Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress

Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million p...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 33; no. 12; pp. 1304 - 1320
Main Authors Wang, Yi‐Ping, Zhou, Li‐Sha, Zhao, Yu‐Zheng, Wang, Shi‐Wen, Chen, Lei‐Lei, Liu, Li‐Xia, Ling, Zhi‐Qiang, Hu, Fu‐Jun, Sun, Yi‐Ping, Zhang, Jing‐Ye, Yang, Chen, Yang, Yi, Xiong, Yue, Guan, Kun‐Liang, Ye, Dan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.06.2014
Springer Nature B.V
BlackWell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.1002/embj.201387224

Cover

Loading…
Abstract Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress. Synopsis The pentose phosphate pathway plays an important role in the oxidative stress response by supplying the reductant NADPH. SIRT2‐mediated deacetylation and activation of the glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme in this pathway, stimulates the production of cytosolic NADPH to counteract oxidative damage. K403 acetylation decreases G6PD activity by inhibiting dimer formation. SIRT2 and KAT9/ELP3 regulate G6PD K403 acetylation. Regulation of G6PD K403 acetylation modulates NADPH homeostasis and cell survival during oxidative stress. Graphical Abstract Following oxidative stress, production of the reductant NADPH via the pentose phosphate pathway is stimulated by SIRT2‐mediated deacetylation and activation of G6PD.
AbstractList Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress. Synopsis The pentose phosphate pathway plays an important role in the oxidative stress response by supplying the reductant NADPH. SIRT2-mediated deacetylation and activation of the glucose-6-phosphate dehydrogenase, the rate-limiting enzyme in this pathway, stimulates the production of cytosolic NADPH to counteract oxidative damage. K403 acetylation decreases G6PD activity by inhibiting dimer formation. SIRT2 and KAT9/ELP3 regulate G6PD K403 acetylation. Regulation of G6PD K403 acetylation modulates NADPH homeostasis and cell survival during oxidative stress.
Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress. Synopsis The pentose phosphate pathway plays an important role in the oxidative stress response by supplying the reductant NADPH. SIRT2‐mediated deacetylation and activation of the glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme in this pathway, stimulates the production of cytosolic NADPH to counteract oxidative damage. K403 acetylation decreases G6PD activity by inhibiting dimer formation. SIRT2 and KAT9/ELP3 regulate G6PD K403 acetylation. Regulation of G6PD K403 acetylation modulates NADPH homeostasis and cell survival during oxidative stress. Graphical Abstract Following oxidative stress, production of the reductant NADPH via the pentose phosphate pathway is stimulated by SIRT2‐mediated deacetylation and activation of G6PD.
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.
Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress. Synopsis The pentose phosphate pathway plays an important role in the oxidative stress response by supplying the reductant NADPH. SIRT2‐mediated deacetylation and activation of the glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme in this pathway, stimulates the production of cytosolic NADPH to counteract oxidative damage. K403 acetylation decreases G6PD activity by inhibiting dimer formation. SIRT2 and KAT9/ELP3 regulate G6PD K403 acetylation. Regulation of G6PD K403 acetylation modulates NADPH homeostasis and cell survival during oxidative stress. Following oxidative stress, production of the reductant NADPH via the pentose phosphate pathway is stimulated by SIRT2‐mediated deacetylation and activation of G6PD.
Author Xiong, Yue
Zhou, Li‐Sha
Hu, Fu‐Jun
Wang, Yi‐Ping
Wang, Shi‐Wen
Zhang, Jing‐Ye
Zhao, Yu‐Zheng
Ye, Dan
Yang, Chen
Sun, Yi‐Ping
Guan, Kun‐Liang
Chen, Lei‐Lei
Liu, Li‐Xia
Ling, Zhi‐Qiang
Yang, Yi
Author_xml – sequence: 1
  givenname: Yi‐Ping
  surname: Wang
  fullname: Wang, Yi‐Ping
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
– sequence: 2
  givenname: Li‐Sha
  surname: Zhou
  fullname: Zhou, Li‐Sha
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
– sequence: 3
  givenname: Yu‐Zheng
  surname: Zhao
  fullname: Zhao, Yu‐Zheng
  organization: School of Pharmacy, East China University of Science and Technology
– sequence: 4
  givenname: Shi‐Wen
  surname: Wang
  fullname: Wang, Shi‐Wen
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
– sequence: 5
  givenname: Lei‐Lei
  surname: Chen
  fullname: Chen, Lei‐Lei
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
– sequence: 6
  givenname: Li‐Xia
  surname: Liu
  fullname: Liu, Li‐Xia
  organization: Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 7
  givenname: Zhi‐Qiang
  surname: Ling
  fullname: Ling, Zhi‐Qiang
  organization: Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center
– sequence: 8
  givenname: Fu‐Jun
  surname: Hu
  fullname: Hu, Fu‐Jun
  organization: Department of Radiotherapy, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center
– sequence: 9
  givenname: Yi‐Ping
  surname: Sun
  fullname: Sun, Yi‐Ping
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
– sequence: 10
  givenname: Jing‐Ye
  surname: Zhang
  fullname: Zhang, Jing‐Ye
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
– sequence: 11
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  organization: Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 12
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: School of Pharmacy, East China University of Science and Technology
– sequence: 13
  givenname: Yue
  surname: Xiong
  fullname: Xiong, Yue
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina
– sequence: 14
  givenname: Kun‐Liang
  surname: Guan
  fullname: Guan, Kun‐Liang
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Department of Pharmacology and Moores Cancer Center, University of California San Diego
– sequence: 15
  givenname: Dan
  surname: Ye
  fullname: Ye, Dan
  email: yedan@fudan.edu.cn
  organization: Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24769394$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvEzEUhS1URNPCliWyxIbNtH6O7Q1S-i4UqEr2lid2UkczdrBnBvLvO0NCVBAry77fOTrX5wgchBgcAG8xOsEIkVPXVKsTgjCVghD2AkwwK1FBkOAHYIJIiQuGpToERzmvEEJcCvwKHBImSkUVm4D-wS272rQ-BhgX8Lq8v4Bm7trN7q3awO-3DzMCTbDw83SmYBPtKHAZfp1e3N_Ax9i4mFuTff4NzV1dw9yl3vemhrZLPixh_OXtYNg7mNvkcn4NXi5Mnd2b3XkMZleXs_Ob4u7b9e359K5YU8lYUQlEbGVQhRclnRvJnSqRtYowJKjhQmFEJOauIkJxIbFdSGosQdRKgg2ix-Dj1nbdVY2zcxfaZGq9Tr4xaaOj8frvSfCPehl7zbBimODB4MPOIMUfncutbnweNzTBxS5rzKngivOSDej7f9BV7FIYttNYcC4HkqiBevc80T7Kn0YGQG2Bn752m_0cIz32rce-9b5vffnl7NP-NmhPt9q8Hn_dpWcR_qunTymwr1U
CODEN EMJODG
ContentType Journal Article
Copyright The Authors 2014
2014 The Authors
2014 The Authors.
2014 EMBO
2014 The Authors 2014
Copyright_xml – notice: The Authors 2014
– notice: 2014 The Authors
– notice: 2014 The Authors.
– notice: 2014 EMBO
– notice: 2014 The Authors 2014
DBID CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/embj.201387224
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 1320
ExternalDocumentID PMC4194121
3918174981
24769394
EMBJ201387224
10_1002_embj_201387224
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: 973 Program
  grantid: 12ZZ008; CA163834; R01CA108941; 2012CB910303; 2012CB910101; 2011CB910600; 2009CB918401
– fundername: Innovation Program of Shanghai Municipal Education Commission
  grantid: 12ZZ008
– fundername: NIH
  grantid: CA163834; R01CA108941
– fundername: James McDonnell Foundation Samuel Waxman Foundation
– fundername: 973 Program
  funderid: 12ZZ008; CA163834; R01CA108941; 2012CB910303; 2012CB910101; 2011CB910600; 2009CB918401
– fundername: NIH
  funderid: CA163834; R01CA108941
– fundername: Innovation Program of Shanghai Municipal Education Commission
  funderid: 12ZZ008
– fundername: NCI NIH HHS
  grantid: R01 CA163834
– fundername: NCI NIH HHS
  grantid: CA163834
– fundername: NCI NIH HHS
  grantid: R01CA108941
– fundername: NCI NIH HHS
  grantid: R01 CA108941
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANHP
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GODZA
GROUPED_DOAJ
GX1
H13
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
AAHHS
ABJNI
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
RHF
WYJ
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-p3844-b702dba0b1f63ca85e960dd924073a579102815eb2795781df83ad203d821a03
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:12:45 EDT 2025
Fri Sep 05 08:09:17 EDT 2025
Fri Jul 25 11:01:46 EDT 2025
Mon Jul 21 06:00:49 EDT 2025
Wed Jan 22 16:29:11 EST 2025
Sat Aug 09 01:12:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords acetylation
G6PD
SIRT2
nicotinamide adenine dinucleotide phosphate
reactive oxygen species
Language English
License 2014 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3844-b702dba0b1f63ca85e960dd924073a579102815eb2795781df83ad203d821a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Subject Categories Metabolism; Post-translational Modifications, Proteolysis
Correction added on 26 May 2014, after first online publication. In the article title, “KAT9/SIRT2” was corrected to “SIRT2 and KAT9”
PMID 24769394
PQID 1755853729
PQPubID 35985
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4194121
proquest_miscellaneous_1537595564
proquest_journals_1755853729
pubmed_primary_24769394
wiley_primary_10_1002_embj_201387224_EMBJ201387224
springer_journals_10_1002_embj_201387224
PublicationCentury 2000
PublicationDate 17 June 2014
PublicationDateYYYYMMDD 2014-06-17
PublicationDate_xml – month: 06
  year: 2014
  text: 17 June 2014
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Oxford, UK
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2014
Publisher Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: BlackWell Publishing Ltd
References 2007; 302
2012; 60
2013; 3
1991; 54
2011b; 43
2000; 8
2002; 277
2013; 288
2008; 7
2006; 1762
2011; 14
2005; 61
2008; 31
2008; 4
2008; 1
2011; 18
1993; 2
1965; 19
2003; 11
1998; 273
1969; 8
2013; 15
2006; 20
2009; 10
2011; 206
2010; 24
2006; 23
2000; 14
2013; 13
2007; 292
2000; 403
2007; 131
2006; 26
1967; 19
2007; 6
2005; 309
1998; 91
1996; 252
1980
2007; 21
2008; 275
2009; 1792
2004; 337
2011; 364
2009; 325
2001; 98
2007; 404
1990; 247
2010; 327
1995; 14
1985; 2
1995; 10
2003; 370
2008; 15
2006
2000; 275
2003
2009; 459
2009; 136
2003; 133
2007; 13
2011a; 13
2001; 21
1994; 8
1997; 323
2009; 36
2012; 2
1976; 251
2007; 317
2004; 279
2005; 289
1999; 274
1996; 271
2005; 6
2008; 452
2005; 16
2012; 7
2005; 17
1994; 5
2008; 371
16051752 - Science. 2005 Sep 16;309(5742):1861-4
23696099 - G3 (Bethesda). 2013 Jul;3(7):1061-8
18616466 - FEBS J. 2008 Aug;275(15):3959-70
10698963 - FASEB J. 2000 Mar;14(3):485-94
18392752 - J Inherit Metab Dis. 2008 Jun;31(3):412-7
19465117 - Biochim Biophys Acta. 2009 Aug;1792(8):804-9
8910528 - J Biol Chem. 1996 Nov 15;271(46):28831-6
18177777 - Lancet. 2008 Jan 5;371(9606):64-74
23534950 - Cardiovasc Hematol Disord Drug Targets. 2013 Mar 1;13(1):73-82
22100408 - Cell Metab. 2011 Dec 7;14(6):718-9
18249170 - Cell Metab. 2008 Feb;7(2):104-12
18278036 - Nat Chem Biol. 2008 Apr;4(4):232-4
16439706 - Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):910-6
15960801 - Genome Biol. 2005;6(6):R49
24825350 - EMBO J. 2014 Jun 17;33(12):1287-8
14985369 - J Biol Chem. 2004 May 21;279(21):22284-93
21879449 - Handb Exp Pharmacol. 2011;206:125-62
8119488 - FASEB J. 1994 Feb;8(2):174-81
12620231 - Mol Cell. 2003 Feb;11(2):437-44
22902405 - Cell Rep. 2012 Aug 30;2(2):419-31
12970474 - Plant Physiol. 2003 Sep;133(1):47-62
19805580 - FASEB J. 2010 Feb;24(2):609-16
19065135 - Nat Rev Genet. 2009 Jan;10(1):32-42
8934631 - J Biochem Toxicol. 1995 Dec;10(6):293-8
21336310 - Nat Cell Biol. 2011 Mar;13(3):310-6
11375432 - Annu Rev Nutr. 2001;21:121-40
12466018 - Biochem J. 2003 Mar 15;370(Pt 3):935-43
17273168 - Nat Med. 2007 Feb;13(2):189-97
23071515 - PLoS One. 2012;7(10):e45365
16934959 - Biochim Biophys Acta. 2006 Aug;1762(8):767-74
2106160 - Science. 1990 Feb 16;247(4944):841-5
5448 - J Biol Chem. 1976 May 25;251(10):2993-3002
16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35
15956780 - Am J Physiol Renal Physiol. 2005 Nov;289(5):F1040-7
7489710 - EMBO J. 1995 Nov 1;14(21):5209-15
20032314 - FASEB J. 2010 May;24(5):1497-505
21726808 - Mol Cell. 2011 Jul 8;43(1):33-44
18940661 - Chem Biol. 2008 Oct 20;15(10):1002-13
24052263 - J Biol Chem. 2013 Oct 25;288(43):31350-6
17611006 - Blood Rev. 2007 Sep;21(5):267-83
2952393 - Diabet Med. 1985 Mar;2(2):110-2
17646934 - Mol Cell Biochem. 2007 Aug;302(1-2):27-34
20167786 - Science. 2010 Feb 19;327(5968):1000-4
21948283 - Glia. 2012 Jan;60(1):69-82
23811687 - Nat Cell Biol. 2013 Aug;15(8):991-1000
16917020 - Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R18-36
19918114 - J Nutrigenet Nutrigenomics. 2008;1(1-2):49-54
8879247 - Mol Gen Genet. 1996 Sep 25;252(4):456-64
17521387 - Aging Cell. 2007 Aug;6(4):505-14
15019790 - J Mol Biol. 2004 Mar 26;337(3):731-41
15858258 - Acta Crystallogr D Biol Crystallogr. 2005 May;61(Pt 5):495-504
14285010 - Oncology. 1965;19:11-9
10745013 - Structure. 2000 Mar 15;8(3):293-303
18337823 - Nature. 2008 Mar 13;452(7184):230-3
17447894 - Biochem J. 2007 May 15;404(1):1-13
1777604 - Int J Hematol. 1991 Aug;54(4):295-8
8364584 - Hum Mutat. 1993;2(3):159-67
19818718 - Mol Cell. 2009 Oct 9;36(1):153-63
21907146 - Cell Metab. 2011 Sep 7;14(3):415-27
11134513 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):87-92
10693811 - Nature. 2000 Feb 17;403(6771):795-800
19185337 - Cell. 2009 Feb 6;136(3):551-64
9427729 - Blood. 1998 Jan 15;91(2):706-9
16916647 - Mol Cell. 2006 Aug;23(4):607-18
21517779 - Curr Med Chem. 2011;18(13):1919-35
8180621 - Plant J. 1994 Mar;5(3):353-61
15780941 - Mol Cell. 2005 Mar 18;17(6):855-68
16648462 - Genes Dev. 2006 May 15;20(10):1256-61
12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107
17588900 - Science. 2007 Jul 27;317(5837):516-9
19270680 - Nature. 2009 May 7;459(7243):113-7
19608861 - Science. 2009 Aug 14;325(5942):834-40
9169615 - Biochem J. 1997 May 1;323 ( Pt 3):801-6
10347154 - J Biol Chem. 1999 Jun 4;274(23):16040-6
4960001 - Am J Hum Genet. 1967 Jan;19(1):35-53
21651395 - N Engl J Med. 2011 Jun 9;364(23):2235-44
5781268 - Eur J Biochem. 1969 Mar;8(1):1-7
9553122 - J Biol Chem. 1998 Apr 24;273(17):10609-17
18022353 - Cell. 2007 Nov 16;131(4):633-6
11007790 - J Biol Chem. 2000 Dec 22;275(51):40042-7
References_xml – volume: 4
  start-page: 232
  year: 2008
  end-page: 234
  article-title: Genetically encoding N(epsilon)‐acetyllysine in recombinant proteins
  publication-title: Nat Chem Biol
– volume: 31
  start-page: 412
  year: 2008
  end-page: 417
  article-title: Glucose‐6‐phosphate dehydrogenase deficiency protects against coronary heart disease
  publication-title: J Inherit Metab Dis
– start-page: 577
  year: 2006
  end-page: 589
– volume: 26
  start-page: 910
  year: 2006
  end-page: 916
  article-title: Glucose‐6‐phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(−/−) mice
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 11
  start-page: 437
  year: 2003
  end-page: 444
  article-title: The human Sir2 ortholog, SIRT2, is an NAD+‐dependent tubulin deacetylase
  publication-title: Mol Cell
– volume: 2
  start-page: 159
  year: 1993
  end-page: 167
  article-title: Variants of glucose‐6‐phosphate dehydrogenase are due to missense mutations spread throughout the coding region of the gene
  publication-title: Hum Mutat
– volume: 404
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Sirtuins in mammals: insights into their biological function
  publication-title: Biochem J
– volume: 131
  start-page: 633
  year: 2007
  end-page: 636
  article-title: New nomenclature for chromatin‐modifying enzymes
  publication-title: Cell
– volume: 19
  start-page: 35
  year: 1967
  end-page: 53
  article-title: Associations between red cell glucose‐6‐phosphate dehydrogenase variants and vascular diseases
  publication-title: Am J Hum Genet
– volume: 14
  start-page: 485
  year: 2000
  end-page: 494
  article-title: Human mutations in glucose 6‐phosphate dehydrogenase reflect evolutionary history
  publication-title: FASEB J
– volume: 98
  start-page: 87
  year: 2001
  end-page: 92
  article-title: Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin
  publication-title: Proc Natl Acad Sci USA
– volume: 277
  start-page: 45099
  year: 2002
  end-page: 45107
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
  publication-title: J Biol Chem
– volume: 13
  start-page: 73
  year: 2013
  end-page: 82
  article-title: Glucose‐6‐phosphate dehydrogenase deficiency: disadvantages and possible benefits
  publication-title: Cardiovasc Hematol Disord Drug Targets
– volume: 7
  start-page: 104
  year: 2008
  end-page: 112
  article-title: Conserved metabolic regulatory functions of sirtuins
  publication-title: Cell Metab
– volume: 2
  start-page: 110
  year: 1985
  end-page: 112
  article-title: Association of glucose‐6‐phosphate dehydrogenase deficiency with diabetes mellitus
  publication-title: Diabet Med
– start-page: 1921
  year: 2003
  end-page: 1950
– volume: 1
  start-page: 49
  year: 2008
  end-page: 54
  article-title: Gene‐nutrient interactions in G6PD‐deficient subjects–implications for cardiovascular disease susceptibility
  publication-title: J Nutrigenet Nutrigenomics
– volume: 279
  start-page: 22284
  year: 2004
  end-page: 22293
  article-title: Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators
  publication-title: J Biol Chem
– volume: 16
  start-page: 4623
  year: 2005
  end-page: 4635
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol Biol Cell
– volume: 317
  start-page: 516
  year: 2007
  end-page: 519
  article-title: Sirtuin 2 inhibitors rescue alpha‐synuclein‐mediated toxicity in models of Parkinson's disease
  publication-title: Science
– volume: 271
  start-page: 28831
  year: 1996
  end-page: 28836
  article-title: The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
  publication-title: J Biol Chem
– volume: 61
  start-page: 495
  year: 2005
  end-page: 504
  article-title: Structural studies of glucose‐6‐phosphate and NADP+ binding to human glucose‐6‐phosphate dehydrogenase
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 19
  start-page: 11
  year: 1965
  end-page: 19
  article-title: Glucose‐6‐phosphate dehydrogenase deficiency and the incidence of cancer
  publication-title: Oncology
– volume: 21
  start-page: 267
  year: 2007
  end-page: 283
  article-title: G6PD deficiency: the genotype‐phenotype association
  publication-title: Blood Rev
– volume: 24
  start-page: 1497
  year: 2010
  end-page: 1505
  article-title: High glucose inhibits glucose‐6‐phosphate dehydrogenase, leading to increased oxidative stress and beta‐cell apoptosis
  publication-title: FASEB J
– volume: 251
  start-page: 2993
  year: 1976
  end-page: 3002
  article-title: Genetic variants of human erythrocyte glucose‐6‐phosphate dehydrogenase. Kinetic and thermodynamic parameters of variants A, B, and A‐ in relation to quaternary structure
  publication-title: J Biol Chem
– volume: 403
  start-page: 795
  year: 2000
  end-page: 800
  article-title: Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase
  publication-title: Nature
– volume: 274
  start-page: 16040
  year: 1999
  end-page: 16046
  article-title: Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast
  publication-title: J Biol Chem
– volume: 247
  start-page: 841
  year: 1990
  end-page: 845
  article-title: Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation
  publication-title: Science
– volume: 459
  start-page: 113
  year: 2009
  end-page: 117
  article-title: CBP/p300‐mediated acetylation of histone H3 on lysine 56
  publication-title: Nature
– volume: 5
  start-page: 353
  year: 1994
  end-page: 361
  article-title: Purification, characterization, and cDNA sequence of glucose‐6‐phosphate dehydrogenase from potato ( L.)
  publication-title: Plant J
– volume: 133
  start-page: 47
  year: 2003
  end-page: 62
  article-title: Differential regulation of glucose‐6‐phosphate dehydrogenase isoenzyme activities in potato
  publication-title: Plant Physiol
– volume: 54
  start-page: 295
  year: 1991
  end-page: 298
  article-title: Glucose‐6‐phosphate dehydrogenase deficiency and diabetes mellitus
  publication-title: Int J Hematol
– volume: 18
  start-page: 1919
  year: 2011
  end-page: 1935
  article-title: Advances in characterization of human sirtuin isoforms: chemistries, targets and therapeutic applications
  publication-title: Curr Med Chem
– volume: 1792
  start-page: 804
  year: 2009
  end-page: 809
  article-title: Clinical mutants of human glucose 6‐phosphate dehydrogenase: impairment of NADP(+) binding affects both folding and stability
  publication-title: Biochim Biophys Acta
– volume: 288
  start-page: 31350
  year: 2013
  end-page: 31356
  article-title: Activation of the protein deacetylase SIRT6 by long‐chain fatty acids and widespread deacylation by mammalian sirtuins
  publication-title: J Biol Chem
– volume: 21
  start-page: 121
  year: 2001
  end-page: 140
  article-title: Dietary regulation of expression of glucose‐6‐phosphate dehydrogenase
  publication-title: Annu Rev Nutr
– volume: 6
  start-page: 505
  year: 2007
  end-page: 514
  article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
  publication-title: Aging Cell
– volume: 13
  start-page: 189
  year: 2007
  end-page: 197
  article-title: Aldosterone impairs vascular reactivity by decreasing glucose‐6‐phosphate dehydrogenase activity
  publication-title: Nat Med
– volume: 325
  start-page: 834
  year: 2009
  end-page: 840
  article-title: Lysine acetylation targets protein complexes and co‐regulates major cellular functions
  publication-title: Science
– volume: 371
  start-page: 64
  year: 2008
  end-page: 74
  article-title: Glucose‐6‐phosphate dehydrogenase deficiency
  publication-title: Lancet
– volume: 136
  start-page: 551
  year: 2009
  end-page: 564
  article-title: Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha‐tubulin
  publication-title: Cell
– volume: 2
  start-page: 419
  year: 2012
  end-page: 431
  article-title: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns
  publication-title: Cell Rep
– volume: 60
  start-page: 69
  year: 2012
  end-page: 82
  article-title: The QKI‐PLP pathway controls SIRT2 abundance in CNS myelin
  publication-title: Glia
– volume: 370
  start-page: 935
  year: 2003
  end-page: 943
  article-title: Failure to increase glucose consumption through the pentose‐phosphate pathway results in the death of glucose‐6‐phosphate dehydrogenase gene‐deleted mouse embryonic stem cells subjected to oxidative stress
  publication-title: Biochem J
– volume: 10
  start-page: 293
  year: 1995
  end-page: 298
  article-title: Upregulation of glucose‐6‐phosphate dehydrogenase in response to hepatocellular oxidative stress: studies with diquat
  publication-title: J Biochem Toxicol
– volume: 14
  start-page: 5209
  year: 1995
  end-page: 5215
  article-title: Targeted disruption of the housekeeping gene encoding glucose 6‐phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress
  publication-title: EMBO J
– volume: 6
  start-page: R49
  year: 2005
  article-title: Large‐scale 13C‐flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
  publication-title: Genome Biol
– volume: 309
  start-page: 1861
  year: 2005
  end-page: 1864
  article-title: HST2 mediates SIR2‐independent life‐span extension by calorie restriction
  publication-title: Science
– volume: 14
  start-page: 718
  year: 2011
  end-page: 719
  article-title: Old enzymes, new tricks: sirtuins are NAD(+)‐dependent de‐acylases
  publication-title: Cell Metab
– volume: 15
  start-page: 1002
  year: 2008
  end-page: 1013
  article-title: Mechanisms and molecular probes of sirtuins
  publication-title: Chem Biol
– volume: 289
  start-page: F1040
  year: 2005
  end-page: F1047
  article-title: Diabetes causes inhibition of glucose‐6‐phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex
  publication-title: Am J Physiol Renal Physiol
– volume: 23
  start-page: 607
  year: 2006
  end-page: 618
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol Cell
– volume: 206
  start-page: 125
  year: 2011
  end-page: 162
  article-title: The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity
  publication-title: Handb Exp Pharmacol
– volume: 8
  start-page: 1
  year: 1969
  end-page: 7
  article-title: Human glucose‐6‐phosphate dehydrogenase: purification of the erythrocyte enzyme and the influence of ions on its activity
  publication-title: Eur J Biochem
– volume: 323
  start-page: 801
  issue: Pt 3
  year: 1997
  end-page: 806
  article-title: Enhanced expression of glucose‐6‐phosphate dehydrogenase in human cells sustaining oxidative stress
  publication-title: Biochem J
– volume: 275
  start-page: 40042
  year: 2000
  end-page: 40047
  article-title: High glucose inhibits glucose‐6‐phosphate dehydrogenase via cAMP in aortic endothelial cells
  publication-title: J Biol Chem
– volume: 13
  start-page: 310
  year: 2011a
  end-page: 316
  article-title: p53 regulates biosynthesis through direct inactivation of glucose‐6‐phosphate dehydrogenase
  publication-title: Nat Cell Biol
– volume: 292
  start-page: R18
  year: 2007
  end-page: R36
  article-title: An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 302
  start-page: 27
  year: 2007
  end-page: 34
  article-title: Regulation of singlet oxygen‐induced apoptosis by cytosolic NADP+‐dependent isocitrate dehydrogenase
  publication-title: Mol Cell Biochem
– volume: 452
  start-page: 230
  year: 2008
  end-page: 233
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
– volume: 273
  start-page: 10609
  year: 1998
  end-page: 10617
  article-title: Importance of glucose‐6‐phosphate dehydrogenase activity for cell growth
  publication-title: J Biol Chem
– volume: 43
  start-page: 33
  year: 2011b
  end-page: 44
  article-title: Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
  publication-title: Mol Cell
– volume: 24
  start-page: 609
  year: 2010
  end-page: 616
  article-title: Glucose‐6‐phosphate dehydrogenase‐deficient mice have increased renal oxidative stress and increased albuminuria
  publication-title: FASEB J
– volume: 20
  start-page: 1256
  year: 2006
  end-page: 1261
  article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
  publication-title: Genes Dev
– volume: 275
  start-page: 3959
  year: 2008
  end-page: 3970
  article-title: Glutathione peroxidase family ‐ an evolutionary overview
  publication-title: FEBS J
– volume: 8
  start-page: 293
  year: 2000
  end-page: 303
  article-title: Human glucose‐6‐phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency
  publication-title: Structure
– volume: 327
  start-page: 1000
  year: 2010
  end-page: 1004
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
– volume: 17
  start-page: 855
  year: 2005
  end-page: 868
  article-title: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
  publication-title: Mol Cell
– volume: 15
  start-page: 991
  year: 2013
  end-page: 1000
  article-title: TAp73 enhances the pentose phosphate pathway and supports cell proliferation
  publication-title: Nat Cell Biol
– volume: 36
  start-page: 153
  year: 2009
  end-page: 163
  article-title: A method for genetically installing site‐specific acetylation in recombinant histones defines the effects of H3 K56 acetylation
  publication-title: Mol Cell
– volume: 1762
  start-page: 767
  year: 2006
  end-page: 774
  article-title: Functional properties of two mutants of human glucose 6‐phosphate dehydrogenase, R393G and R393H, corresponding to the clinical variants G6PD Wisconsin and Nashville
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 32
  year: 2009
  end-page: 42
  article-title: The many roles of histone deacetylases in development and physiology: implications for disease and therapy
  publication-title: Nat Rev Genet
– start-page: 279
  year: 1980
  end-page: 316
– volume: 8
  start-page: 174
  year: 1994
  end-page: 181
  article-title: Glucose‐6‐phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue‐specific regulation by hormones, nutrients, and oxidant stress
  publication-title: FASEB J
– volume: 91
  start-page: 706
  year: 1998
  end-page: 709
  article-title: Mortality in a cohort of men expressing the glucose‐6‐phosphate dehydrogenase deficiency
  publication-title: Blood
– volume: 337
  start-page: 731
  year: 2004
  end-page: 741
  article-title: Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli
  publication-title: J Mol Biol
– volume: 14
  start-page: 415
  year: 2011
  end-page: 427
  article-title: Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells
  publication-title: Cell Metab
– volume: 7
  start-page: e45365
  year: 2012
  article-title: Glucose‐6‐phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L‐type calcium channel activity and myocardial contractile function
  publication-title: PLoS ONE
– volume: 252
  start-page: 456
  year: 1996
  end-page: 464
  article-title: Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress
  publication-title: Mol Gen Genet
– volume: 3
  start-page: 1061
  year: 2013
  end-page: 1068
  article-title: Genetic variants that confer resistance to malaria are associated with red blood cell traits in African‐Americans: an electronic medical record‐based genome‐wide association study
  publication-title: G3 (Bethesda)
– volume: 364
  start-page: 2235
  year: 2011
  end-page: 2244
  article-title: Franklin H Epstein Lecture: sirtuins, aging, and medicine
  publication-title: N Engl J Med
– reference: 16934959 - Biochim Biophys Acta. 2006 Aug;1762(8):767-74
– reference: 16051752 - Science. 2005 Sep 16;309(5742):1861-4
– reference: 7489710 - EMBO J. 1995 Nov 1;14(21):5209-15
– reference: 15019790 - J Mol Biol. 2004 Mar 26;337(3):731-41
– reference: 21651395 - N Engl J Med. 2011 Jun 9;364(23):2235-44
– reference: 9553122 - J Biol Chem. 1998 Apr 24;273(17):10609-17
– reference: 5448 - J Biol Chem. 1976 May 25;251(10):2993-3002
– reference: 18337823 - Nature. 2008 Mar 13;452(7184):230-3
– reference: 23534950 - Cardiovasc Hematol Disord Drug Targets. 2013 Mar 1;13(1):73-82
– reference: 17521387 - Aging Cell. 2007 Aug;6(4):505-14
– reference: 11134513 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):87-92
– reference: 19065135 - Nat Rev Genet. 2009 Jan;10(1):32-42
– reference: 19805580 - FASEB J. 2010 Feb;24(2):609-16
– reference: 16648462 - Genes Dev. 2006 May 15;20(10):1256-61
– reference: 8119488 - FASEB J. 1994 Feb;8(2):174-81
– reference: 19185337 - Cell. 2009 Feb 6;136(3):551-64
– reference: 9169615 - Biochem J. 1997 May 1;323 ( Pt 3):801-6
– reference: 11007790 - J Biol Chem. 2000 Dec 22;275(51):40042-7
– reference: 23071515 - PLoS One. 2012;7(10):e45365
– reference: 10693811 - Nature. 2000 Feb 17;403(6771):795-800
– reference: 19608861 - Science. 2009 Aug 14;325(5942):834-40
– reference: 17646934 - Mol Cell Biochem. 2007 Aug;302(1-2):27-34
– reference: 12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107
– reference: 17273168 - Nat Med. 2007 Feb;13(2):189-97
– reference: 22100408 - Cell Metab. 2011 Dec 7;14(6):718-9
– reference: 14285010 - Oncology. 1965;19:11-9
– reference: 19465117 - Biochim Biophys Acta. 2009 Aug;1792(8):804-9
– reference: 14985369 - J Biol Chem. 2004 May 21;279(21):22284-93
– reference: 10347154 - J Biol Chem. 1999 Jun 4;274(23):16040-6
– reference: 12466018 - Biochem J. 2003 Mar 15;370(Pt 3):935-43
– reference: 18249170 - Cell Metab. 2008 Feb;7(2):104-12
– reference: 18392752 - J Inherit Metab Dis. 2008 Jun;31(3):412-7
– reference: 21948283 - Glia. 2012 Jan;60(1):69-82
– reference: 18278036 - Nat Chem Biol. 2008 Apr;4(4):232-4
– reference: 17588900 - Science. 2007 Jul 27;317(5837):516-9
– reference: 10698963 - FASEB J. 2000 Mar;14(3):485-94
– reference: 20167786 - Science. 2010 Feb 19;327(5968):1000-4
– reference: 12970474 - Plant Physiol. 2003 Sep;133(1):47-62
– reference: 21517779 - Curr Med Chem. 2011;18(13):1919-35
– reference: 15858258 - Acta Crystallogr D Biol Crystallogr. 2005 May;61(Pt 5):495-504
– reference: 8934631 - J Biochem Toxicol. 1995 Dec;10(6):293-8
– reference: 19270680 - Nature. 2009 May 7;459(7243):113-7
– reference: 4960001 - Am J Hum Genet. 1967 Jan;19(1):35-53
– reference: 8364584 - Hum Mutat. 1993;2(3):159-67
– reference: 11375432 - Annu Rev Nutr. 2001;21:121-40
– reference: 5781268 - Eur J Biochem. 1969 Mar;8(1):1-7
– reference: 2952393 - Diabet Med. 1985 Mar;2(2):110-2
– reference: 22902405 - Cell Rep. 2012 Aug 30;2(2):419-31
– reference: 16916647 - Mol Cell. 2006 Aug;23(4):607-18
– reference: 18940661 - Chem Biol. 2008 Oct 20;15(10):1002-13
– reference: 24052263 - J Biol Chem. 2013 Oct 25;288(43):31350-6
– reference: 20032314 - FASEB J. 2010 May;24(5):1497-505
– reference: 17447894 - Biochem J. 2007 May 15;404(1):1-13
– reference: 16917020 - Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R18-36
– reference: 24825350 - EMBO J. 2014 Jun 17;33(12):1287-8
– reference: 23696099 - G3 (Bethesda). 2013 Jul;3(7):1061-8
– reference: 1777604 - Int J Hematol. 1991 Aug;54(4):295-8
– reference: 21336310 - Nat Cell Biol. 2011 Mar;13(3):310-6
– reference: 8180621 - Plant J. 1994 Mar;5(3):353-61
– reference: 2106160 - Science. 1990 Feb 16;247(4944):841-5
– reference: 16439706 - Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):910-6
– reference: 18616466 - FEBS J. 2008 Aug;275(15):3959-70
– reference: 18022353 - Cell. 2007 Nov 16;131(4):633-6
– reference: 16079181 - Mol Biol Cell. 2005 Oct;16(10):4623-35
– reference: 15956780 - Am J Physiol Renal Physiol. 2005 Nov;289(5):F1040-7
– reference: 21726808 - Mol Cell. 2011 Jul 8;43(1):33-44
– reference: 21907146 - Cell Metab. 2011 Sep 7;14(3):415-27
– reference: 8879247 - Mol Gen Genet. 1996 Sep 25;252(4):456-64
– reference: 23811687 - Nat Cell Biol. 2013 Aug;15(8):991-1000
– reference: 12620231 - Mol Cell. 2003 Feb;11(2):437-44
– reference: 17611006 - Blood Rev. 2007 Sep;21(5):267-83
– reference: 18177777 - Lancet. 2008 Jan 5;371(9606):64-74
– reference: 19918114 - J Nutrigenet Nutrigenomics. 2008;1(1-2):49-54
– reference: 15960801 - Genome Biol. 2005;6(6):R49
– reference: 8910528 - J Biol Chem. 1996 Nov 15;271(46):28831-6
– reference: 10745013 - Structure. 2000 Mar 15;8(3):293-303
– reference: 15780941 - Mol Cell. 2005 Mar 18;17(6):855-68
– reference: 9427729 - Blood. 1998 Jan 15;91(2):706-9
– reference: 19818718 - Mol Cell. 2009 Oct 9;36(1):153-63
– reference: 21879449 - Handb Exp Pharmacol. 2011;206:125-62
SSID ssj0005871
Score 2.5723922
Snippet Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by...
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1304
SubjectTerms Acetylation
Animals
Cell Survival - physiology
Cellular biology
Dehydrogenase
EMBO21
EMBO31
Enzymes
G6PD
Gene Knockdown Techniques
Glucosephosphate Dehydrogenase - genetics
Glucosephosphate Dehydrogenase - metabolism
Green Fluorescent Proteins
HEK293 Cells
Histone Acetyltransferases - metabolism
Homeostasis
Homeostasis - physiology
Humans
Mice
NADP - metabolism
Nerve Tissue Proteins - metabolism
nicotinamide adenine dinucleotide phosphate
Oxidative stress
Oxidative Stress - physiology
Phosphates
reactive oxygen species
RNA, Small Interfering - genetics
SIRT2
Sirtuin 2 - metabolism
Title Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress
URI https://link.springer.com/article/10.1002/embj.201387224
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fembj.201387224
https://www.ncbi.nlm.nih.gov/pubmed/24769394
https://www.proquest.com/docview/1755853729
https://www.proquest.com/docview/1537595564
https://pubmed.ncbi.nlm.nih.gov/PMC4194121
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa2DsN2Gdbulb6gATvsYsx62dYxTR9pixZFlwG9GZIloxkQu6iTovn3I2XHW9AedrNNSpBFyuYnUiQh3-IC5epdFJeJB4ASl5HVRREpycrYeMGUQ6B4cZmMf8mzG3XTBcjiWZh1_z3_4Wf2NwZgiSyFn81L8kphjjF0yiajv6EcWQBWYS9FskyvkjM-af-cGfk0GrJ3ia4brOGPc_yevOtMRTpsZbtJXvhqi7xui0cut8ib0apW2wfycN2WlIdJpnVJT5KrQ2oKP192z-yS_jy9nnBqKkfPhxNNZ7XDBr6hl8PDqzG9rWe-BkuxmTaBCTf0abOADwmoIm0PM9L6cepConDaHjH5SCbHR5PROOoqKkR3IpMysmnMnTWxZWUiCpMpDwDGOY2wThiVajQ3mAK0nWpYysyVmTCOx8JlnJlYfCIbVV35L4RyViqWWABPRSFTZ7TEMz4y00Yol1o2ILurmc67VdHkYKoAOkFH4YB87ckwVfhOpvL1AniArrRSiRyQz61g8rs28UbOJVZu1EBJ10TWM2Cu7HVKNb0NObMl05JxGNb3lXD_GVbI3Mxz1JW815UB4UH4fefPs-VHFwdn_d32__e_Q97CtcSwM5buko35_cLvgYEzt_tBu_8A8KPyXw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEWovCMqjCy0YiQOXiNixk_i4bB_bx66qEqTeIjt21EXapGp2K_bfM3aygVV74Bh7bCWecTyf5wXwJSwcX60JwjK2CFDCMtCyKALBaRkqG1FhHFCcTOPxT352La47B1kXC7Npv2ff7Fz_cg5YUZrgYfMUnnFEyd4oG4_-unKkHlj5uxROU7lOzvhg_GNq5ENvyN4kuqmw-hPn-CW86FRFMmx5-wqe2GoXnrfFI1e7sD1a12p7DfdXbUl5XGRSl-QkvjwkqrCLVdemV-TH6VXGiKoMOR9mksxr4wbYhkyHh5djclPPbY2aYjNrPJG70CfNEn8kKIqkDWYk9e-Z8YnCSRti8gay46NsNA66igrBbZRyHugkZEarUNMyjgqVCosAxhjpYF2kRCKdukEFou1E4lampkwjZVgYmZRRFUZvYauqK7sHhNFS0FgjeCoKnhgluYvx4alUkTCJpgPYX6903u2KJkdVBdGJMxQO4HPfjUvlvklVtl4iDfYLKUTMB_CuZUx-2ybeyBl3lRsl9iQbLOsJXK7szZ5qduNzZqPYcMrwtb6umfvPa_nMzSx3spL3sjIA5pnfT_44WX40-X7WP73___k_wfY4m1zkF6fT8w-wg-3cuaDRZB-2FndLe4DKzkJ_9JL-B3i-9Uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8aQzAuE4yPlQ0wEgcu0WLHTmKJS2lXuo1V1SjSbpETO1onNamWFtH_nmfnA6rtwDH2s5X4Pcfv5_cF8MnPLF-N9vw8NAhQ_NxLZZZ5gtPcVyagQlugeDkJxz_5-bW43oEvbSyM83ZvTZJ1TIPN0lSsTpY6b6z67MQs0lvrlhXEER5Bj-AxohRqM-cPwsFfB4_YwS13w8JpLNuUjffGP6Rc3veR7Ayl22qsO4dGz2G_USBJv-b4C9gxxQE8qUtKbg5gb9BWcHsJv67qQvO49KTMybdwOiQqM6tN05ZuyI-zqxkjqtDkoj-TZFFqO8BUZNIfTsfkplyYEvXHal45InvNT6o1_l5QQEkd4kjK33Pt0oeTOvDkFcxGp7PB2GvqLHjLIObcSyOf6VT5Kc3DIFOxMAhrtJYW7AVKRNIqIVQgBo8kbnCq8zhQmvmBjhlVfvAadouyMIdAGM0FDVOEVFnGI60kt5E_PJYqEDpKaQ-O25VOmr1SJajAIGax5sMefOy6cansN6nClGukwX4hhQh5D97UjEmWdTqOhHFbz1FiT7TFso7AZtDe7inmNy6TNqeSU4av9bll7j-v5fI5s8TKStLJSg-YY343-cNkyenl1_Pu6e3_z_8Bnk6Ho-T72eTiCJ5hM7d-aTQ6ht3V3dq8Qw1olb53gv4H2oz9kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+G6PD+acetylation+by+SIRT2+and+KAT9+modulates+NADPH+homeostasis+and+cell+survival+during+oxidative+stress&rft.jtitle=The+EMBO+journal&rft.au=Wang%2C+Yi-Ping&rft.au=Zhou%2C+Li-Sha&rft.au=Zhao%2C+Yu-Zheng&rft.au=Wang%2C+Shi-Wen&rft.date=2014-06-17&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=33&rft.issue=12&rft.spage=1304&rft_id=info:doi/10.1002%2Fembj.201387224&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3918174981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon