Molecular Catalysts for the Reductive Homocoupling of CO2 towards C2+ Compounds
The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic cataly...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 19; pp. e202200723 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
02.05.2022
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.
This Minireview summarizes recent progress in molecular catalysis of CO2 and CO homocoupling through thermochemical and electrochemical reductive approaches. Particular attention is paid to C−C coupling processes that generate multicarbon products. The current challenges in this rapidly growing field are described and perspectives for possible future developments are outlined. |
---|---|
AbstractList | The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. This Minireview summarizes recent progress in molecular catalysis of CO2 and CO homocoupling through thermochemical and electrochemical reductive approaches. Particular attention is paid to C−C coupling processes that generate multicarbon products. The current challenges in this rapidly growing field are described and perspectives for possible future developments are outlined. The conversion of CO 2 into multicarbon (C 2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO 2 toward C 2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO 2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. This Minireview summarizes recent progress in molecular catalysis of CO 2 and CO homocoupling through thermochemical and electrochemical reductive approaches. Particular attention is paid to C−C coupling processes that generate multicarbon products. The current challenges in this rapidly growing field are described and perspectives for possible future developments are outlined. The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. |
Author | Beller, Matthias Beweries, Torsten Francke, Robert Liang, Hong‐Qing |
AuthorAffiliation | 1 Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany |
AuthorAffiliation_xml | – name: 1 Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany |
Author_xml | – sequence: 1 givenname: Hong‐Qing orcidid: 0000-0002-5239-5345 surname: Liang fullname: Liang, Hong‐Qing email: hongqing.liang@catalysis.de organization: Leibniz-Institute for Catalysis – sequence: 2 givenname: Torsten orcidid: 0000-0002-2416-8874 surname: Beweries fullname: Beweries, Torsten email: torsten.beweries@catalysis.de organization: Leibniz-Institute for Catalysis – sequence: 3 givenname: Robert orcidid: 0000-0002-4998-1829 surname: Francke fullname: Francke, Robert email: robert.francke@catalysis.de organization: Leibniz-Institute for Catalysis – sequence: 4 givenname: Matthias orcidid: 0000-0001-5709-0965 surname: Beller fullname: Beller, Matthias email: matthias.beller@catalysis.de organization: Leibniz-Institute for Catalysis |
BookMark | eNpdkc1LxDAQxYOsuO7q1XPAiyBd87FtkouwFL9AXRA9h6RJtZImtWlX9r83oizoaWaYH49582Zg4oO3AJxgtMAIkQvlG7sgiBCEGKF74BDnBGeUMTpJ_ZLSjPEcT8EsxvfEc46KAzClOeaMCXEI1g_B2Wp0qoelGpTbxiHCOvRweLPwyZqxGpqNhbehDVUYO9f4VxhqWK4JHMKn6k2EJTmHZWi7MHoTj8B-rVy0x791Dl6ur57L2-x-fXNXru6zjhaYZoVhuGI14lhrVlkrtOFLIgzXQqtkgWBtDCmQsajOTa45ElpzQky1RCw3jM7B5Y9uN-rWmsr6oVdOdn3Tqn4rg2rk341v3uRr2EhBcXqLSAJnvwJ9-BhtHGTbxMo6p7wNY5SkoLhY4pzShJ7-Q9_D2PtkL1E5FQVnSXIOxA_12Ti73V2CkfwOSn4HJXdBydXj3dVuol-3tYnI |
ContentType | Journal Article |
Copyright | 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
DBID | 24P 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202200723 |
DatabaseName | Wiley-Blackwell Open Access Titles Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | PMC9311439 ANIE202200723 |
Genre | reviewArticle |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 5PM |
ID | FETCH-LOGICAL-p3613-6d71c7f081bb7cee9bd8429d8b9ba15221bdd260de0f5d5b809bb822dc4075d73 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:07:18 EDT 2025 Fri Jul 11 04:04:55 EDT 2025 Fri Jul 25 10:21:34 EDT 2025 Wed Jan 22 16:24:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Attribution-NonCommercial This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p3613-6d71c7f081bb7cee9bd8429d8b9ba15221bdd260de0f5d5b809bb822dc4075d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4998-1829 0000-0002-5239-5345 0000-0001-5709-0965 0000-0002-2416-8874 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200723 |
