Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO2 in the Presence of Silylhalides

The frustrated Lewis pair (FLP) derived from 2,6‐lutidine and B(C6F5)3 is shown to mediate the catalytic hydrogenation of CO2 using H2 as the reductant and a silylhalide as an oxophile. The nature of the products can be controlled with the judicious selection of the silylhalide and the solvent. In t...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 49; pp. 25771 - 25775
Main Authors Wang, Tongtong, Xu, Maotong, Jupp, Andrew R., Qu, Zheng‐Wang, Grimme, Stefan, Stephan, Douglas W.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2021
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The frustrated Lewis pair (FLP) derived from 2,6‐lutidine and B(C6F5)3 is shown to mediate the catalytic hydrogenation of CO2 using H2 as the reductant and a silylhalide as an oxophile. The nature of the products can be controlled with the judicious selection of the silylhalide and the solvent. In this fashion, this metal‐free catalysis affords avenues to the selective formation of the disilylacetal (R3SiOCH2OSiR3), methoxysilane (R3SiOCH3), methyliodide (CH3I) and methane (CH4) under mild conditions. DFT studies illuminate the complexities of the mechanism and account for the observed selectivity. The frustrated Lewis pair (FLP), 2,6‐lutidine/ B(C6F5)3 mediates the catalytic reduction of CO2 using H2 and a silylhalide. Control of the silylhalide and solvent, affords selective avenues to the disilylacetal (R3SiOCH2OSiR3), methoxysilane (R3SiOCH3), methyliodide (CH3I) and methane (CH4) under mild conditions. The mechanism is studied by DFT and accounts for the observed selectivity.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202112233