DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images

Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape...

Full description

Saved in:
Bibliographic Details
Published inShape in Medical Imaging Vol. 11167; pp. 244 - 257
Main Authors Bhalodia, Riddhish, Elhabian, Shireen Y., Kavan, Ladislav, Whitaker, Ross T.
Format Book Chapter Journal Article
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783030047467
3030047466
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-04747-4_23

Cover

Loading…
Abstract Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape space, which facilitates subsequent statistical analysis. Many methods for constructing compact shape representations have been proposed, but are often impractical due to the sequence of image preprocessing operations, which involve significant parameter tuning, manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning approach to extract a low-dimensional shape representation directly from 3D images, requiring virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network (CNN) that simultaneously localizes the biological structure of interest, establishes correspondences, and projects these points onto a low-dimensional shape representation in the form of PCA loadings within a point distribution model. To overcome the challenge of the limited availability of training images with dense correspondences, we present a novel data augmentation procedure that uses existing correspondences on a relatively small set of processed images with shape statistics to create plausible training samples with known shape parameters. In this way, we leverage the limited CT/MRI scans (40–50) into thousands of images needed to train a deep neural net. After the training, the CNN automatically produces accurate low-dimensional shape representations for unseen images. We validate DeepSSM for three different applications pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, femur CT scans identifying morphologic deformities of the hip due to femoroacetabular impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction.
AbstractList Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape space, which facilitates subsequent statistical analysis. Many methods for constructing compact shape representations have been proposed, but are often impractical due to the sequence of image preprocessing operations, which involve significant parameter tuning, manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning approach to extract a low-dimensional shape representation directly from 3D images, requiring virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network (CNN) that simultaneously localizes the biological structure of interest, establishes correspondences, and projects these points onto a low-dimensional shape representation in the form of PCA loadings within a point distribution model. To overcome the challenge of the limited availability of training images with dense correspondences, we present a novel data augmentation procedure that uses existing correspondences on a relatively small set of processed images with shape statistics to create plausible training samples with known shape parameters. In this way, we leverage the limited CT/MRI scans (40–50) into thousands of images needed to train a deep neural net. After the training, the CNN automatically produces accurate low-dimensional shape representations for unseen images. We validate DeepSSM for three different applications pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, femur CT scans identifying morphologic deformities of the hip due to femoroacetabular impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction.
Author Elhabian, Shireen Y.
Kavan, Ladislav
Bhalodia, Riddhish
Whitaker, Ross T.
Author_xml – sequence: 1
  givenname: Riddhish
  surname: Bhalodia
  fullname: Bhalodia, Riddhish
  email: riddhishb@gmail.com
  organization: School of Computing, University of Utah, Salt Lake City, USA
– sequence: 2
  givenname: Shireen Y.
  surname: Elhabian
  fullname: Elhabian, Shireen Y.
  organization: Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, USA
– sequence: 3
  givenname: Ladislav
  surname: Kavan
  fullname: Kavan, Ladislav
  organization: School of Computing, University of Utah, Salt Lake City, USA
– sequence: 4
  givenname: Ross T.
  surname: Whitaker
  fullname: Whitaker, Ross T.
  organization: Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30805572$$D View this record in MEDLINE/PubMed
BookMark eNo1kNtuEzEQhl0o0KTkDRDyCxjGh7XX3FUthUqpEE3vrdnNOIRmD9hbVbx9vT1czWj-gzTfkh33Q0-MfZLwRQK4r97VQgvQIMA444QJSh-xpS6Xp4N5wxbSSim0Nv4tWxX_q2bdMVuUXQnvjH7PlhKc9bW23pywVc5_AUAZabRzH9iJhhqqyqkF-31BNG4219_4GZ9XviZM_b7f8cuEHT0M6Y7HIfHNhNM-T_sWD3zzB0fi18OWDrMxpqHjN_jArzrcUf7I3kU8ZFq9zFN2e_n99vynWP_6cXV-thajrswkIjisvQKkWEcnEck51eIWHEUE75tI2lIRCBuIUNmGqi06jCpq51t9yj4_1473TUfbMKZ9h-l_eH2tGNSzIRep31EKzTDc5SAhzLBDgRd0KMjCE9swwy4h89Kahn_3lKdAc6qlfkp4aMvjE6UcbMEu6yooa4OqpH4Ea758NA
ContentType Book Chapter
Journal Article
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
NPM
DEWEY 616.0754
DOI 10.1007/978-3-030-04747-4_23
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISBN 3030047474
9783030047474
EISSN 1611-3349
Editor Lombaert, Hervé
Reuter, Martin
Wachinger, Christian
Lüthi, Marcel
Egger, Bernhard
Paniagua, Beatriz
Editor_xml – sequence: 1
  fullname: Reuter, Martin
– sequence: 2
  fullname: Paniagua, Beatriz
– sequence: 3
  fullname: Lombaert, Hervé
– sequence: 4
  fullname: Wachinger, Christian
– sequence: 5
  fullname: Lüthi, Marcel
– sequence: 6
  fullname: Egger, Bernhard
EndPage 257
ExternalDocumentID 30805572
EBC6303185_266_251
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL135568
– fundername: NIGMS NIH HHS
  grantid: P41 GM103545
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
NPM
ID FETCH-LOGICAL-p354t-f07a8920aef8f71aae772cad07efa099bfe36e71aeab0f056be5da7af2f379c3
ISBN 9783030047467
3030047466
ISSN 0302-9743
IngestDate Mon Jul 21 06:04:31 EDT 2025
Tue Jul 29 20:03:11 EDT 2025
Tue Jul 22 07:38:26 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p354t-f07a8920aef8f71aae772cad07efa099bfe36e71aeab0f056be5da7af2f379c3
OCLC 1076983694
PMID 30805572
PQID EBC6303185_266_251
PageCount 14
ParticipantIDs pubmed_primary_30805572
springer_books_10_1007_978_3_030_04747_4_23
proquest_ebookcentralchapters_6303185_266_251
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle International Workshop, ShapeMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
PublicationTitle Shape in Medical Imaging
PublicationTitleAlternate Shape Med Imaging (2018)
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
SSID ssj0002414377
ssib035518525
ssib042323157
ssj0002792
Score 2.168144
Snippet Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging...
SourceID pubmed
springer
proquest
SourceType Index Database
Publisher
StartPage 244
Title DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6303185&ppg=251&c=UERG
http://link.springer.com/10.1007/978-3-030-04747-4_23
https://www.ncbi.nlm.nih.gov/pubmed/30805572
Volume 11167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbaIiHEAzBglMvkB96qVGmcxCkSDxMUjamtYCtoPFlOYtNKo61oBhL_h__JOb6kWdeX8RKlaZXGPl-Oz_UzIa_DYqDjlMUBLq9BrIsQXinweaKQF7osYiYlZnQn0_TkS3x6kVy0Wn8bVUtXVd4v_uztK_kfqcI1kCt2yd5CsvVN4QKcg3zhCBKG447xez3Mans45nJtGD98ruXjD7PjUO1gz-XlqrS1sEgUMl9s6tDv6BL5uV3sE8PTatn71q-Vr3TZobEsFwCZX1vNvaikK8M4g9W1N-s3IfdeqfX5-cQ2u-MHz976He1jWwNmyhrRwjUE0UhFYoaBW7KZxnjT7nImf5vRuPpGnEu1eTt26Y7pqjJVZD2_I4VXUM0IxiDbiWD4COZODHQbhrvm8sKSiwyXsd3Ew7d-gVoHx8hqSmU1eYr8jMzyoXrtbKkm3UIfWWbsG2tIs2wE7hzgv_EgFhFrkzbPkg65czw6HX_1aoshqV2yVYuY-maewggNAjCSYsbrOECInI02uWWfGluO_KhSSwq1HWWj3XPfI-1zjG4k9Y2tNHtI7mP_DMXGFpjoR6SllgfkgZcVdbI6IHcnrqzjMfnskPOGHlM8pR43tMYNBdzQBm6owQ31uKGIGwq4oRY3T8jsw2j27iRwe30Ea5bEVaBDLrNhFEqlM80HUipw-wpZhlxpCV5MrhVLFXyhZB5qsNpzlZSSSx1pxocFe0o6y9VSPSNUlcmg0AAzFaqYl6HUWVKyIdM8S_NhKLsk8DMmTEGCq4Iu7LRsRMpwoUsEmK4CrP8uObTTKtaW_0Uw8LKShEdd0vPzLPBGG-E5wEFSggmQlDCSEiip57f69Qtyb_uqvCSd6ueVegXmb5UfOfgdkfb00-QfjAuiaw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Shape+in+Medical+Imaging&rft.au=Bhalodia%2C+Riddhish&rft.au=Elhabian%2C+Shireen+Y.&rft.au=Kavan%2C+Ladislav&rft.au=Whitaker%2C+Ross+T.&rft.atitle=DeepSSM%3A+A+Deep+Learning+Framework+for+Statistical+Shape+Modeling+from+Raw+Images&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030047467&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=244&rft.epage=257&rft_id=info:doi/10.1007%2F978-3-030-04747-4_23
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6303185-l.jpg