PMID | 35187799 |
PQID | 2653968714 |
PQPubID | 946352 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9311439 proquest_miscellaneous_2631641533 proquest_journals_2653968714 wiley_primary_10_1002_anie_202200723_ANIE202200723 |
PublicationCentury | 2000 |
PublicationDate | May 2, 2022 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2, 2022 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2013; 4 2019; 10 2019; 15 2020; 16 2008; 108 2020; 13 1964; 47 2020; 11 2005; 61 2013; 5 2001; 40 2014; 136 2014; 20 2018; 9 2018; 8 1986; 108 2012; 134 2015; 137 2018; 1 1985 2002; 149 2000; 122 2010; 3 1989 1983; 23 2019; 9 2019; 4 1989; 259 2019; 31 2010; 327 2019; 2 2020; 142 2020; 39 1998 2019; 38 1995 2017 2017; 56 129 2021; 143 2011; 133 2017; 139 2021; 57 2010; 46 1987; 60 1988; 29 2018; 118 1984; 177 2019; 48 2017; 56 2021 2021; 60 133 1999; 591 2020; 26 2011 2011; 50 123 2014; 39 2022; 2 2008; 130 1996; 118 2019; 297 2014 2014; 53 126 2017; 7 2017; 8 2017; 1 2019; 55 1987; 6 2020 2020; 59 132 1994; 23 1982; 104 1834; 11 2009; 48 2019; 365 2020; 8 2020; 5 2014; 5 2021; 31 2020; 3 2017; 36 2012 2012; 51 124 1994; 33 2020; 49 2019; 116 2015 2015; 54 127 2021; 230 1994 1994; 33 106 1996; 2 2006; 128 2021; 6 2015; 6 2021; 3 2018; 140 2013; 49 2017; 23 2016; 529 1985; 107 2002 2019; 141 2019 2019; 58 131 1998; 37 1986; 207 2013; 32 2015; 21 2013; 135 2016; 138 2009; 38 |
References_xml | – start-page: 575 year: 2002 end-page: 583 publication-title: J. Chem. Soc. Dalton Trans. – volume: 1 start-page: 0059 year: 2017 publication-title: Nat. Chem. Rev. – volume: 7 start-page: 459 year: 2017 end-page: 465 publication-title: Catal. Sci. Technol. – volume: 3 start-page: 359 year: 2021 end-page: 372 publication-title: Trends Chem. – volume: 5 start-page: 3843 year: 2020 end-page: 3847 publication-title: ACS Energy Lett. – volume: 9 start-page: 3757 year: 2018 publication-title: Nat. Commun. – volume: 2 year: 2022 publication-title: JACS Au – volume: 2 start-page: 198 year: 2019 end-page: 210 publication-title: Nat. Catal. – volume: 177 start-page: 303 year: 1984 end-page: 309 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 32 start-page: 1353 year: 2013 end-page: 1362 publication-title: Organometallics – volume: 116 start-page: 26353 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: 946 year: 2018 end-page: 951 publication-title: Nat. Catal. – volume: 5 start-page: 623 year: 2020 end-page: 632 publication-title: Nat. Energy – volume: 60 133 start-page: 630 640 year: 2021 2021 end-page: 634 644 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 394 year: 2018 end-page: 400 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 3415 year: 1994 end-page: 3420 publication-title: Inorg. Chem. – volume: 9 start-page: 2091 year: 2019 end-page: 2100 publication-title: ACS Catal. – volume: 4 start-page: 732 year: 2019 end-page: 745 publication-title: Nat. Energy – volume: 37 start-page: 120 year: 1998 end-page: 126 publication-title: Inorg. Chem. – volume: 3 start-page: 75 year: 2020 end-page: 82 publication-title: Nat. Catal. – volume: 48 start-page: 2001 year: 2009 end-page: 2009 publication-title: Inorg. Chem. – start-page: 1471 year: 1985 end-page: 1472 publication-title: J. Chem. Soc. Chem. Commun. – volume: 8 start-page: 23162 year: 2020 end-page: 23186 publication-title: J. Mater. Chem. A – volume: 13 start-page: 374 year: 2020 end-page: 403 publication-title: Energy Environ. Sci. – volume: 137 start-page: 8564 year: 2015 end-page: 8571 publication-title: J. Am. Chem. Soc. – volume: 365 start-page: 367 year: 2019 end-page: 369 publication-title: Science – volume: 56 129 start-page: 3621 3675 year: 2017 2017 end-page: 3624 3678 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 5765 year: 2019 end-page: 5768 publication-title: Chem. Commun. – volume: 8 start-page: 14675 year: 2017 publication-title: Nat. Commun. – volume: 49 start-page: 5772 year: 2020 end-page: 5809 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 1415 year: 1964 end-page: 1423 publication-title: Helv. Chim. Acta – volume: 10 start-page: 2199 year: 2019 end-page: 2205 publication-title: Chem. Sci. – start-page: 662 year: 1989 end-page: 663 publication-title: J. Chem. Soc. Chem. Commun. – volume: 130 start-page: 13816 year: 2008 end-page: 13817 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2032 year: 2015 end-page: 2037 publication-title: J. Phys. Chem. Lett. – volume: 21 start-page: 15749 year: 2015 end-page: 15758 publication-title: Chem. Eur. J. – volume: 36 start-page: 4539 year: 2017 end-page: 4545 publication-title: Organometallics – volume: 59 132 start-page: 10527 10614 year: 2020 2020 end-page: 10534 10621 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 6978 year: 2014 end-page: 6986 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4042 year: 2013 end-page: 4051 publication-title: Chem. Sci. – volume: 23 start-page: 348 year: 1983 end-page: 349 publication-title: Z. Chem. – volume: 29 start-page: 945 year: 1988 end-page: 948 publication-title: Tetrahedron Lett. – volume: 139 start-page: 3934 year: 2017 end-page: 3937 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 13614 year: 2018 end-page: 13617 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3864 year: 2019 publication-title: Nat. Commun. – volume: 529 start-page: 72 year: 2016 end-page: 75 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 612 year: 2021 end-page: 628 publication-title: React. Chem. Eng. – volume: 38 start-page: 89 year: 2009 end-page: 99 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 412 year: 1996 end-page: 419 publication-title: Chem. Eur. J. – volume: 49 start-page: 16587 year: 2020 end-page: 16597 publication-title: Dalton Trans. – volume: 1 start-page: 32 year: 2018 end-page: 39 publication-title: Nat. Catal. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 8764 year: 2019 end-page: 8768 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 14345 14466 year: 2021 2021 end-page: 14349 14470 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 108 start-page: 2348 year: 2008 end-page: 2378 publication-title: Chem. Rev. – start-page: 1223 year: 1995 end-page: 1224 publication-title: J. Chem. Soc. Chem. Commun. – volume: 37 start-page: 770 year: 1998 end-page: 776 publication-title: Inorg. Chem. – volume: 26 start-page: 14507 year: 2020 end-page: 14511 publication-title: Chem. Eur. J. – volume: 118 start-page: 4631 year: 2018 end-page: 4701 publication-title: Chem. Rev. – volume: 128 start-page: 14176 year: 2006 end-page: 14184 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 5378 year: 2017 end-page: 5386 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 3728 year: 1985 end-page: 3730 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 4372 4461 year: 2014 2014 end-page: 4376 4465 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 1968 year: 1987 end-page: 1977 publication-title: Organometallics – volume: 142 start-page: 19889 year: 2020 end-page: 19894 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 9115 9243 year: 2015 2015 end-page: 9119 9247 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 373 year: 2020 end-page: 381 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Curr. Opin. Green Sustain. Chem. – volume: 297 start-page: 545 year: 2019 end-page: 552 publication-title: Electrochim. Acta – volume: 49 start-page: 10923 year: 2013 end-page: 10925 publication-title: Chem. Commun. – volume: 60 133 start-page: 11628 11732 year: 2021 2021 end-page: 11686 11792 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 2216 year: 2019 end-page: 2264 publication-title: Chem. Soc. Rev. – volume: 108 start-page: 311 year: 1986 end-page: 313 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1311 year: 2010 end-page: 1315 publication-title: Energy Environ. Sci. – volume: 33 106 start-page: 1188 1254 year: 1994 1994 end-page: 1189 1256 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 46 start-page: 4348 year: 2010 end-page: 4350 publication-title: Chem. Commun. – volume: 149 start-page: D89 year: 2002 publication-title: J. Electrochem. Soc. – volume: 16 year: 2020 publication-title: Small – volume: 15 start-page: 148 year: 2019 end-page: 154 publication-title: Curr. Opin. Electrochem. – volume: 33 start-page: 2961 year: 1994 end-page: 2967 publication-title: Inorg. Chem. – volume: 40 start-page: 558 year: 2001 end-page: 559 publication-title: Inorg. Chem. – volume: 207 start-page: 315 year: 1986 end-page: 321 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 5 start-page: 3777 year: 2014 end-page: 3788 publication-title: Chem. Sci. – volume: 133 start-page: 7296 year: 2011 end-page: 7299 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 3562 year: 2020 end-page: 3571 publication-title: Organometallics – volume: 51 124 start-page: 8611 8739 year: 2012 2012 end-page: 8614 8742 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 5500 year: 2012 end-page: 5503 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 16967 year: 2017 end-page: 16973 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1384 year: 2021 end-page: 1387 publication-title: Chem. Commun. – volume: 61 start-page: m1904 year: 2005 end-page: m1906 publication-title: Acta Crystallogr. Sect. E – start-page: 249 year: 1998 end-page: 250 publication-title: Chem. Commun. – volume: 128 start-page: 9602 year: 2006 end-page: 9603 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 764 year: 2018 end-page: 771 publication-title: Nat. Catal. – volume: 56 129 start-page: 6468 6568 year: 2017 2017 end-page: 6472 6572 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 2517 year: 1987 end-page: 2522 publication-title: Bull. Chem. Soc. Jpn. – volume: 118 start-page: 7190 year: 1996 end-page: 7196 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 10961 11077 year: 2019 2019 end-page: 10965 11081 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 9903 10077 year: 2011 2011 end-page: 9906 10080 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 4782 year: 2017 end-page: 4793 publication-title: Chem. Eur. J. – volume: 56 start-page: 6809 year: 2017 end-page: 6819 publication-title: Inorg. Chem. – volume: 58 131 start-page: 1808 1822 year: 2019 2019 end-page: 1812 1826 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 182 year: 1834 end-page: 189 publication-title: Ann. Chem. Pharm. – volume: 104 start-page: 4712 year: 1982 end-page: 4715 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 7242 year: 2021 end-page: 7246 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 6650 year: 2016 end-page: 6661 publication-title: J. Am. Chem. Soc. – volume: 259 start-page: 217 year: 1989 end-page: 239 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 38 start-page: 1236 year: 2019 end-page: 1247 publication-title: Organometallics – volume: 5 start-page: 1025 year: 2013 end-page: 1028 publication-title: Nat. Chem. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 138 start-page: 8076 year: 2016 end-page: 8079 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 5696 year: 2018 end-page: 5700 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 415 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 7445 year: 2018 end-page: 7454 publication-title: ACS Catal. – volume: 591 start-page: 45 year: 1999 end-page: 62 publication-title: J. Organomet. Chem. – volume: 138 start-page: 1820 year: 2016 end-page: 1823 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3516 year: 2020 end-page: 3522 publication-title: Chem. Sci. – volume: 141 start-page: 7646 year: 2019 end-page: 7659 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 8746 8870 year: 2015 2015 end-page: 8750 8874 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 819 year: 2014 end-page: 830 publication-title: Transition Met. Chem. – volume: 141 start-page: 626 year: 2019 end-page: 634 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 2175 year: 1994 end-page: 2178 publication-title: Chem. Lett. – volume: 4 start-page: 3497 year: 2013 end-page: 3502 publication-title: Chem. Sci. – volume: 7 start-page: 8382 year: 2017 end-page: 8385 publication-title: ACS Catal. – volume: 327 start-page: 313 year: 2010 end-page: 315 publication-title: Science – volume: 122 start-page: 10821 year: 2000 end-page: 10830 publication-title: J. Am. Chem. Soc. – volume: 230 start-page: 413 year: 2021 end-page: 426 publication-title: Faraday Discuss. – volume: 20 start-page: 13501 year: 2014 end-page: 13506 publication-title: Chem. Eur. J. – volume: 135 start-page: 12580 year: 2013 end-page: 12583 publication-title: J. Am. Chem. Soc. |
SSID | ssj0028806 |
Score | 2.5820735 |
SecondaryResourceType | review_article |
Snippet | The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy... The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy... The conversion of CO 2 into multicarbon (C 2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy... |
SourceID | pubmedcentral proquest wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | e202200723 |
SubjectTerms | Carbon dioxide Catalysts Chemical energy CO Homocoupling CO2 Homocoupling Conversion Electrochemical Reduction Electrochemistry Intermediates Minireview Minireviews Molecular Catalyst Renewable energy Selectivity Thermochemical Reduction |
Title | Molecular Catalysts for the Reductive Homocoupling of CO2 towards C2+ Compounds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200723 https://www.proquest.com/docview/2653968714 https://www.proquest.com/docview/2631641533 https://pubmed.ncbi.nlm.nih.gov/PMC9311439 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgF7jwRgzGFCRuqNua9JXjVDENJB5CIHGrmiYFhGgn2h3g12O3a2Ec4dYqtdTWcfw5sT8DnBrH1trzpSXTwFiOTj0rTkVqSZfAsXSl1HSie3XtTR-cy0f38UcVf80P0W64kWVU6zUZeKyK4TdpKFVgY3zHabONE90nJWwRKrpr-aM4Ts66vEgIi7rQN6yNIz5cFl_Cl7-zI3-i1srtTDYhbl64zjZ5HcxLNUg-f3E5_ueLtmBjgUnZuJ5E27Bish1YC5tWcLtwc9U00WUhbfd8FGXBEO0yRI_sjshfadFk0_wtT_I51fg-sTxl4Q1nZZWWW7CQnzFae6iLU7EHD5Pz-3BqLToxWDOB_t7ytG8nforwQSkf3apUOkBHpgMlVYwIgNtKa4yMtBmlrnZVMJJKIfTQCcaLrvbFPnSyPDMHwDwiBbMV96SxHa3twE9iI9zEDbRtklh0oddoIlqYUxFxItD1MLZzunDSDuNPoNONODP5nJ4RGPoRfO2Cv6TBaFYTd0REpb08kr08V5TaUmBcKGQXeKWgVqImdeYRqSZqVRONry_O27vDvwgdwTpdV6mTvAed8n1ujhHelKoPq9y57VcT-QugcPUR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HODCGzEYECRuqLAmfeWIKqbx2JAQSNyqpkkBIdqJdgf49djtWhhHOLZppLZ24s-O_Rng2Di21p4vLZkGxnJ06llxKlJLugSOpSulphPd4cgbPDhXj26TTUi1MDU_RBtwo5VR7de0wCkgffbNGkol2OjgcYq2cTEPi9TWu_Kq7loGKY7qWRcYCWFRH_qGt7HHz2bnzyDM3_mRP3FrZXj6q6CaV67zTV5PJ6U6TT5_sTn-65vWYGUKS9l5rUfrMGeyDVgKm25wm3A7bProspAiPh9FWTAEvAwBJLsj_lfaN9kgf8uTfEJlvk8sT1l4y1lZZeYWLOQnjLYfauRUbMFD_-I-HFjTZgzWWKDJtzzt24mfIoJQykfLKpUO0JbpQEkVIwjgttIanSNteqmrXRX0pFKIPnSCLqOrfbENC1memR1gHvGC2Yp70tiO1nbgJ7ERbuIG2jZJLDrQbUQRTVdUEXHi0PXQvXM6cNQO40-gA444M_mEnhHo_RGC7YA_I8JoXHN3RMSmPTuSvTxXrNpSoGsoZAd4JaF2Rs3rzCMSTdSKJjofXV60V7t_mXQIS4P74U10czm63oNlul9lUvIuLJTvE7OPaKdUB5U-fwEn7fhV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9xADLVaKlEuLaWt2BboVOJWBTYz-ZojCrvabcuCUJG4RZl4UhAiWTXZQ_n12MkmsBzhmExGSmLP-NljPwPsW89FDELt6Dyyjod54KS5yh3tMzjWvtbIJ7ons2By4f289C8fVfG3_BB9wI1XRrNf8wKfY374QBrKFdjk30kOtkn1Gt54wTBivT4-7wmkJGlnW1-klMNt6DvaxqE8XJ2_AjCfpkc-hq2N3Rm_h7R74zbd5OZgUZuD7O4JmeNLPmkT3i1BqThqtegDvLLFFryNu15wH-H0pOuiK2KO9_yv6koQ3BUEH8U5s7_yrikm5W2ZlQsu8v0rylzEp1LUTV5uJWL5Q_Dmw22cqk9wMR79iSfOshWDM1dk8J0AQzcLc8IPxoRkV7XBiCwZRkablCCAdA0iuUZoh7mPvomG2hjCHpiRw-hjqD7DWlEWdhtEwKxgrpGBtq6H6EZhllrlZ36Ers1SNYCdThLJcj1ViWQG3YCcO28A3_th-gl8vJEWtlzwM4p8P8avAwhXJJjMW-aOhLm0V0eK66uGU1srcgyVHoBsBNTPaFmdZcKiSXrRJEez6ai_-vKcSd9g_ex4nPyezn59hQ2-3aRRyh1Yq_8t7C5BndrsNdp8D2FF9w0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Catalysts+for+the+Reductive+Homocoupling+of+CO2+towards+C2%2B+Compounds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Hong%E2%80%90Qing&rft.au=Beweries%2C+Torsten&rft.au=Francke%2C+Robert&rft.au=Beller%2C+Matthias&rft.date=2022-05-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202200723&rft.externalDBID=10.1002%252Fanie.202200723&rft.externalDocID=ANIE202200723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |