Enabling One‐Step De‐Sodiation of Na4MnV(PO4)3 Cathode via Regulating Coordination Environment for High‐Power and Long‐Lasting Sodium‐Ion Batteries

Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode st...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 14
Main Authors Chen, Can, Wang, Liqun, Deng, Zhihao, Kong, Xueling, Zhang, Tianyi, Yu, Qinqin, Wang, Zuyong, Zhu, Peining, Ding, Yuan‐Li
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 03.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode still suffers from sluggish intrinsic Na+ diffusion kinetics and the Jahn‐Teller distortion of Mn3+, leading to low capacity and poor cycling performance. Particularly, the second‐step Na+ de‐sodiation in NMVP is the rate‐determining step owing to a lower chemical diffusion coefficient with one order of magnitude than that of the first‐step counterpart. To address these issues, a coordination environment regulation strategy is reported to develop a one‐step de‐sodiation NMVP cathode via introducing Zr4+ and K+/Ca2+ into Mn and Na sites, respectively. Based on theoretical calculations and electrochemical evaluation, the obtained Na3.3K0.1Ca0.1Mn0.8VZr0.2(PO4)3 exhibits much enhanced Na+ diffusion and efficiently inhibits the Jahn‐Teller distortion. Importantly, such modification significantly facilitates the second‐step Na+ diffusion of NMVP, realizing one‐step de‐sodiation. When employed as a cathode for SIBs, such cathode shows a specific capacity of 73 mAh g−1 (15 C), and capacity retentions of 92.7% after 3000 cycles (at 10 C, room temperature), and 72.6% after 1000 cycles (1 C, 50 °C). One‐step de‐sodiation of Na4MnV(PO4)3 is achieved successfully via regulating the local coordination environment of transition metal sites using Zr4+ since such cathode suffers from severely limited Na+ diffusion kinetics in the second‐step de‐sodiation (rate‐determining step). Moreover, the Jahn‐Teller distortion is substantially inhibited, leading to much‐enhanced cycling stability at both room temperature and elevated temperature.
AbstractList Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode still suffers from sluggish intrinsic Na+ diffusion kinetics and the Jahn‐Teller distortion of Mn3+, leading to low capacity and poor cycling performance. Particularly, the second‐step Na+ de‐sodiation in NMVP is the rate‐determining step owing to a lower chemical diffusion coefficient with one order of magnitude than that of the first‐step counterpart. To address these issues, a coordination environment regulation strategy is reported to develop a one‐step de‐sodiation NMVP cathode via introducing Zr4+ and K+/Ca2+ into Mn and Na sites, respectively. Based on theoretical calculations and electrochemical evaluation, the obtained Na3.3K0.1Ca0.1Mn0.8VZr0.2(PO4)3 exhibits much enhanced Na+ diffusion and efficiently inhibits the Jahn‐Teller distortion. Importantly, such modification significantly facilitates the second‐step Na+ diffusion of NMVP, realizing one‐step de‐sodiation. When employed as a cathode for SIBs, such cathode shows a specific capacity of 73 mAh g−1 (15 C), and capacity retentions of 92.7% after 3000 cycles (at 10 C, room temperature), and 72.6% after 1000 cycles (1 C, 50 °C). One‐step de‐sodiation of Na4MnV(PO4)3 is achieved successfully via regulating the local coordination environment of transition metal sites using Zr4+ since such cathode suffers from severely limited Na+ diffusion kinetics in the second‐step de‐sodiation (rate‐determining step). Moreover, the Jahn‐Teller distortion is substantially inhibited, leading to much‐enhanced cycling stability at both room temperature and elevated temperature.
Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode still suffers from sluggish intrinsic Na+ diffusion kinetics and the Jahn‐Teller distortion of Mn3+, leading to low capacity and poor cycling performance. Particularly, the second‐step Na+ de‐sodiation in NMVP is the rate‐determining step owing to a lower chemical diffusion coefficient with one order of magnitude than that of the first‐step counterpart. To address these issues, a coordination environment regulation strategy is reported to develop a one‐step de‐sodiation NMVP cathode via introducing Zr4+ and K+/Ca2+ into Mn and Na sites, respectively. Based on theoretical calculations and electrochemical evaluation, the obtained Na3.3K0.1Ca0.1Mn0.8VZr0.2(PO4)3 exhibits much enhanced Na+ diffusion and efficiently inhibits the Jahn‐Teller distortion. Importantly, such modification significantly facilitates the second‐step Na+ diffusion of NMVP, realizing one‐step de‐sodiation. When employed as a cathode for SIBs, such cathode shows a specific capacity of 73 mAh g−1 (15 C), and capacity retentions of 92.7% after 3000 cycles (at 10 C, room temperature), and 72.6% after 1000 cycles (1 C, 50 °C).
Author Zhang, Tianyi
Zhu, Peining
Deng, Zhihao
Ding, Yuan‐Li
Chen, Can
Wang, Zuyong
Wang, Liqun
Kong, Xueling
Yu, Qinqin
Author_xml – sequence: 1
  givenname: Can
  surname: Chen
  fullname: Chen, Can
  organization: Hunan University
– sequence: 2
  givenname: Liqun
  surname: Wang
  fullname: Wang, Liqun
  organization: Hunan University
– sequence: 3
  givenname: Zhihao
  surname: Deng
  fullname: Deng, Zhihao
  organization: Hunan University
– sequence: 4
  givenname: Xueling
  surname: Kong
  fullname: Kong, Xueling
  organization: Hunan University
– sequence: 5
  givenname: Tianyi
  surname: Zhang
  fullname: Zhang, Tianyi
  organization: Hunan University
– sequence: 6
  givenname: Qinqin
  surname: Yu
  fullname: Yu, Qinqin
  organization: Pingxiang University
– sequence: 7
  givenname: Zuyong
  surname: Wang
  fullname: Wang, Zuyong
  organization: Hunan University
– sequence: 8
  givenname: Peining
  surname: Zhu
  fullname: Zhu, Peining
  organization: Changsha Social Work College
– sequence: 9
  givenname: Yuan‐Li
  orcidid: 0000-0002-3217-8183
  surname: Ding
  fullname: Ding, Yuan‐Li
  email: ylding@hnu.edu.cn
  organization: Hunan University
BookMark eNo9UMtOAjEUbQwmArp13cSNLsDbzkynLpGHkIAQX3E36dAOlAzt2Bkk7PwEf8Cf80ucAcPqnntyHslpoJqxRiF0SaBNAOitkMm6TYH6hDOfnqA6YYS1PKC8dsTk_Qw18nwFQMLQ8-vop29EnGqzwFOjfr--nwuV4d4eWalFoa3BNsGPwp-Yt-vZ1L_xcFcUSysV_tQCP6nFJi1lZUDXWie1OXj65lM7a9bKFDixDg_1YlmGzuxWOSyMxGNrFiUxFvneXLVt1iUxKs33oiiU0yo_R6eJSHN18X-b6HXQf-kOW-Ppw6jbGbcyzw9oixOhJMQ85n4QM8UgDEMgHKQEBnMQIpwLPyGgVCx5KDxC50ESUAZ0ToKABF4TXR1yM2c_NiovopXdOFNWRh7hAWchZZXq7qDa6lTtoszptXC7iEBU7R9V-0fH_aNObzA5ft4fNn2C-Q
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202418642
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202418642
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  funderid: 2023JJ50015
– fundername: National Natural Science Foundation of China
  funderid: 52072119
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
LH4
ID FETCH-LOGICAL-p3452-81aed0b8b845b6e607770180dd060c0aa7ca4f10eebd87a312c5f52602c155153
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 10:05:06 EDT 2025
Thu Apr 03 09:33:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3452-81aed0b8b845b6e607770180dd060c0aa7ca4f10eebd87a312c5f52602c155153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3217-8183
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202418642
PQID 3185867265
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_3185867265
wiley_primary_10_1002_adfm_202418642_ADFM202418642
PublicationCentury 2000
PublicationDate April 3, 2025
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: April 3, 2025
  day: 03
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2018; 122
2017; 8
2023; 13
2018; 281
2015; 17
2023; 35
2023; 58
2021; 42
2021; 89
2019; 429
2023; 15
2019; 11
2023; 19
2020; 16
2024; 55
2024; 11
2024; 34
2024; 12
2024; 146
2024; 35
2022; 518
2016; 16
2024; 18
2020; 8
2020; 2
2022; 4
2024; 5
2020; 470
2022; 5
2019; 66
2018; 1
2021; 511
2022; 7
2022; 9
2020; 49
2024; 63
2022; 32
2022; 10
2021; 495
2022; 99
2022; 326
2022; 521
References_xml – volume: 429
  start-page: 149
  year: 2019
  publication-title: J. Power Sources
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 4660
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2542
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 776
  year: 2022
  publication-title: Carbon Energy
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 7836
  year: 2016
  publication-title: Nano Lett.
– volume: 2
  year: 2020
  publication-title: J. Phys‐Energy.
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 281
  start-page: 208
  year: 2018
  publication-title: Electrochim. Acta
– volume: 146
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 3181
  year: 2023
  publication-title: Chem. Mater.
– volume: 55
  year: 2024
  publication-title: Nano Today
– volume: 58
  start-page: 271
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 5
  year: 2024
  publication-title: Small Struct.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 99
  year: 2022
  publication-title: Nano Energy
– volume: 495
  year: 2021
  publication-title: J. Power Sources.
– volume: 521
  year: 2022
  publication-title: J. Power Sources
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 511
  year: 2021
  publication-title: J. Power Sources
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 7
  start-page: 97
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 9
  start-page: 5454
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 6681
  year: 2024
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 5842
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 49
  start-page: 2342
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 470
  year: 2020
  publication-title: J. Power Sources
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 35
  year: 2024
  publication-title: Chin. Chem. Lett.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 518
  year: 2022
  publication-title: J. Power Sources
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 326
  year: 2022
  publication-title: Mater. Lett.
– volume: 42
  start-page: 307
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 18
  year: 2024
  publication-title: ACS Nano
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
SSID ssj0017734
Score 2.4938686
Snippet Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Batteries
Calcium ions
Cathodes
Chemical diffusion
Coordination
Diffusion coefficient
Diffusion rate
Distortion
Electric potential
Electrochemical analysis
Electrons
Jahn‐Teller effect
one‐step de‐sodiation
polyanionic cathode
Room temperature
Sodium
Sodium-ion batteries
Voltage
Title Enabling One‐Step De‐Sodiation of Na4MnV(PO4)3 Cathode via Regulating Coordination Environment for High‐Power and Long‐Lasting Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202418642
https://www.proquest.com/docview/3185867265
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvRAgYJKSysfemgPAcf_OSLY1VKxgBCgvUV27FQINUHdXQ499RH6An25Pkln4v2DY3tzLI2TaDz2N_bMN4R8tKzwoFqTaeaLTEauM1sLlnFRBF2ooH13FTM814Mb-WWkRitZ_IkfYnHghpbRrddo4M6PD5ekoS7UmEkOO5AFDA2LMAZsISq6WvBH5caka2WdY4BXPpqzNjJ--FT8Cb5cRandNtN_Rdz8A1N0yf3BdOIPqh_PuBv_5w82ycYMg9KjNGm2yIvYbJOXK8yEr8nvHuZUQZNeNPHPz18YDEZPulYbkjZpW9NzJ4fN7afLC_lZUEwmbEOkj3eOXqUS9zjAcQv-7V06dKS9ZV4dBbhMMcwEBr3EWm3UNYGetc1X6Dhz404Y3zb9Bh2nIJy4QMG13yE3_d718SCbVXLIHoRUsOTmLgbmrbdSeR01M8Ygc1gITLOKOWcqJ-ucxeiDNU7kvFK1AleLVwjplNgla03bxDeEaivB6bK1qqsAzl3lhcqFjEWhoiyqEPbI_lyT5cwcxyWmiFttuFZ7hHcqKR8SmUeZaJt5icooF8ooj076w8XT238RekfWOdYKxigfsU_WJt-n8T0AmIn_0E3Svwzm7Qs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKPUAPbXmplJcPHOAQcPzOEbG7WmB3QQgQt8iOHYSqJqjs9sCJn9A_0D_HL6kn3l0ex3JzLI2TaPz4ZjzzDULbmmQ2qFYlktgs4Z7KRJeMJJRlTmbCSdtcxfQHsnvJj6_FJJoQcmEiP8TU4QYro9mvYYGDQ3r_mTXUuBJSycMRpAOInkEfoaw30Oe3zqcMUqlS8WJZphDilV5PeBsJ3X8t_wphvsSpzUHT-YLs5BNjfMmPvdHQ7hUPb9gb3_UPX9HnMQzFB3HeLKAPvlpEn16QEy6hv21IqwpNfFr5p8c_EA-GW02rdlGhuC7xwPB-dbVzdsp3GYZ8wtp5_PvW4PNY5R4GOKyDiXsb_Y64_ZxahwNixhBpEgY9g3Jt2FQO9-rqJnT0zH0jDG8b_QwdR0E40oEG634ZXXbaF4fdZFzMIbljXIRdNzXeEaut5sJKL4lSCsjDnCOSFMQYVRhepsR767QyLKWFKEWwtmgBqE6wFTRb1ZX_hrDUPNhduhRl4YJ9V1gmUsZ9lgnPs8K5VbQ-UWU-XpH3OWSJa6moFKuINjrJ7yKfRx6Zm2kOysinysgPWp3-9On7_whtobnuRb-X944GJ2tonkLpYAj6Yetodvhr5DcCnhnazWbG_gPX_PEn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxELYoSFU5tJQW8VfqQw_0sOD1_x4RSQQ0CREqVW4re-1FCLEbQcKhpz5CX4CX65PUs05C6JHevJbGu6vx2N_YM98g9EWTzAbVqkQSmyXcU5nokpGEsszJTDhpm6uYXl-eXPKzoRguZPFHfoj5gRtYRrNeg4GPXHn4RBpqXAmZ5GEH0gFDv0IrXJIMije0LuYEUqlS8V5ZphDhlQ5ntI2EHj6XfwYwF2Fqs8903iEz-8IYXnJzMBnbg-LnP-SN__MLa-jtFITiozhr3qMlX62j1QVqwg_osQ1JVaGJzyv_59dviAbDraZVu6hOXJe4b3iv-rE_OOdfGYZswtp5_HBt8EWscQ8DHNfBwb2Op464_ZRYhwNexhBnEgYdQLE2bCqHu3V1FTq65r4RhrdNbkPHaRCOZKDBt_-ILjvt78cnybSUQzJiXIQ1NzXeEaut5sJKL4lSCqjDnCOSFMQYVRhepsR767QyLKWFKEXwtWgBmE6wDbRc1ZXfRFhqHrwuXYqycMG7KywTKeM-y4TnWeHcFtqdaTKf2uN9DjniWioqxRaijUryUWTzyCNvM81BGflcGflRq9ObP22_ROgzej1odfLuaf_bDnpDoW4wRPywXbQ8vpv4TwHMjO1eM1__Ahtn79Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+One%E2%80%90Step+De%E2%80%90Sodiation+of+Na4MnV%28PO4%293+Cathode+via+Regulating+Coordination+Environment+for+High%E2%80%90Power+and+Long%E2%80%90Lasting+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Can&rft.au=Wang%2C+Liqun&rft.au=Deng%2C+Zhihao&rft.au=Kong%2C+Xueling&rft.date=2025-04-03&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202418642&rft.externalDBID=10.1002%252Fadfm.202418642&rft.externalDocID=ADFM202418642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon