Molecular Catalysts for the Reductive Homocoupling of CO2 towards C2+ Compounds

The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic cataly...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 19; pp. e202200723 - n/a
Main Authors Liang, Hong‐Qing, Beweries, Torsten, Francke, Robert, Beller, Matthias
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 02.05.2022
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. This Minireview summarizes recent progress in molecular catalysis of CO2 and CO homocoupling through thermochemical and electrochemical reductive approaches. Particular attention is paid to C−C coupling processes that generate multicarbon products. The current challenges in this rapidly growing field are described and perspectives for possible future developments are outlined.
AbstractList The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.
The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. This Minireview summarizes recent progress in molecular catalysis of CO2 and CO homocoupling through thermochemical and electrochemical reductive approaches. Particular attention is paid to C−C coupling processes that generate multicarbon products. The current challenges in this rapidly growing field are described and perspectives for possible future developments are outlined.
The conversion of CO 2 into multicarbon (C 2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO 2 toward C 2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO 2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future. This Minireview summarizes recent progress in molecular catalysis of CO 2 and CO homocoupling through thermochemical and electrochemical reductive approaches. Particular attention is paid to C−C coupling processes that generate multicarbon products. The current challenges in this rapidly growing field are described and perspectives for possible future developments are outlined.
The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create “carbon‐neutral” fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo‐ and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.
Author Beller, Matthias
Beweries, Torsten
Francke, Robert
Liang, Hong‐Qing
AuthorAffiliation 1 Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
AuthorAffiliation_xml – name: 1 Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
Author_xml – sequence: 1
  givenname: Hong‐Qing
  orcidid: 0000-0002-5239-5345
  surname: Liang
  fullname: Liang, Hong‐Qing
  email: hongqing.liang@catalysis.de
  organization: Leibniz-Institute for Catalysis
– sequence: 2
  givenname: Torsten
  orcidid: 0000-0002-2416-8874
  surname: Beweries
  fullname: Beweries, Torsten
  email: torsten.beweries@catalysis.de
  organization: Leibniz-Institute for Catalysis
– sequence: 3
  givenname: Robert
  orcidid: 0000-0002-4998-1829
  surname: Francke
  fullname: Francke, Robert
  email: robert.francke@catalysis.de
  organization: Leibniz-Institute for Catalysis
– sequence: 4
  givenname: Matthias
  orcidid: 0000-0001-5709-0965
  surname: Beller
  fullname: Beller, Matthias
  email: matthias.beller@catalysis.de
  organization: Leibniz-Institute for Catalysis
BookMark eNpdkc1LxDAQxYOsuO7q1XPAiyBd87FtkouwFL9AXRA9h6RJtZImtWlX9r83oizoaWaYH49582Zg4oO3AJxgtMAIkQvlG7sgiBCEGKF74BDnBGeUMTpJ_ZLSjPEcT8EsxvfEc46KAzClOeaMCXEI1g_B2Wp0qoelGpTbxiHCOvRweLPwyZqxGpqNhbehDVUYO9f4VxhqWK4JHMKn6k2EJTmHZWi7MHoTj8B-rVy0x791Dl6ur57L2-x-fXNXru6zjhaYZoVhuGI14lhrVlkrtOFLIgzXQqtkgWBtDCmQsajOTa45ElpzQky1RCw3jM7B5Y9uN-rWmsr6oVdOdn3Tqn4rg2rk341v3uRr2EhBcXqLSAJnvwJ9-BhtHGTbxMo6p7wNY5SkoLhY4pzShJ7-Q9_D2PtkL1E5FQVnSXIOxA_12Ti73V2CkfwOSn4HJXdBydXj3dVuol-3tYnI
ContentType Journal Article
Copyright 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Copyright_xml – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
DBID 24P
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202200723
DatabaseName Wiley-Blackwell Open Access Titles
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID PMC9311439
ANIE202200723
Genre reviewArticle
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
5PM
ID FETCH-LOGICAL-p3613-6d71c7f081bb7cee9bd8429d8b9ba15221bdd260de0f5d5b809bb822dc4075d73
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:07:18 EDT 2025
Fri Jul 11 04:04:55 EDT 2025
Fri Jul 25 10:21:34 EDT 2025
Wed Jan 22 16:24:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Attribution-NonCommercial
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3613-6d71c7f081bb7cee9bd8429d8b9ba15221bdd260de0f5d5b809bb822dc4075d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4998-1829
