;33(8):1179-1186
– reference: 24408435 - Science. 2014 Jan 10;343(6167):193-6
– reference: 12724294 - Bioinformatics. 2003 May 1;19(7):842-50
– reference: 26600239 - PLoS Comput Biol. 2015 Nov 24;11(11):e1004575
– reference: 23929113 - Methods Mol Biol. 2013;1048:323-52
– reference: 25664528 - Nat Biotechnol. 2015 Mar;33(3):269-276
– reference: 27870852 - PLoS Comput Biol. 2016 Nov 21;12 (11):e1005212
– reference: 26430160 - Genome Res. 2015 Oct;25(10):1499-507
– reference: 23816787 - Methods. 2013 Sep 1;63(1):41-9
– reference: 28011787 - Bioinformatics. 2017 Apr 15;33(8):1241-1242
– reference: 27890926 - Nat Rev Genet. 2017 Jan;18(1):2-3
– reference: 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559
– reference: 25915121 - Nat Methods. 2015 Jun;12(6):519-22
– reference: 27356503 - Nat Commun. 2016 Jun 30;7:11988
– reference: 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53
– reference: 26653891 - Genome Biol. 2015 Dec 10;16:278
– reference: 24836921 - Nat Methods. 2014 Jul;11(7):740-2
– reference: 28652613 - Nat Commun. 2017 Jun 26;8(1):36
– reference: 26527291 - Genome Biol. 2015 Nov 02;16:241
– reference: 28345074 - Sci Immunol. 2017 Mar 3;2(9):
– reference: 18806792 - Nat Methods. 2008 Oct;5(10):877-9
– reference: 24363023 - Nat Methods. 2014 Feb;11(2):163-6
– reference: 25294822 - Nucleic Acids Res. 2014 Dec 1;42(21):null
– reference: 26107944 - PLoS Comput Biol. 2015 Jun 24;11(6):e1004333
– reference: 21599902 - BMC Bioinformatics. 2011 May 20;12:180
– reference: 20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78
– reference: 25042786 - Nat Methods. 2014 Aug;11(8):817-820
– reference: 24299736 - Genome Res. 2014 Mar;24(3):496-510
– reference: 26752769 - Nat Methods. 2016 Mar;13(3):229-232
– reference: 27136076 - Nat Biotechnol. 2016 Jun;34(6):637-45
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 28263961 - Nat Methods. 2017 Apr;14 (4):381-387
– reference: 26287467 - Nature. 2015 Sep 10;525(7568):251-5
– reference: 26000487 - Cell. 2015 May 21;161(5):1187-1201
– reference: 25700174 - Science. 2015 Mar 6;347(6226):1138-42
– reference: 26544934 - Cell. 2015 Nov 5;163(4):799-810
– reference: 27571553 - Nat Methods. 2016 Oct;13(10 ):845-8
– reference: 24747814 - Nat Methods. 2014 Jun;11(6):637-40
– reference: 26551575 - Immunology. 2016 Feb;147(2):133-40
– reference: 16929727 - IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1393-403
– reference: 23892778 - Nature. 2013 Aug 29;500(7464):593-7
– reference: 23685454 - Nature. 2013 Jun 13;498(7453):236-40
– reference: 22257669 - Bioinformatics. 2012 Mar 15;28(6):882-3
– reference: 23360624 - Genome Biol. 2013 Jan 28;14(1):R7
– reference: 26887813 - Genome Biol. 2016 Feb 17;17 :29
– reference: 25628217 - Nat Rev Genet. 2015 Mar;16(3):133-45
SSID ssj0001819
Score 2.5280795
SecondaryResourceType review_article
Snippet The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data...
The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data...
The recent developments in high‐throughput single‐cell RNA sequencing technology (sc RNA ‐seq) have enabled the generation of vast amounts of transcriptomic...
SourceID pubmedcentral
proquest
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2213
SubjectTerms Animals
Cluster Analysis
Computational Biology - methods
Gene Expression
genes
Humans
Review
RNA
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
single‐cell analysis methods and tools
single‐cell genomics
transcriptomics
Title Computational approaches for interpreting scRNA‐seq data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12684
https://www.ncbi.nlm.nih.gov/pubmed/28524227
https://www.proquest.com/docview/1900831789
https://www.proquest.com/docview/2718343883
https://pubmed.ncbi.nlm.nih.gov/PMC5575496
Volume 591
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0xIDRcEMsMNJuMhLhlumM7ccytQbQQSAgh0Mwtsp2K6ANhCRy48Ql8I19C2ek0MMCBm6XYUeKyXc_l51cAWyUqUaAzUazKJJLO0pyTqKLYGSutJZBvA0H2OD04l4f_kpZN6O_CNPoQ44CbnxlhvfYT3Ni6-yoaGmdKREKm2Z_YK5b8gCl_wdaz-rg8GS_G5MAaBBzLKKGx2Kr79Hj3vxd8BjE_MiXfItjgggZzMDvCjqzfGHseJrBagMV-Rfvmywe2zQKbM4TJF2B6ty393Gtzui3CTpPEYRQAZK2gONaMsCsbtgREcmesdqfH_efHpxpvmKeR_oLzwf7Z3kE0yp4QXYtMyQgd9jCWRvHCGq5jdAVKweNSc5caUyBiioUmfJOkEtGQJxM24073nDW00RG_YbK6qnAZmC6lKpKyZxJ_KKips1KNheHS0gbapmkHNtuuy-mH_JGDqfDqvs4JbvhUZirTX9fh5B6FFFkmOrDUdHd-3Uht5DxLCENw1QH1zhDjCl4d-_2TangRVLITAqJS07d1g8nGLRqdZp578-fe_Hkwfz7Y3-WhtPLtFqsww723D7zANZi8u73HdcIqd3YjjMYNmOofnf49egGKWeO1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61VBW9VOWndKGlrlRxC7uxHTvmtiBW2wKrCoHEzbKdieDQQLtw6I1H6DP2STp2Nlso5dCbpdhRMuPxfB6PvwH4WKMWFQaX5bouMhk82ZxEneXBeek9gXyfEmQnanwqP58VZ3fuwrT8EPOAW7SMtF5HA48B6f4f1tC81CITUpXbeaQseQrPpOI6VjHg8st8NSYP1kLgXGYFTcaO3mfA-3-94F8Y82Gq5F0Im3zQ6BW8nIFHNmy1vQRPsFmGlWFDG-evP9gWS-mcKU6-DM93u9biXlfUbQV22ioOswgg6xjFccoIvLKLLgOR_BmbhuPJ8Nftzyl-YzGPdBVOR_sne-NsVj4huxKllhkGHGAuneaVd9zkGCqUgue14UE5VyGiwsoQwCmURHTkyoQveTCD4B3tdMRrWGguG3wDzNRSV0U9cEU8FTQkLGWwclx62kF7pXrwoROdpR-KZw6uwcubqSW8EWuZ6dI83oeTfxRSlKXowVorbnvVcm1YXhYEIrjugb6niHmHSI99_0lzcZ5osgtCotLQt_WTyuYjWqJmbqP6bVS_Teq3o_1dnlrr_z3iPSyOT44O7eGnycEGvODR9ackwbewcP39Bt8RcLn2m2lm_gazMOV-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VUGkvFZ_t0hZcCXELu7GdOO5toaz40gohkHqzbGei7qFhYeHQW39Cf2N_CWNnsy3QHrhZih0lHtvz7Hl-A7BdoRIlepukqsoS6R3NOYkqSb110jkC-S4SZIf54aU8_pq1bMJwF6bRh5gduIWZEdfrMMHHZdX9IxqaFkokQubFbhoUS-ZgIYT8AquLy7PZYkwOrEHAqUwyGoutuk-Pdx-94F8Q8ylT8m8EG13QYAneTLEj6zfGXoYXWK_Aar-mffP3H2yHRTZnPCZfgZd7benVfpvTbRU-N0kcpgeArBUUxwkj7MpGLQGR3Bmb-PNh__fPXxO8ZoFGugaXg4OL_cNkmj0hGYtCyQQ99jCVVvHSWa5T9CVKwdNKc59bWyJijqUmfJPlEtGSJxOu4F73vLO00RHrMF9f1fgOmK6kKrOqZ7MQFNTUWbnG0nLpaAPt8rwDn9quM_RDIeRga7y6mxiCGyGVmSr0_-twco9CiqIQHXjbdLcZN1IbhhcZYQiuOqAeGGJWIahjP3xSj75FleyMgKjU9G3daLJZi0anmZtgfhPMb6L5zeBgj8fSxrNbbMHi2ZeBOT0anryH1zw4_kgR_ADztzd3-JFgy63bjAPzHnAC5LA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approaches+for+interpreting+scRNA%E2%80%90seq+data&rft.jtitle=FEBS+letters&rft.au=Rostom%2C+Raghd&rft.au=Svensson%2C+Valentine&rft.au=Teichmann%2C+Sarah+A&rft.au=Kar%2C+Gozde&rft.date=2017-08-01&rft.issn=0014-5793&rft.volume=591&rft.issue=15+p.2213-2225&rft.spage=2213&rft.epage=2225&rft_id=info:doi/10.1002%2F1873-3468.12684&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon