Enabling One‐Step De‐Sodiation of Na4MnV(PO4)3 Cathode via Regulating Coordination Environment for High‐Power and Long‐Lasting Sodium‐Ion Batteries
Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode st...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 14 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
03.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode still suffers from sluggish intrinsic Na+ diffusion kinetics and the Jahn‐Teller distortion of Mn3+, leading to low capacity and poor cycling performance. Particularly, the second‐step Na+ de‐sodiation in NMVP is the rate‐determining step owing to a lower chemical diffusion coefficient with one order of magnitude than that of the first‐step counterpart. To address these issues, a coordination environment regulation strategy is reported to develop a one‐step de‐sodiation NMVP cathode via introducing Zr4+ and K+/Ca2+ into Mn and Na sites, respectively. Based on theoretical calculations and electrochemical evaluation, the obtained Na3.3K0.1Ca0.1Mn0.8VZr0.2(PO4)3 exhibits much enhanced Na+ diffusion and efficiently inhibits the Jahn‐Teller distortion. Importantly, such modification significantly facilitates the second‐step Na+ diffusion of NMVP, realizing one‐step de‐sodiation. When employed as a cathode for SIBs, such cathode shows a specific capacity of 73 mAh g−1 (15 C), and capacity retentions of 92.7% after 3000 cycles (at 10 C, room temperature), and 72.6% after 1000 cycles (1 C, 50 °C).
One‐step de‐sodiation of Na4MnV(PO4)3 is achieved successfully via regulating the local coordination environment of transition metal sites using Zr4+ since such cathode suffers from severely limited Na+ diffusion kinetics in the second‐step de‐sodiation (rate‐determining step). Moreover, the Jahn‐Teller distortion is substantially inhibited, leading to much‐enhanced cycling stability at both room temperature and elevated temperature. |
---|---|
AbstractList | Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode still suffers from sluggish intrinsic Na+ diffusion kinetics and the Jahn‐Teller distortion of Mn3+, leading to low capacity and poor cycling performance. Particularly, the second‐step Na+ de‐sodiation in NMVP is the rate‐determining step owing to a lower chemical diffusion coefficient with one order of magnitude than that of the first‐step counterpart. To address these issues, a coordination environment regulation strategy is reported to develop a one‐step de‐sodiation NMVP cathode via introducing Zr4+ and K+/Ca2+ into Mn and Na sites, respectively. Based on theoretical calculations and electrochemical evaluation, the obtained Na3.3K0.1Ca0.1Mn0.8VZr0.2(PO4)3 exhibits much enhanced Na+ diffusion and efficiently inhibits the Jahn‐Teller distortion. Importantly, such modification significantly facilitates the second‐step Na+ diffusion of NMVP, realizing one‐step de‐sodiation. When employed as a cathode for SIBs, such cathode shows a specific capacity of 73 mAh g−1 (15 C), and capacity retentions of 92.7% after 3000 cycles (at 10 C, room temperature), and 72.6% after 1000 cycles (1 C, 50 °C).
One‐step de‐sodiation of Na4MnV(PO4)3 is achieved successfully via regulating the local coordination environment of transition metal sites using Zr4+ since such cathode suffers from severely limited Na+ diffusion kinetics in the second‐step de‐sodiation (rate‐determining step). Moreover, the Jahn‐Teller distortion is substantially inhibited, leading to much‐enhanced cycling stability at both room temperature and elevated temperature. Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V (Mn3+/Mn2+) besides the voltage plateau of 3.4 V (V4+/V3+), lower cost, and environmental benign compared to Na3V2(PO4)3. However, such cathode still suffers from sluggish intrinsic Na+ diffusion kinetics and the Jahn‐Teller distortion of Mn3+, leading to low capacity and poor cycling performance. Particularly, the second‐step Na+ de‐sodiation in NMVP is the rate‐determining step owing to a lower chemical diffusion coefficient with one order of magnitude than that of the first‐step counterpart. To address these issues, a coordination environment regulation strategy is reported to develop a one‐step de‐sodiation NMVP cathode via introducing Zr4+ and K+/Ca2+ into Mn and Na sites, respectively. Based on theoretical calculations and electrochemical evaluation, the obtained Na3.3K0.1Ca0.1Mn0.8VZr0.2(PO4)3 exhibits much enhanced Na+ diffusion and efficiently inhibits the Jahn‐Teller distortion. Importantly, such modification significantly facilitates the second‐step Na+ diffusion of NMVP, realizing one‐step de‐sodiation. When employed as a cathode for SIBs, such cathode shows a specific capacity of 73 mAh g−1 (15 C), and capacity retentions of 92.7% after 3000 cycles (at 10 C, room temperature), and 72.6% after 1000 cycles (1 C, 50 °C). |
Author | Zhang, Tianyi Zhu, Peining Deng, Zhihao Ding, Yuan‐Li Chen, Can Wang, Zuyong Wang, Liqun Kong, Xueling Yu, Qinqin |
Author_xml | – sequence: 1 givenname: Can surname: Chen fullname: Chen, Can organization: Hunan University – sequence: 2 givenname: Liqun surname: Wang fullname: Wang, Liqun organization: Hunan University – sequence: 3 givenname: Zhihao surname: Deng fullname: Deng, Zhihao organization: Hunan University – sequence: 4 givenname: Xueling surname: Kong fullname: Kong, Xueling organization: Hunan University – sequence: 5 givenname: Tianyi surname: Zhang fullname: Zhang, Tianyi organization: Hunan University – sequence: 6 givenname: Qinqin surname: Yu fullname: Yu, Qinqin organization: Pingxiang University – sequence: 7 givenname: Zuyong surname: Wang fullname: Wang, Zuyong organization: Hunan University – sequence: 8 givenname: Peining surname: Zhu fullname: Zhu, Peining organization: Changsha Social Work College – sequence: 9 givenname: Yuan‐Li orcidid: 0000-0002-3217-8183 surname: Ding fullname: Ding, Yuan‐Li email: ylding@hnu.edu.cn organization: Hunan University |
BookMark | eNo9UMtOAjEUbQwmArp13cSNLsDbzkynLpGHkIAQX3E36dAOlAzt2Bkk7PwEf8Cf80ucAcPqnntyHslpoJqxRiF0SaBNAOitkMm6TYH6hDOfnqA6YYS1PKC8dsTk_Qw18nwFQMLQ8-vop29EnGqzwFOjfr--nwuV4d4eWalFoa3BNsGPwp-Yt-vZ1L_xcFcUSysV_tQCP6nFJi1lZUDXWie1OXj65lM7a9bKFDixDg_1YlmGzuxWOSyMxGNrFiUxFvneXLVt1iUxKs33oiiU0yo_R6eJSHN18X-b6HXQf-kOW-Ppw6jbGbcyzw9oixOhJMQ85n4QM8UgDEMgHKQEBnMQIpwLPyGgVCx5KDxC50ESUAZ0ToKABF4TXR1yM2c_NiovopXdOFNWRh7hAWchZZXq7qDa6lTtoszptXC7iEBU7R9V-0fH_aNObzA5ft4fNn2C-Q |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202418642 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202418642 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province funderid: 2023JJ50015 – fundername: National Natural Science Foundation of China funderid: 52072119 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY JG9 L7M LH4 |
ID | FETCH-LOGICAL-p3452-81aed0b8b845b6e607770180dd060c0aa7ca4f10eebd87a312c5f52602c155153 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 10:05:06 EDT 2025 Thu Apr 03 09:33:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p3452-81aed0b8b845b6e607770180dd060c0aa7ca4f10eebd87a312c5f52602c155153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3217-8183 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202418642 |
PQID | 3185867265 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3185867265 wiley_primary_10_1002_adfm_202418642_ADFM202418642 |
PublicationCentury | 2000 |
PublicationDate | April 3, 2025 |
PublicationDateYYYYMMDD | 2025-04-03 |
PublicationDate_xml | – month: 04 year: 2025 text: April 3, 2025 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2018; 122 2017; 8 2023; 13 2018; 281 2015; 17 2023; 35 2023; 58 2021; 42 2021; 89 2019; 429 2023; 15 2019; 11 2023; 19 2020; 16 2024; 55 2024; 11 2024; 34 2024; 12 2024; 146 2024; 35 2022; 518 2016; 16 2024; 18 2020; 8 2020; 2 2022; 4 2024; 5 2020; 470 2022; 5 2019; 66 2018; 1 2021; 511 2022; 7 2022; 9 2020; 49 2024; 63 2022; 32 2022; 10 2021; 495 2022; 99 2022; 326 2022; 521 |
References_xml | – volume: 429 start-page: 149 year: 2019 publication-title: J. Power Sources – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 4660 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2542 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 776 year: 2022 publication-title: Carbon Energy – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 7836 year: 2016 publication-title: Nano Lett. – volume: 2 year: 2020 publication-title: J. Phys‐Energy. – volume: 89 year: 2021 publication-title: Nano Energy – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 281 start-page: 208 year: 2018 publication-title: Electrochim. Acta – volume: 146 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 3181 year: 2023 publication-title: Chem. Mater. – volume: 55 year: 2024 publication-title: Nano Today – volume: 58 start-page: 271 year: 2023 publication-title: Energy Storage Mater. – volume: 5 year: 2024 publication-title: Small Struct. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 99 year: 2022 publication-title: Nano Energy – volume: 495 year: 2021 publication-title: J. Power Sources. – volume: 521 year: 2022 publication-title: J. Power Sources – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 511 year: 2021 publication-title: J. Power Sources – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 16 year: 2020 publication-title: Small – volume: 7 start-page: 97 year: 2022 publication-title: ACS Energy Lett. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 9 start-page: 5454 year: 2022 publication-title: Inorg. Chem. Front. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 12 start-page: 6681 year: 2024 publication-title: J. Mater. Chem. A – volume: 1 start-page: 5842 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 49 start-page: 2342 year: 2020 publication-title: Chem. Soc. Rev. – volume: 470 year: 2020 publication-title: J. Power Sources – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 35 year: 2024 publication-title: Chin. Chem. Lett. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 518 year: 2022 publication-title: J. Power Sources – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 19 year: 2023 publication-title: Small – volume: 326 year: 2022 publication-title: Mater. Lett. – volume: 42 start-page: 307 year: 2021 publication-title: Energy Storage Mater. – volume: 18 year: 2024 publication-title: ACS Nano – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 8 year: 2020 publication-title: J. Mater. Chem. A |
SSID | ssj0017734 |
Score | 2.4938686 |
Snippet | Na4MnV(PO4)3 (NMVP) is considered as a promising cathode candidate for sodium‐ion batteries (SIBs) because it possesses a higher voltage plateau of 3.6 V... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Batteries Calcium ions Cathodes Chemical diffusion Coordination Diffusion coefficient Diffusion rate Distortion Electric potential Electrochemical analysis Electrons Jahn‐Teller effect one‐step de‐sodiation polyanionic cathode Room temperature Sodium Sodium-ion batteries Voltage |
Title | Enabling One‐Step De‐Sodiation of Na4MnV(PO4)3 Cathode via Regulating Coordination Environment for High‐Power and Long‐Lasting Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202418642 https://www.proquest.com/docview/3185867265 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvRAgYJKSysfemgPAcf_OSLY1VKxgBCgvUV27FQINUHdXQ499RH6An25Pkln4v2DY3tzLI2TaDz2N_bMN4R8tKzwoFqTaeaLTEauM1sLlnFRBF2ooH13FTM814Mb-WWkRitZ_IkfYnHghpbRrddo4M6PD5ekoS7UmEkOO5AFDA2LMAZsISq6WvBH5caka2WdY4BXPpqzNjJ--FT8Cb5cRandNtN_Rdz8A1N0yf3BdOIPqh_PuBv_5w82ycYMg9KjNGm2yIvYbJOXK8yEr8nvHuZUQZNeNPHPz18YDEZPulYbkjZpW9NzJ4fN7afLC_lZUEwmbEOkj3eOXqUS9zjAcQv-7V06dKS9ZV4dBbhMMcwEBr3EWm3UNYGetc1X6Dhz404Y3zb9Bh2nIJy4QMG13yE3_d718SCbVXLIHoRUsOTmLgbmrbdSeR01M8Ygc1gITLOKOWcqJ-ucxeiDNU7kvFK1AleLVwjplNgla03bxDeEaivB6bK1qqsAzl3lhcqFjEWhoiyqEPbI_lyT5cwcxyWmiFttuFZ7hHcqKR8SmUeZaJt5icooF8ooj076w8XT238RekfWOdYKxigfsU_WJt-n8T0AmIn_0E3Svwzm7Qs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKPUAPbXmplJcPHOAQcPzOEbG7WmB3QQgQt8iOHYSqJqjs9sCJn9A_0D_HL6kn3l0ex3JzLI2TaPz4ZjzzDULbmmQ2qFYlktgs4Z7KRJeMJJRlTmbCSdtcxfQHsnvJj6_FJJoQcmEiP8TU4QYro9mvYYGDQ3r_mTXUuBJSycMRpAOInkEfoaw30Oe3zqcMUqlS8WJZphDilV5PeBsJ3X8t_wphvsSpzUHT-YLs5BNjfMmPvdHQ7hUPb9gb3_UPX9HnMQzFB3HeLKAPvlpEn16QEy6hv21IqwpNfFr5p8c_EA-GW02rdlGhuC7xwPB-dbVzdsp3GYZ8wtp5_PvW4PNY5R4GOKyDiXsb_Y64_ZxahwNixhBpEgY9g3Jt2FQO9-rqJnT0zH0jDG8b_QwdR0E40oEG634ZXXbaF4fdZFzMIbljXIRdNzXeEaut5sJKL4lSCsjDnCOSFMQYVRhepsR767QyLKWFKEWwtmgBqE6wFTRb1ZX_hrDUPNhduhRl4YJ9V1gmUsZ9lgnPs8K5VbQ-UWU-XpH3OWSJa6moFKuINjrJ7yKfRx6Zm2kOysinysgPWp3-9On7_whtobnuRb-X944GJ2tonkLpYAj6Yetodvhr5DcCnhnazWbG_gPX_PEn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxELYoSFU5tJQW8VfqQw_0sOD1_x4RSQQ0CREqVW4re-1FCLEbQcKhpz5CX4CX65PUs05C6JHevJbGu6vx2N_YM98g9EWTzAbVqkQSmyXcU5nokpGEsszJTDhpm6uYXl-eXPKzoRguZPFHfoj5gRtYRrNeg4GPXHn4RBpqXAmZ5GEH0gFDv0IrXJIMije0LuYEUqlS8V5ZphDhlQ5ntI2EHj6XfwYwF2Fqs8903iEz-8IYXnJzMBnbg-LnP-SN__MLa-jtFITiozhr3qMlX62j1QVqwg_osQ1JVaGJzyv_59dviAbDraZVu6hOXJe4b3iv-rE_OOdfGYZswtp5_HBt8EWscQ8DHNfBwb2Op464_ZRYhwNexhBnEgYdQLE2bCqHu3V1FTq65r4RhrdNbkPHaRCOZKDBt_-ILjvt78cnybSUQzJiXIQ1NzXeEaut5sJKL4lSCqjDnCOSFMQYVRhepsR767QyLKWFKEXwtWgBmE6wDbRc1ZXfRFhqHrwuXYqycMG7KywTKeM-y4TnWeHcFtqdaTKf2uN9DjniWioqxRaijUryUWTzyCNvM81BGflcGflRq9ObP22_ROgzej1odfLuaf_bDnpDoW4wRPywXbQ8vpv4TwHMjO1eM1__Ahtn79Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+One%E2%80%90Step+De%E2%80%90Sodiation+of+Na4MnV%28PO4%293+Cathode+via+Regulating+Coordination+Environment+for+High%E2%80%90Power+and+Long%E2%80%90Lasting+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Can&rft.au=Wang%2C+Liqun&rft.au=Deng%2C+Zhihao&rft.au=Kong%2C+Xueling&rft.date=2025-04-03&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202418642&rft.externalDBID=10.1002%252Fadfm.202418642&rft.externalDocID=ADFM202418642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |