DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images
Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape...
Saved in:
Published in | Shape in Medical Imaging Vol. 11167; pp. 244 - 257 |
---|---|
Main Authors | , , , |
Format | Book Chapter Journal Article |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 9783030047467 3030047466 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-04747-4_23 |
Cover
Loading…
Abstract | Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape space, which facilitates subsequent statistical analysis. Many methods for constructing compact shape representations have been proposed, but are often impractical due to the sequence of image preprocessing operations, which involve significant parameter tuning, manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning approach to extract a low-dimensional shape representation directly from 3D images, requiring virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network (CNN) that simultaneously localizes the biological structure of interest, establishes correspondences, and projects these points onto a low-dimensional shape representation in the form of PCA loadings within a point distribution model. To overcome the challenge of the limited availability of training images with dense correspondences, we present a novel data augmentation procedure that uses existing correspondences on a relatively small set of processed images with shape statistics to create plausible training samples with known shape parameters. In this way, we leverage the limited CT/MRI scans (40–50) into thousands of images needed to train a deep neural net. After the training, the CNN automatically produces accurate low-dimensional shape representations for unseen images. We validate DeepSSM for three different applications pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, femur CT scans identifying morphologic deformities of the hip due to femoroacetabular impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction. |
---|---|
AbstractList | Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape space, which facilitates subsequent statistical analysis. Many methods for constructing compact shape representations have been proposed, but are often impractical due to the sequence of image preprocessing operations, which involve significant parameter tuning, manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning approach to extract a low-dimensional shape representation directly from 3D images, requiring virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network (CNN) that simultaneously localizes the biological structure of interest, establishes correspondences, and projects these points onto a low-dimensional shape representation in the form of PCA loadings within a point distribution model. To overcome the challenge of the limited availability of training images with dense correspondences, we present a novel data augmentation procedure that uses existing correspondences on a relatively small set of processed images with shape statistics to create plausible training samples with known shape parameters. In this way, we leverage the limited CT/MRI scans (40–50) into thousands of images needed to train a deep neural net. After the training, the CNN automatically produces accurate low-dimensional shape representations for unseen images. We validate DeepSSM for three different applications pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, femur CT scans identifying morphologic deformities of the hip due to femoroacetabular impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction. |
Author | Elhabian, Shireen Y. Kavan, Ladislav Bhalodia, Riddhish Whitaker, Ross T. |
Author_xml | – sequence: 1 givenname: Riddhish surname: Bhalodia fullname: Bhalodia, Riddhish email: riddhishb@gmail.com organization: School of Computing, University of Utah, Salt Lake City, USA – sequence: 2 givenname: Shireen Y. surname: Elhabian fullname: Elhabian, Shireen Y. organization: Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, USA – sequence: 3 givenname: Ladislav surname: Kavan fullname: Kavan, Ladislav organization: School of Computing, University of Utah, Salt Lake City, USA – sequence: 4 givenname: Ross T. surname: Whitaker fullname: Whitaker, Ross T. organization: Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30805572$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kNtuEzEQhl0o0KTkDRDyCxjGh7XX3FUthUqpEE3vrdnNOIRmD9hbVbx9vT1czWj-gzTfkh33Q0-MfZLwRQK4r97VQgvQIMA444QJSh-xpS6Xp4N5wxbSSim0Nv4tWxX_q2bdMVuUXQnvjH7PlhKc9bW23pywVc5_AUAZabRzH9iJhhqqyqkF-31BNG4219_4GZ9XviZM_b7f8cuEHT0M6Y7HIfHNhNM-T_sWD3zzB0fi18OWDrMxpqHjN_jArzrcUf7I3kU8ZFq9zFN2e_n99vynWP_6cXV-thajrswkIjisvQKkWEcnEck51eIWHEUE75tI2lIRCBuIUNmGqi06jCpq51t9yj4_1473TUfbMKZ9h-l_eH2tGNSzIRep31EKzTDc5SAhzLBDgRd0KMjCE9swwy4h89Kahn_3lKdAc6qlfkp4aMvjE6UcbMEu6yooa4OqpH4Ea758NA |
ContentType | Book Chapter Journal Article |
Copyright | Springer Nature Switzerland AG 2018 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2018 |
DBID | FFUUA NPM |
DEWEY | 616.0754 |
DOI | 10.1007/978-3-030-04747-4_23 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISBN | 3030047474 9783030047474 |
EISSN | 1611-3349 |
Editor | Lombaert, Hervé Reuter, Martin Wachinger, Christian Lüthi, Marcel Egger, Bernhard Paniagua, Beatriz |
Editor_xml | – sequence: 1 fullname: Reuter, Martin – sequence: 2 fullname: Paniagua, Beatriz – sequence: 3 fullname: Lombaert, Hervé – sequence: 4 fullname: Wachinger, Christian – sequence: 5 fullname: Lüthi, Marcel – sequence: 6 fullname: Egger, Bernhard |
EndPage | 257 |
ExternalDocumentID | 30805572 EBC6303185_266_251 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL135568 – fundername: NIGMS NIH HHS grantid: P41 GM103545 |
GroupedDBID | 0D6 0DA 38. AABBV AEDXK AEJLV AEKFX AEZAY ALMA_UNASSIGNED_HOLDINGS ANXHU BBABE BICGV BJAWL BUBNW CVGDX CZZ EDOXC FFUUA FOYMO NQNQZ OEBZI SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 NPM |
ID | FETCH-LOGICAL-p354t-f07a8920aef8f71aae772cad07efa099bfe36e71aeab0f056be5da7af2f379c3 |
ISBN | 9783030047467 3030047466 |
ISSN | 0302-9743 |
IngestDate | Mon Jul 21 06:04:31 EDT 2025 Tue Jul 29 20:03:11 EDT 2025 Tue Jul 22 07:38:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p354t-f07a8920aef8f71aae772cad07efa099bfe36e71aeab0f056be5da7af2f379c3 |
OCLC | 1076983694 |
PMID | 30805572 |
PQID | EBC6303185_266_251 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_30805572 springer_books_10_1007_978_3_030_04747_4_23 proquest_ebookcentralchapters_6303185_266_251 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | International Workshop, ShapeMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings |
PublicationTitle | Shape in Medical Imaging |
PublicationTitleAlternate | Shape Med Imaging (2018) |
PublicationYear | 2018 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology Madras, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: TU Dortmund University, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA |
SSID | ssj0002414377 ssib035518525 ssib042323157 ssj0002792 |
Score | 2.168144 |
Snippet | Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging... |
SourceID | pubmed springer proquest |
SourceType | Index Database Publisher |
StartPage | 244 |
Title | DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6303185&ppg=251&c=UERG http://link.springer.com/10.1007/978-3-030-04747-4_23 https://www.ncbi.nlm.nih.gov/pubmed/30805572 |
Volume | 11167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbaIiHEAzBglMvkB96qVGmcxCkSDxMUjamtYCtoPFlOYtNKo61oBhL_h__JOb6kWdeX8RKlaZXGPl-Oz_UzIa_DYqDjlMUBLq9BrIsQXinweaKQF7osYiYlZnQn0_TkS3x6kVy0Wn8bVUtXVd4v_uztK_kfqcI1kCt2yd5CsvVN4QKcg3zhCBKG447xez3Mans45nJtGD98ruXjD7PjUO1gz-XlqrS1sEgUMl9s6tDv6BL5uV3sE8PTatn71q-Vr3TZobEsFwCZX1vNvaikK8M4g9W1N-s3IfdeqfX5-cQ2u-MHz976He1jWwNmyhrRwjUE0UhFYoaBW7KZxnjT7nImf5vRuPpGnEu1eTt26Y7pqjJVZD2_I4VXUM0IxiDbiWD4COZODHQbhrvm8sKSiwyXsd3Ew7d-gVoHx8hqSmU1eYr8jMzyoXrtbKkm3UIfWWbsG2tIs2wE7hzgv_EgFhFrkzbPkg65czw6HX_1aoshqV2yVYuY-maewggNAjCSYsbrOECInI02uWWfGluO_KhSSwq1HWWj3XPfI-1zjG4k9Y2tNHtI7mP_DMXGFpjoR6SllgfkgZcVdbI6IHcnrqzjMfnskPOGHlM8pR43tMYNBdzQBm6owQ31uKGIGwq4oRY3T8jsw2j27iRwe30Ea5bEVaBDLrNhFEqlM80HUipw-wpZhlxpCV5MrhVLFXyhZB5qsNpzlZSSSx1pxocFe0o6y9VSPSNUlcmg0AAzFaqYl6HUWVKyIdM8S_NhKLsk8DMmTEGCq4Iu7LRsRMpwoUsEmK4CrP8uObTTKtaW_0Uw8LKShEdd0vPzLPBGG-E5wEFSggmQlDCSEiip57f69Qtyb_uqvCSd6ueVegXmb5UfOfgdkfb00-QfjAuiaw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Shape+in+Medical+Imaging&rft.au=Bhalodia%2C+Riddhish&rft.au=Elhabian%2C+Shireen+Y.&rft.au=Kavan%2C+Ladislav&rft.au=Whitaker%2C+Ross+T.&rft.atitle=DeepSSM%3A+A+Deep+Learning+Framework+for+Statistical+Shape+Modeling+from+Raw+Images&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030047467&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=244&rft.epage=257&rft_id=info:doi/10.1007%2F978-3-030-04747-4_23 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6303185-l.jpg |