Observation of Superconducting Collective Modes from Competing Pairing Instabilities in Single‐Layer NbSe2

In certain unconventional superconductors with sizable electronic correlations, the availability of closely competing pairing channels leads to characteristic soft collective fluctuations of the order parameters, which leave fingerprints in many observables and allow the phase competition to be scru...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 41; pp. e2206078 - n/a
Main Authors Wan, Wen, Dreher, Paul, Muñoz‐Segovia, Daniel, Harsh, Rishav, Guo, Haojie, Martínez‐Galera, Antonio J., Guinea, Francisco, de Juan, Fernando, Ugeda, Miguel M.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In certain unconventional superconductors with sizable electronic correlations, the availability of closely competing pairing channels leads to characteristic soft collective fluctuations of the order parameters, which leave fingerprints in many observables and allow the phase competition to be scrutinized. Superconducting layered materials, where electron–electron interactions are enhanced with decreasing thickness, are promising candidates to display these correlation effects. In this work, the existence of a soft collective mode in single‐layer NbSe2, observed as a characteristic resonance excitation in high‐resolution tunneling spectra is reported. This resonance is observed along with higher harmonics, its frequency Ω/2Δ is anticorrelated with the local superconducting gap Δ, and its amplitude gradually vanishes by increasing the temperature and upon applying a magnetic field up to the critical values (TC and HC2), which sets an unambiguous link to the superconducting state. Aided by a microscopic model that captures the main experimental observations, this resonance is interpreted as a collective Leggett mode that represents the fluctuation toward a proximate f‐wave triplet state, due to subleading attraction in the triplet channel. These findings demonstrate the fundamental role of correlations in superconducting 2D transition metal dichalcogenides, opening a path toward unconventional superconductivity in simple, scalable, and transferable 2D superconductors. The experimental observation of Leggett collective modes in the superconducting state of a 2D transition metal dichalcogenide (TMD) is reported. Leggett modes have been rarely seen in nature and represent the first type of collective modes observed in 2D TMD superconductors, which highlights the rather unconventional superconducting properties of this family of materials in the single‐layer limit.
AbstractList In certain unconventional superconductors with sizable electronic correlations, the availability of closely competing pairing channels leads to characteristic soft collective fluctuations of the order parameters, which leave fingerprints in many observables and allow the phase competition to be scrutinized. Superconducting layered materials, where electron–electron interactions are enhanced with decreasing thickness, are promising candidates to display these correlation effects. In this work, the existence of a soft collective mode in single‐layer NbSe2, observed as a characteristic resonance excitation in high‐resolution tunneling spectra is reported. This resonance is observed along with higher harmonics, its frequency Ω/2Δ is anticorrelated with the local superconducting gap Δ, and its amplitude gradually vanishes by increasing the temperature and upon applying a magnetic field up to the critical values (TC and HC2), which sets an unambiguous link to the superconducting state. Aided by a microscopic model that captures the main experimental observations, this resonance is interpreted as a collective Leggett mode that represents the fluctuation toward a proximate f‐wave triplet state, due to subleading attraction in the triplet channel. These findings demonstrate the fundamental role of correlations in superconducting 2D transition metal dichalcogenides, opening a path toward unconventional superconductivity in simple, scalable, and transferable 2D superconductors.
In certain unconventional superconductors with sizable electronic correlations, the availability of closely competing pairing channels leads to characteristic soft collective fluctuations of the order parameters, which leave fingerprints in many observables and allow the phase competition to be scrutinized. Superconducting layered materials, where electron–electron interactions are enhanced with decreasing thickness, are promising candidates to display these correlation effects. In this work, the existence of a soft collective mode in single‐layer NbSe2, observed as a characteristic resonance excitation in high‐resolution tunneling spectra is reported. This resonance is observed along with higher harmonics, its frequency Ω/2Δ is anticorrelated with the local superconducting gap Δ, and its amplitude gradually vanishes by increasing the temperature and upon applying a magnetic field up to the critical values (TC and HC2), which sets an unambiguous link to the superconducting state. Aided by a microscopic model that captures the main experimental observations, this resonance is interpreted as a collective Leggett mode that represents the fluctuation toward a proximate f‐wave triplet state, due to subleading attraction in the triplet channel. These findings demonstrate the fundamental role of correlations in superconducting 2D transition metal dichalcogenides, opening a path toward unconventional superconductivity in simple, scalable, and transferable 2D superconductors. The experimental observation of Leggett collective modes in the superconducting state of a 2D transition metal dichalcogenide (TMD) is reported. Leggett modes have been rarely seen in nature and represent the first type of collective modes observed in 2D TMD superconductors, which highlights the rather unconventional superconducting properties of this family of materials in the single‐layer limit.
Author Ugeda, Miguel M.
Harsh, Rishav
Dreher, Paul
Guo, Haojie
Martínez‐Galera, Antonio J.
Wan, Wen
Muñoz‐Segovia, Daniel
de Juan, Fernando
Guinea, Francisco
Author_xml – sequence: 1
  givenname: Wen
  surname: Wan
  fullname: Wan, Wen
  organization: Donostia International Physics Center (DIPC)
– sequence: 2
  givenname: Paul
  surname: Dreher
  fullname: Dreher, Paul
  organization: Donostia International Physics Center (DIPC)
– sequence: 3
  givenname: Daniel
  surname: Muñoz‐Segovia
  fullname: Muñoz‐Segovia, Daniel
  organization: Donostia International Physics Center (DIPC)
– sequence: 4
  givenname: Rishav
  surname: Harsh
  fullname: Harsh, Rishav
  organization: Donostia International Physics Center (DIPC)
– sequence: 5
  givenname: Haojie
  surname: Guo
  fullname: Guo, Haojie
  organization: Universidad Autónoma de Madrid
– sequence: 6
  givenname: Antonio J.
  surname: Martínez‐Galera
  fullname: Martínez‐Galera, Antonio J.
  organization: Universidad Autónoma de Madrid
– sequence: 7
  givenname: Francisco
  surname: Guinea
  fullname: Guinea, Francisco
  organization: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nanociencia)
– sequence: 8
  givenname: Fernando
  surname: de Juan
  fullname: de Juan, Fernando
  organization: Basque Foundation for Science
– sequence: 9
  givenname: Miguel M.
  orcidid: 0000-0001-7913-1617
  surname: Ugeda
  fullname: Ugeda, Miguel M.
  email: mmugeda@dipc.org
  organization: (CSIC‐UPV‐EHU)
BookMark eNpdkM1OwzAQhC1UJNrClXMkLlxSNnbixMeq_EqFIhXOkZNskJFjBzsp6o1H4Bl5ElKKOHCa3dlPq9FMyMhYg4ScRjCLAOiFrBo5o0ApcEizAzKOEhqFMYhkRMYgWBIKHmdHZOL9KwAIDnxM9Krw6DayU9YEtg7WfYuutKbqy06Zl2BhtcZh3GBwbyv0Qe1sM7hNiz_3R6ncTu-M72ShtOrUACkTrAdX49fH51Ju0QUPxRrpMTmspfZ48qtT8nx99bS4DZerm7vFfBm2DHgWVkLQuJAyjSRNCwpIkTLETNRVkdU146WoaVIglZmsgAtWsiTFsirSpEozydiUnO__ts6-9ei7vFG-RK2lQdv7nKaQcmARjwb07B_6antnhnQDReMYduxAiT31rjRu89apRrptHkG-az7fNZ__NZ_PL-_nfxv7BuIVfb0
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202206078
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202206078
Genre article
GrantInformation_xml – fundername: Spanish MINECO
  funderid: PID2020‐116619GB‐C21
– fundername: FPU predoctoral
  funderid: FPU19/03195
– fundername: Spanish MCI
– fundername: FEDER
  funderid: PGC2018‐ 101988‐B‐C21
– fundername: PIBA
  funderid: 2019‐81
– fundername: ERC
  funderid: 758558
– fundername: AEI
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-p3068-d9924baa71a27b20e2e23ee89fdb8ff36c9f25be2a8ad0693c357ecdb75d78a33
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 00:59:54 EDT 2024
Fri Sep 13 08:54:25 EDT 2024
Sat Aug 24 00:54:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3068-d9924baa71a27b20e2e23ee89fdb8ff36c9f25be2a8ad0693c357ecdb75d78a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7913-1617
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202206078
PQID 2724402707
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2707603161
proquest_journals_2724402707
wiley_primary_10_1002_adma_202206078_ADMA202206078
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 74
2020; 20
2019; 15
1981; 47
2020; 16
2019; 19
2020; 125
2020; 10
2008; 100
2013; 9
2001; 87
2001; 410
2003; 91
2021; 33
2007; 450
2000; 406
2013; 110
2006; 442
2012; 338
2015; 15
2006; 96
1960; 11
1966; 36
2002; 295
2006; 55
1958; 34
2015; 10
2016; 93
2020; 101
2007; 99
2014; 89
2011; 7
2012; 108
2012; 109
2014; 112
2016; 12
2018; 17
2015; 115
2018; 556
2021
2020
2021; 17
1961; 121
2001; 117–118
2008; 456
2009; 5
1999; 398
2016; 8
2012; 8
2018; 13
2012; 84
2009; 469
References_xml – volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 338
  start-page: 1193
  year: 2012
  publication-title: Science
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 10
  year: 2020
  publication-title: Phys. Rev. X
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 34
  start-page: 996
  year: 1958
  publication-title: Sov. Phys. JETP
– volume: 5
  start-page: 873
  year: 2009
  publication-title: Nat. Phys.
– volume: 295
  start-page: 1045
  year: 2002
  publication-title: Science
– volume: 16
  start-page: 218
  year: 2020
  publication-title: Nat. Phys.
– volume: 55
  start-page: 47
  year: 2006
  publication-title: Adv. Phys.
– volume: 456
  start-page: 930
  year: 2008
  publication-title: Nature
– year: 2021
– volume: 406
  start-page: 965
  year: 2000
  publication-title: Nature
– volume: 11
  start-page: 696
  year: 1960
  publication-title: Sov. Phys. JETP‐USSR
– volume: 13
  start-page: 289
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 139
  year: 2016
  publication-title: Nat. Phys.
– volume: 8
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 410
  start-page: 340
  year: 2001
  publication-title: Nature
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 117–118
  start-page: 129
  year: 2001
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 12
  start-page: 92
  year: 2016
  publication-title: Nat. Phys.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 719
  year: 2011
  publication-title: Nat. Phys.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. B
– volume: 450
  start-page: 1058
  year: 2007
  publication-title: Nature
– volume: 8
  start-page: 376
  year: 2012
  publication-title: Nat. Phys.
– volume: 87
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 121
  start-page: 1050
  year: 1961
  publication-title: Phys. Rev.
– volume: 96
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 504
  year: 2018
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: J. Phys.: Condens. Matter
– volume: 20
  start-page: 2056
  year: 2020
  publication-title: Nano Lett.
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 949
  year: 2021
  publication-title: Nat. Phys.
– volume: 84
  start-page: 1383
  year: 2012
  publication-title: Rev. Mod. Phys.
– volume: 469
  start-page: 259
  year: 2009
  publication-title: Phys. C
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 42
  year: 2013
  publication-title: Nat. Phys.
– volume: 20
  start-page: 5111
  year: 2020
  publication-title: Nano Lett.
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 904
  year: 2019
  publication-title: Nat. Phys.
– volume: 398
  start-page: 588
  year: 1999
  publication-title: Nature
– volume: 15
  start-page: 4914
  year: 2015
  publication-title: Nano Lett.
– volume: 47
  start-page: 811
  year: 1981
  publication-title: Phys. Rev. Lett.
– volume: 442
  start-page: 59
  year: 2006
  publication-title: Nature
– year: 2020
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 36
  start-page: 901
  year: 1966
  publication-title: Prog. Theor. Phys.
– volume: 10
  start-page: 765
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 556
  start-page: 43
  year: 2018
  publication-title: Nature
– volume: 19
  start-page: 3464
  year: 2019
  publication-title: Nano Lett.
SSID ssj0009606
Score 2.5812225
Snippet In certain unconventional superconductors with sizable electronic correlations, the availability of closely competing pairing channels leads to characteristic...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2206078
SubjectTerms 2D materials
Atomic energy levels
collective modes
Correlation
electronic structure
Higher harmonics
Layered materials
molecular beam epitaxy
Order parameters
Resonance
Superconductivity
Transition metal compounds
transition metal dichalcogenides
Unconventional superconductivity
Unconventional superconductors
Title Observation of Superconducting Collective Modes from Competing Pairing Instabilities in Single‐Layer NbSe2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202206078
https://www.proquest.com/docview/2724402707/abstract/
https://search.proquest.com/docview/2707603161
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ27TsMwFIYt6AQDd0S5yUisgcS3OGMFVAhBqSiVukW-RUKgtKLtwsQj8Iw8CT5OGwojbElsR4ntY__Hl88InVorjEwoi6RXwxFLUhrJQrAoM1LwxCU2VrB3-K4jrvvsZsAHC7v4Kz5EPeAGlhHaazBwpcfn39BQZQM3iJBY-G7ON8JA0wNV9PDNjwJ5HmB7lEeZYHJObYzJ-c_kP_TlokoN3Ux7Han5B1arS57PphN9Zt5-sRv_8wcbaG2mQXGrqjSbaMmVW2h1gUy4jV7udT1ci4cF7k1H7tW7zkCH9RFwGG8ITSWG09TGGLap4IsgwiG8q57gRRjWIlQkcO-R46cS9_zTF_f5_nGrvNjHHd1zZAf121ePF9fR7GCGaOQ9DBnZzHttWqk0USTVJHbEEeqczAqrZVFQYbKCcO2IksrGIqOG8tQZq1NuU6ko3UWNcli6PYQNo0xYUxCtKONOq0QarTLOiYm9dtRNdDgvmHxmXeOcpF6UeH86TpvopA72dgGTHap0wynEgTlH6gVtE5FQCvmo4nfkFamZ5JD_eZ3_eevyrlXf7f8l0QFagetqrd8hakxep-7Ia5aJPkbLhHWPQ-38AjGq54M
link.rule.ids 315,786,790,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFG0UF-rC-Iz4rInbCTNtp9NZEpSgApIAibtJX5OQkIGg7P0Ev9EvsbcDI25dTh-zaHvbc1_nInRvDNcioiwQDg0HLEpoIHLOglQLHkc2MqGE3OFen3fG7PktXkcTQi5MyQ9RGdxAMvx9DQIOBunGL2uoNJ44iJCQu3duG-1AWW-QTcIGv7y73JfXBHdfkHIm1ryNIWn8nf8HYW7iVP_QtA_RwQoh4ma5pUdoyxbHaH-DN_AETV9VZUzFsxwPl3O7cIotcLe6AdhbA_xFhqHW2TuGJBLc8hAZ-gdyAj_CEClQ8nQ7fRlPCjx0rVP7_fnVlQ6K474aWnKKxu3HUasTrMomBHOH_0VgUqdTKSmTSJJEkdASS6i1Is2NEnlOuU5zEitLpJAm5CnVNE6sNiqJTSIkpWeoVswKe46wZpRxo3OiJGWxVTISWsk0jokOHbJTdXS1XrRsdfbfM5I4yOC03TCpo7uq251acEXIws6WMAY8gtTBzToifrGzecmukZU8yiSD7cmq7cmaD71m9XXxn0m3aLcz6nWz7lP_5RLtQXsZlXeFah-Lpb126OJD3fjz8wNm1Mju
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkVZw4LWsKK81EtdA4lecY0WpgIWC6CJxi_yKVC1KK9peOPET-I38EmynDWWPcIwfUWLP2N-MZz4DHBnDtUgIjYRDwxFNUhKJgtMo04KzxCYmlj53-LrLz-_p5QN7mMvir_ghaoeb14ywXnsFH5ri5IM0VJrAG4RxzN02twhLlBPs5bp990Eg5fF5YNsjLMo4FTPaxhiffO7_CWDOw9Swz3TWQM6-sAov-Xc8Gatj_fwfeeN3fmEdVqcgFLUqqdmABVtuwsocNeFPeLxRtb8WDQrUmwztk7OdPT2sa4CCwyGslchfpzZCPk8FnQYU7utvZd-_CPlghIoK3JnkqF-init9tG8vr1fSoX3UVT2Lt-C-c_b39Dya3swQDZ2JISKTObNNSZkmEqcKxxZbTKwVWWGUKArCdVZgpiyWQpqYZ0QTllptVMpMKiQhv6BRDkq7DUhTQrnRBVaSUGaVTIRWMmMM69iBR9WEvdnE5FP1GuU4dajEGdRx2oTDutophj_tkKUdTHwbf-hIHKJtAg6zkA8rAo-8omrGuR__vB7_vNW-btVPO1_p9Bt-3LY7-dVF988uLPviKu5vDxrjp4ndd_hlrA6CiL4DnanpfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+Superconducting+Collective+Modes+from+Competing+Pairing+Instabilities+in+Single%E2%80%90Layer+NbSe2&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wan%2C+Wen&rft.au=Dreher%2C+Paul&rft.au=Daniel+Mu%C3%B1oz%E2%80%90Segovia&rft.au=Harsh%2C+Rishav&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=41&rft_id=info:doi/10.1002%2Fadma.202206078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon