MOF-derived Bi2O3@C microrods as negative electrodes for advanced asymmetric supercapacitors

Bismuth oxide (Bi2O3) with high specific capacity has emerged as a promising negative electrode material for supercapacitors (SCs). Herein, we propose a facile metal–organic framework (MOF) derived strategy to prepare Bi2O3 microrods with a carbon coat (Bi2O3@C). They exhibit ultrahigh specific capa...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 10; no. 24; pp. 14107 - 14112
Main Authors Yu, Xianbo, Sun, Jie, Zhao, Wenna, Zhao, Shihang, Chen, Hongmei, Tao, Kai, Hu, Yaoping, Han, Lei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 06.04.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bismuth oxide (Bi2O3) with high specific capacity has emerged as a promising negative electrode material for supercapacitors (SCs). Herein, we propose a facile metal–organic framework (MOF) derived strategy to prepare Bi2O3 microrods with a carbon coat (Bi2O3@C). They exhibit ultrahigh specific capacity (1378 C g−1 at 0.5 A g−1) and excellent cycling stability (93% retention at 4000 cycles) when acting as negative electrode material for advanced asymmetric SCs. The assembled Bi2O3@C//CoNi-LDH asymmetric supercapacitor device exhibits a high energy density of 49 W h kg−1 at a power density of 807 W kg−1. The current Bi-MOF-derived strategy would provide valuable insights to prepare Bi-based inorganic nanomaterials for high-performance energy storage technologies and beyond.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/d0ra01470b