0000-0002-5239-5345
0000-0001-5709-0965
0000-0002-2416-8874
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200723
PMID 35187799
PQID 2653968714
PQPubID 946352
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9311439
proquest_miscellaneous_2631641533
proquest_journals_2653968714
wiley_primary_10_1002_anie_202200723_ANIE202200723
PublicationCentury 2000
PublicationDate May 2, 2022
PublicationDateYYYYMMDD 2022-05-02
PublicationDate_xml – month: 05
  year: 2022
  text: May 2, 2022
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2013; 4
2019; 10
2019; 15
2020; 16
2008; 108
2020; 13
1964; 47
2020; 11
2005; 61
2013; 5
2001; 40
2014; 136
2014; 20
2018; 9
2018; 8
1986; 108
2012; 134
2015; 137
2018; 1
1985
2002; 149
2000; 122
2010; 3
1989
1983; 23
2019; 9
2019; 4
1989; 259
2019; 31
2010; 327
2019; 2
2020; 142
2020; 39
1998
2019; 38
1995
2017 2017; 56 129
2021; 143
2011; 133
2017; 139
2021; 57
2010; 46
1987; 60
1988; 29
2018; 118
1984; 177
2019; 48
2017; 56
2021 2021; 60 133
1999; 591
2020; 26
2011 2011; 50 123
2014; 39
2022; 2
2008; 130
1996; 118
2019; 297
2014 2014; 53 126
2017; 7
2017; 8
2017; 1
2019; 55
1987; 6
2020 2020; 59 132
1994; 23
1982; 104
1834; 11
2009; 48
2019; 365
2020; 8
2020; 5
2014; 5
2021; 31
2020; 3
2017; 36
2012 2012; 51 124
1994; 33
2020; 49
2019; 116
2015 2015; 54 127
2021; 230
1994 1994; 33 106
1996; 2
2006; 128
2021; 6
2015; 6
2021; 3
2018; 140
2013; 49
2017; 23
2016; 529
1985; 107
2002
2019; 141
2019 2019; 58 131
1998; 37
1986; 207
2013; 32
2015; 21
2013; 135
2016; 138
2009; 38
References_xml – start-page: 575
  year: 2002
  end-page: 583
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 1
  start-page: 0059
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 7
  start-page: 459
  year: 2017
  end-page: 465
  publication-title: Catal. Sci. Technol.
– volume: 3
  start-page: 359
  year: 2021
  end-page: 372
  publication-title: Trends Chem.
– volume: 5
  start-page: 3843
  year: 2020
  end-page: 3847
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 3757
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  year: 2022
  publication-title: JACS Au
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  publication-title: Nat. Catal.
– volume: 177
  start-page: 303
  year: 1984
  end-page: 309
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 32
  start-page: 1353
  year: 2013
  end-page: 1362
  publication-title: Organometallics
– volume: 116
  start-page: 26353
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 946
  year: 2018
  end-page: 951
  publication-title: Nat. Catal.
– volume: 5
  start-page: 623
  year: 2020
  end-page: 632
  publication-title: Nat. Energy
– volume: 60 133
  start-page: 630 640
  year: 2021 2021
  end-page: 634 644
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 394
  year: 2018
  end-page: 400
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 3415
  year: 1994
  end-page: 3420
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 2091
  year: 2019
  end-page: 2100
  publication-title: ACS Catal.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  publication-title: Nat. Energy
– volume: 37
  start-page: 120
  year: 1998
  end-page: 126
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 75
  year: 2020
  end-page: 82
  publication-title: Nat. Catal.
– volume: 48
  start-page: 2001
  year: 2009
  end-page: 2009
  publication-title: Inorg. Chem.
– start-page: 1471
  year: 1985
  end-page: 1472
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 8
  start-page: 23162
  year: 2020
  end-page: 23186
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 374
  year: 2020
  end-page: 403
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 8564
  year: 2015
  end-page: 8571
  publication-title: J. Am. Chem. Soc.
– volume: 365
  start-page: 367
  year: 2019
  end-page: 369
  publication-title: Science
– volume: 56 129
  start-page: 3621 3675
  year: 2017 2017
  end-page: 3624 3678
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 5765
  year: 2019
  end-page: 5768
  publication-title: Chem. Commun.
– volume: 8
  start-page: 14675
  year: 2017
  publication-title: Nat. Commun.
– volume: 49
  start-page: 5772
  year: 2020
  end-page: 5809
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 1415
  year: 1964
  end-page: 1423
  publication-title: Helv. Chim. Acta
– volume: 10
  start-page: 2199
  year: 2019
  end-page: 2205
  publication-title: Chem. Sci.
– start-page: 662
  year: 1989
  end-page: 663
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 130
  start-page: 13816
  year: 2008
  end-page: 13817
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2032
  year: 2015
  end-page: 2037
  publication-title: J. Phys. Chem. Lett.
– volume: 21
  start-page: 15749
  year: 2015
  end-page: 15758
  publication-title: Chem. Eur. J.
– volume: 36
  start-page: 4539
  year: 2017
  end-page: 4545
  publication-title: Organometallics
– volume: 59 132
  start-page: 10527 10614
  year: 2020 2020
  end-page: 10534 10621
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 6978
  year: 2014
  end-page: 6986
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4042
  year: 2013
  end-page: 4051
  publication-title: Chem. Sci.
– volume: 23
  start-page: 348
  year: 1983
  end-page: 349
  publication-title: Z. Chem.
– volume: 29
  start-page: 945
  year: 1988
  end-page: 948
  publication-title: Tetrahedron Lett.
– volume: 139
  start-page: 3934
  year: 2017
  end-page: 3937
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 13614
  year: 2018
  end-page: 13617
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3864
  year: 2019
  publication-title: Nat. Commun.
– volume: 529
  start-page: 72
  year: 2016
  end-page: 75
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 612
  year: 2021
  end-page: 628
  publication-title: React. Chem. Eng.
– volume: 38
  start-page: 89
  year: 2009
  end-page: 99
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 412
  year: 1996
  end-page: 419
  publication-title: Chem. Eur. J.
– volume: 49
  start-page: 16587
  year: 2020
  end-page: 16597
  publication-title: Dalton Trans.
– volume: 1
  start-page: 32
  year: 2018
  end-page: 39
  publication-title: Nat. Catal.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 8764
  year: 2019
  end-page: 8768
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 14345 14466
  year: 2021 2021
  end-page: 14349 14470
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 108
  start-page: 2348
  year: 2008
  end-page: 2378
  publication-title: Chem. Rev.
– start-page: 1223
  year: 1995
  end-page: 1224
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 37
  start-page: 770
  year: 1998
  end-page: 776
  publication-title: Inorg. Chem.
– volume: 26
  start-page: 14507
  year: 2020
  end-page: 14511
  publication-title: Chem. Eur. J.
– volume: 118
  start-page: 4631
  year: 2018
  end-page: 4701
  publication-title: Chem. Rev.
– volume: 128
  start-page: 14176
  year: 2006
  end-page: 14184
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 5378
  year: 2017
  end-page: 5386
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 3728
  year: 1985
  end-page: 3730
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 4372 4461
  year: 2014 2014
  end-page: 4376 4465
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1968
  year: 1987
  end-page: 1977
  publication-title: Organometallics
– volume: 142
  start-page: 19889
  year: 2020
  end-page: 19894
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 9115 9243
  year: 2015 2015
  end-page: 9119 9247
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 373
  year: 2020
  end-page: 381
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 297
  start-page: 545
  year: 2019
  end-page: 552
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 10923
  year: 2013
  end-page: 10925
  publication-title: Chem. Commun.
– volume: 60 133
  start-page: 11628 11732
  year: 2021 2021
  end-page: 11686 11792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 2216
  year: 2019
  end-page: 2264
  publication-title: Chem. Soc. Rev.
– volume: 108
  start-page: 311
  year: 1986
  end-page: 313
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  publication-title: Energy Environ. Sci.
– volume: 33 106
  start-page: 1188 1254
  year: 1994 1994
  end-page: 1189 1256
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 46
  start-page: 4348
  year: 2010
  end-page: 4350
  publication-title: Chem. Commun.
– volume: 149
  start-page: D89
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 15
  start-page: 148
  year: 2019
  end-page: 154
  publication-title: Curr. Opin. Electrochem.
– volume: 33
  start-page: 2961
  year: 1994
  end-page: 2967
  publication-title: Inorg. Chem.
– volume: 40
  start-page: 558
  year: 2001
  end-page: 559
  publication-title: Inorg. Chem.
– volume: 207
  start-page: 315
  year: 1986
  end-page: 321
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 5
  start-page: 3777
  year: 2014
  end-page: 3788
  publication-title: Chem. Sci.
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 3562
  year: 2020
  end-page: 3571
  publication-title: Organometallics
– volume: 51 124
  start-page: 8611 8739
  year: 2012 2012
  end-page: 8614 8742
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 5500
  year: 2012
  end-page: 5503
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 16967
  year: 2017
  end-page: 16973
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1384
  year: 2021
  end-page: 1387
  publication-title: Chem. Commun.
– volume: 61
  start-page: m1904
  year: 2005
  end-page: m1906
  publication-title: Acta Crystallogr. Sect. E
– start-page: 249
  year: 1998
  end-page: 250
  publication-title: Chem. Commun.
– volume: 128
  start-page: 9602
  year: 2006
  end-page: 9603
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 764
  year: 2018
  end-page: 771
  publication-title: Nat. Catal.
– volume: 56 129
  start-page: 6468 6568
  year: 2017 2017
  end-page: 6472 6572
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60
  start-page: 2517
  year: 1987
  end-page: 2522
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 118
  start-page: 7190
  year: 1996
  end-page: 7196
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 10961 11077
  year: 2019 2019
  end-page: 10965 11081
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 9903 10077
  year: 2011 2011
  end-page: 9906 10080
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 4782
  year: 2017
  end-page: 4793
  publication-title: Chem. Eur. J.
– volume: 56
  start-page: 6809
  year: 2017
  end-page: 6819
  publication-title: Inorg. Chem.
– volume: 58 131
  start-page: 1808 1822
  year: 2019 2019
  end-page: 1812 1826
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 182
  year: 1834
  end-page: 189
  publication-title: Ann. Chem. Pharm.
– volume: 104
  start-page: 4712
  year: 1982
  end-page: 4715
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 7242
  year: 2021
  end-page: 7246
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 6650
  year: 2016
  end-page: 6661
  publication-title: J. Am. Chem. Soc.
– volume: 259
  start-page: 217
  year: 1989
  end-page: 239
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 38
  start-page: 1236
  year: 2019
  end-page: 1247
  publication-title: Organometallics
– volume: 5
  start-page: 1025
  year: 2013
  end-page: 1028
  publication-title: Nat. Chem.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 8076
  year: 2016
  end-page: 8079
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 5696
  year: 2018
  end-page: 5700
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 415
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 7445
  year: 2018
  end-page: 7454
  publication-title: ACS Catal.
– volume: 591
  start-page: 45
  year: 1999
  end-page: 62
  publication-title: J. Organomet. Chem.
– volume: 138
  start-page: 1820
  year: 2016
  end-page: 1823
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3516
  year: 2020
  end-page: 3522
  publication-title: Chem. Sci.
– volume: 141
  start-page: 7646
  year: 2019
  end-page: 7659
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 8746 8870
  year: 2015 2015
  end-page: 8750 8874
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 819
  year: 2014
  end-page: 830
  publication-title: Transition Met. Chem.
– volume: 141
  start-page: 626
  year: 2019
  end-page: 634
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 2175
  year: 1994
  end-page: 2178
  publication-title: Chem. Lett.
– volume: 4
  start-page: 3497
  year: 2013
  end-page: 3502
  publication-title: Chem. Sci.
– volume: 7
  start-page: 8382
  year: 2017
  end-page: 8385
  publication-title: ACS Catal.
– volume: 327
  start-page: 313
  year: 2010
  end-page: 315
  publication-title: Science
– volume: 122
  start-page: 10821
  year: 2000
  end-page: 10830
  publication-title: J. Am. Chem. Soc.
– volume: 230
  start-page: 413
  year: 2021
  end-page: 426
  publication-title: Faraday Discuss.
– volume: 20
  start-page: 13501
  year: 2014
  end-page: 13506
  publication-title: Chem. Eur. J.
– volume: 135
  start-page: 12580
  year: 2013
  end-page: 12583
  publication-title: J. Am. Chem. Soc.
SSID ssj0028806
Score 2.5820735
SecondaryResourceType review_article
Snippet The conversion of CO2 into multicarbon (C2+) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy...
The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy...
The conversion of CO 2 into multicarbon (C 2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy...
SourceID pubmedcentral
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage e202200723
SubjectTerms Carbon dioxide
Catalysts
Chemical energy
CO Homocoupling
CO2 Homocoupling
Conversion
Electrochemical Reduction
Electrochemistry
Intermediates
Minireview
Minireviews
Molecular Catalyst
Renewable energy
Selectivity
Thermochemical Reduction
Title Molecular Catalysts for the Reductive Homocoupling of CO2 towards C2+ Compounds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200723
https://www.proquest.com/docview/2653968714
https://www.proquest.com/docview/2631641533
https://pubmed.ncbi.nlm.nih.gov/PMC9311439
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgF7jwRgzGFCRuqNua9JXjVDENJB5CIHGrmiYFhGgn2h3g12O3a2Ec4dYqtdTWcfw5sT8DnBrH1trzpSXTwFiOTj0rTkVqSZfAsXSl1HSie3XtTR-cy0f38UcVf80P0W64kWVU6zUZeKyK4TdpKFVgY3zHabONE90nJWwRKrpr-aM4Ts66vEgIi7rQN6yNIz5cFl_Cl7-zI3-i1srtTDYhbl64zjZ5HcxLNUg-f3E5_ueLtmBjgUnZuJ5E27Bish1YC5tWcLtwc9U00WUhbfd8FGXBEO0yRI_sjshfadFk0_wtT_I51fg-sTxl4Q1nZZWWW7CQnzFae6iLU7EHD5Pz-3BqLToxWDOB_t7ytG8nforwQSkf3apUOkBHpgMlVYwIgNtKa4yMtBmlrnZVMJJKIfTQCcaLrvbFPnSyPDMHwDwiBbMV96SxHa3twE9iI9zEDbRtklh0oddoIlqYUxFxItD1MLZzunDSDuNPoNONODP5nJ4RGPoRfO2Cv6TBaFYTd0REpb08kr08V5TaUmBcKGQXeKWgVqImdeYRqSZqVRONry_O27vDvwgdwTpdV6mTvAed8n1ujhHelKoPq9y57VcT-QugcPUR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HODCGzEYECRuqLAmfeWIKqbx2JAQSNyqpkkBIdqJdgf49djtWhhHOLZppLZ24s-O_Rng2Di21p4vLZkGxnJ06llxKlJLugSOpSulphPd4cgbPDhXj26TTUi1MDU_RBtwo5VR7de0wCkgffbNGkol2OjgcYq2cTEPi9TWu_Kq7loGKY7qWRcYCWFRH_qGt7HHz2bnzyDM3_mRP3FrZXj6q6CaV67zTV5PJ6U6TT5_sTn-65vWYGUKS9l5rUfrMGeyDVgKm25wm3A7bProspAiPh9FWTAEvAwBJLsj_lfaN9kgf8uTfEJlvk8sT1l4y1lZZeYWLOQnjLYfauRUbMFD_-I-HFjTZgzWWKDJtzzt24mfIoJQykfLKpUO0JbpQEkVIwjgttIanSNteqmrXRX0pFKIPnSCLqOrfbENC1memR1gHvGC2Yp70tiO1nbgJ7ERbuIG2jZJLDrQbUQRTVdUEXHi0PXQvXM6cNQO40-gA444M_mEnhHo_RGC7YA_I8JoXHN3RMSmPTuSvTxXrNpSoGsoZAd4JaF2Rs3rzCMSTdSKJjofXV60V7t_mXQIS4P74U10czm63oNlul9lUvIuLJTvE7OPaKdUB5U-fwEn7fhV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9xADLVaKlEuLaWt2BboVOJWBTYz-ZojCrvabcuCUJG4RZl4UhAiWTXZQ_n12MkmsBzhmExGSmLP-NljPwPsW89FDELt6Dyyjod54KS5yh3tMzjWvtbIJ7ons2By4f289C8fVfG3_BB9wI1XRrNf8wKfY374QBrKFdjk30kOtkn1Gt54wTBivT4-7wmkJGlnW1-klMNt6DvaxqE8XJ2_AjCfpkc-hq2N3Rm_h7R74zbd5OZgUZuD7O4JmeNLPmkT3i1BqThqtegDvLLFFryNu15wH-H0pOuiK2KO9_yv6koQ3BUEH8U5s7_yrikm5W2ZlQsu8v0rylzEp1LUTV5uJWL5Q_Dmw22cqk9wMR79iSfOshWDM1dk8J0AQzcLc8IPxoRkV7XBiCwZRkablCCAdA0iuUZoh7mPvomG2hjCHpiRw-hjqD7DWlEWdhtEwKxgrpGBtq6H6EZhllrlZ36Ers1SNYCdThLJcj1ViWQG3YCcO28A3_th-gl8vJEWtlzwM4p8P8avAwhXJJjMW-aOhLm0V0eK66uGU1srcgyVHoBsBNTPaFmdZcKiSXrRJEez6ai_-vKcSd9g_ex4nPyezn59hQ2-3aRRyh1Yq_8t7C5BndrsNdp8D2FF9w0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Catalysts+for+the+Reductive+Homocoupling+of+CO2+towards+C2%2B+Compounds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Hong%E2%80%90Qing&rft.au=Beweries%2C+Torsten&rft.au=Francke%2C+Robert&rft.au=Beller%2C+Matthias&rft.date=2022-05-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202200723&rft.externalDBID=10.1002%252Fanie.202200723&rft.externalDocID=ANIE202200723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon