High Temperature‐Insensitive Electrostrain Obtained in (K, Na)NbO3‐Based Lead‐Free Piezoceramics

Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fiel...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 51; pp. e2407848 - n/a
Main Authors Liu, Huan, Yang, Ziqi, Su, Bin, Hao, Yijin, Feng, Tian‐Yi, Zhang, Bo‐Ping, Li, Jing‐Feng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb‐codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V−1, is attained in the LKNNS ceramic at 20 kV cm−1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A‐site vacancy‐oxygen vacancy (VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$) defect dipoles and the increase in nano‐domains. The hierarchical domain configuration and VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range. By combining defect engineering and domain engineering, Li/Sb‐codoped (K, Na)NbO3 (KNN) ceramics achieve exceptional electrostrain and superior temperature stability under low electric fields. This work provides an effective strategy for designing KNN‐based materials suitable for high‐displacement piezoelectric actuators across a wide temperature range.
AbstractList Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy ( V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration and V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy ( V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration and V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.
Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb‐codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V−1, is attained in the LKNNS ceramic at 20 kV cm−1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A‐site vacancy‐oxygen vacancy (VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$) defect dipoles and the increase in nano‐domains. The hierarchical domain configuration and VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range. By combining defect engineering and domain engineering, Li/Sb‐codoped (K, Na)NbO3 (KNN) ceramics achieve exceptional electrostrain and superior temperature stability under low electric fields. This work provides an effective strategy for designing KNN‐based materials suitable for high‐displacement piezoelectric actuators across a wide temperature range.
Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb‐codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V−1, is attained in the LKNNS ceramic at 20 kV cm−1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A‐site vacancy‐oxygen vacancy (VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$) defect dipoles and the increase in nano‐domains. The hierarchical domain configuration and VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.
Author Yang, Ziqi
Liu, Huan
Su, Bin
Hao, Yijin
Li, Jing‐Feng
Zhang, Bo‐Ping
Feng, Tian‐Yi
Author_xml – sequence: 1
  givenname: Huan
  orcidid: 0000-0003-3890-8914
  surname: Liu
  fullname: Liu, Huan
  organization: Tsinghua University
– sequence: 2
  givenname: Ziqi
  surname: Yang
  fullname: Yang, Ziqi
  organization: Tsinghua University
– sequence: 3
  givenname: Bin
  surname: Su
  fullname: Su, Bin
  organization: Tsinghua University
– sequence: 4
  givenname: Yijin
  surname: Hao
  fullname: Hao, Yijin
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Tian‐Yi
  surname: Feng
  fullname: Feng, Tian‐Yi
  organization: Tsinghua University
– sequence: 6
  givenname: Bo‐Ping
  orcidid: 0000-0003-1712-6868
  surname: Zhang
  fullname: Zhang, Bo‐Ping
  email: bpzhang@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Jing‐Feng
  surname: Li
  fullname: Li, Jing‐Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNpdkMtOwzAQRS1UJNrClnUkNkUixXYetpdQtbQitEiUdeQkE3CVF3YCKis-gW_kS3BV1AWrOzM6c2d0B6hX1RUgdE7wmGBMr01ZFGOKqY8Z9_kR6pOQeG7IqegdaoJP0MCYDcYeoT7ro3yuXl6dNZQNaNl2Gn6-vheVgcqoVr2DMy0gbXVtWi1V5ayS1gpkjq1H91fOUl4uk5Vnd26lseMIZGabmQZwHhV81ql1LVVqTtFxLgsDZ386RM-z6Xoyd6PV3WJyE7mNh0PuBmHABEt8GaRZJjkmJOeZzHnOZBJQjpOQZUmakCzNpKBBwEVKCAs8mohcSiy8IRrtfRtdv3Vg2rhUJoWikBXUnYk9QgSjARbYohf_0E3d6cp-ZymfYXs8pJYSe-pDFbCNG61KqbcxwfEu83iXeXzIPH56iKJD5_0CMLN8KA
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202407848
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202407848
Genre article
GrantInformation_xml – fundername: Science Center Project of NSFC
  funderid: 52388201
– fundername: National Natural Science Foundation of China
  funderid: 52032007; 52072028
– fundername: National Key Research and Development Program
  funderid: 2022YFB3807400
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-p3068-565797b4a5cdda8011f8daf8f7ab5280b67dbcb1dcda925589c117532b9faa093
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 00:04:11 EDT 2025
Fri Jul 25 12:02:56 EDT 2025
Wed Jan 22 17:11:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3068-565797b4a5cdda8011f8daf8f7ab5280b67dbcb1dcda925589c117532b9faa093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1712-6868
0000-0003-3890-8914
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smll.202407848
PQID 3147001162
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_3119725090
proquest_journals_3147001162
wiley_primary_10_1002_smll_202407848_SMLL202407848
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2022; 131
2023; 35
2023; 33
2019; 11
2018; 124
2023; 9
2010; 104
1995; 77
2020; 402
2004; 3
2011; 99
2020; 200
2020; 12
2024; 34
2023; 107
2024; 36
2018; 43
2017; 710
2019; 123
2022; 378
2012; 51
2018; 6
2010; 20
2019; 20
2017; 37
2023; 134
2018; 137
1993; 74
2022; 34
2019; 115
2018; 30
2022; 32
2022; 33
2018; 38
2019; 7
2023; 10
2023; 11
2023; 12
2018; 102
2024; 50
1994; 49
2017; 29
2024; 11
2024; 13
2019; 181
2012; 112
2004; 432
2023; 472
2023; 150
2023; 49
2023; 113
2019; 45
2000; 77
2022; 8
2022; 9
2022; 13
2019; 135
2022; 14
2020; 199
2019; 09
2015; 117
2018; 11
2016; 28
2019; 171
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 77
  start-page: 1671
  year: 1995
  publication-title: J. Appl. Phys.
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 576
  year: 2018
  publication-title: MRS Bull.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 3556
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 112
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 5391
  year: 2019
  publication-title: J. Mater. Chem., A
– volume: 9
  start-page: 959
  year: 2023
  publication-title: J. Materiomics
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 378
  start-page: 1125
  year: 2022
  publication-title: Science
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 2648
  year: 2018
  publication-title: J. Am. Ceram. Soc.
– volume: 710
  start-page: 130
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 49
  year: 1994
  publication-title: Phys. Rev. B.
– volume: 9
  start-page: 464
  year: 2023
  publication-title: J. Materiomics
– volume: 28
  start-page: 8519
  year: 2016
  publication-title: Adv. Mater.
– volume: 13
  start-page: 5086
  year: 2022
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 131
  year: 2022
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 487
  year: 2023
  publication-title: J. Adv. Ceram.
– volume: 9
  start-page: 261
  year: 2023
  publication-title: J. Materiomics
– volume: 171
  start-page: 282
  year: 2019
  publication-title: Acta Mater.
– volume: 432
  start-page: 84
  year: 2004
  publication-title: Nature
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 150
  start-page: 27
  year: 2023
  publication-title: J. Mater. Sci. Technol.
– volume: 09
  year: 2019
  publication-title: J. Adv. Dielectri.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 50
  year: 2024
  publication-title: Ceram. Int.
– volume: 472
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 20
  year: 2019
  publication-title: Sustainable Mater. Technol.
– volume: 7
  start-page: 4284
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 3
  start-page: 91
  year: 2004
  publication-title: Nat. Mater.
– volume: 7
  start-page: 2037
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 11
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: J. Phys.: Condens. Matter
– volume: 37
  start-page: 2591
  year: 2017
  publication-title: J. Eur. Ceram. Soc.
– volume: 77
  start-page: 3824
  year: 2000
  publication-title: Appl. Phys. Lett.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 632
  year: 2023
  publication-title: J. Materiomics
– volume: 35
  start-page: 1659
  year: 2015
  publication-title: J. Eur. Ceram. Soc.
– volume: 137
  start-page: 184
  year: 2018
  publication-title: Mater. Des.
– volume: 402
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1079
  year: 2024
  publication-title: Mater. Horiz.
– volume: 134
  year: 2023
  publication-title: J. Appl. Phys.
– volume: 181
  start-page: 238
  year: 2019
  publication-title: Acta Mater.
– volume: 117
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 135
  start-page: 1
  year: 2019
  publication-title: Mater. Sci. Eng. R: Rep.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 199
  start-page: 542
  year: 2020
  publication-title: Acta Mater.
– volume: 20
  start-page: 1924
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 38
  start-page: 3136
  year: 2018
  publication-title: J. Eur. Ceram. Soc.
– volume: 115
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 113
  year: 2023
  publication-title: Nano Energy
– volume: 11
  start-page: 3531
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 51
  year: 2012
  publication-title: Jpn. J. Appl. Phys.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. B.
– volume: 49
  year: 2023
  publication-title: Ceram. Int.
– volume: 74
  start-page: 5129
  year: 1993
  publication-title: J. Appl. Phys.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 45
  year: 2019
  publication-title: Ceram. Int.
– volume: 99
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 401
  year: 2022
  publication-title: J. Materiomics
– volume: 7
  start-page: 6914
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 200
  start-page: 35
  year: 2020
  publication-title: Acta Mater.
– volume: 13
  start-page: 364
  year: 2024
  publication-title: J. Adv. Ceram.
SSID ssj0031247
Score 2.4636567
Snippet Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its...
Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2407848
SubjectTerms Actuators
defect engineering
Defects
Dipole moments
Domains
Electric fields
electrostrain
hierarchical domain configurations
High temperature
lead‐free piezoelectric
Niobates
Piezoelectric ceramics
Piezoelectricity
potassium‐sodium niobate
Room temperature
Stability
Temperature
temperature stability
Title High Temperature‐Insensitive Electrostrain Obtained in (K, Na)NbO3‐Based Lead‐Free Piezoceramics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202407848
https://www.proquest.com/docview/3147001162
https://www.proquest.com/docview/3119725090
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QTnDgjRgMFCQOINGta9O1PQJi4rkhHtJuldOk0gSMad0uO_ET-I38EuxkKxtHuCVqLbVpXH-O7c-MHUKoXAChHIhd4Qh0KhyJjgSNZEi1nDaJ5q7VuHwW152gM1PFb_khigM30gzzvyYFB5nXfkhD87dXCh2QRxIJqvalhC1CRQ8Ff5SPxst0V0Gb5RDx1pS10fVq8-Jz-HIWpRoz01xhMH1Am13yUh0NZTUd_-Ju_M8brLLlCQblp3bTrLEF3VtnSzPMhBsso_wP_qQRVFvS5a-Pzys6hs5NrhG_sN1zctNhgrclHTBoxXF8dHPCW3Dckm0fZc7QSCpOfTxx0hxoze-7eow2cwBv3TTfZM_Ni6fzS2fSksHpo28RORQkjUMpIEiVArRu9SxSkEVZCDLwIlc2QiVTWVepghi9lShODReoJ-MMwI39LVbqvff0NuOBDDItQqHrrja0fwgdfa0EelSgo9Qvs8r0kyQTvcoTvy5CEzvyyuyguIwaQWEO6On3Ed1DrdQQCLll5pn1T_qWuSOxHM1eQiufFCufPN7d3haznb8I7bJFGts8lworDQcjvYdoZSj3zY78BuXA5M0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIADb8R4BokDSHTr2pS2R0CbNtgGgiFxq5ImlRAw0LpdOPET-I38EuxkK48j3JK2kdokrv3ZzmeAfREqVwiuHBG73OEIKhyJQIJaMqSznDaJpt05btzy87tgnE1IZ2EsP0ThcCPJMP9rEnBySFe-WEPzp0eKHRAkiXg0CdNU1tugquuCQcpH9WXqq6DWcoh6a8zb6HqVn-N_WJjf7VSjaOoLIMevaPNLHsrDgSynr7_YG__1DYswPzJD2YndN0swoXvLMPeNnHAFMkoBYV2NdrXlXf54e2-SJzo36UasZgvo5KbIBLuU5GPQimH74OKIdcRhR176OOYU9aRiVMoTO_W-1uzqXr-i2uyLp_s0X4Xbeq171nBGVRmcF4QXkUNx0jiUXASpUgIVXDWLlMiiLBQy8CJXHodKprKqUiViBCxRnBo6UE_GmRBu7K_BVO-5p9eBBTLINA-5rrraMP-h9ehrxRFUCR2lfgm2xmuSjEQrT_wqD034yCvBXnEbhYIiHaKnn4f0DFVTQ1vILYFnFiB5seQdiaVp9hKa-aSY-eSm3WoVvY2_DNqFmUa33Upazc7FJszSdZv2sgVTg_5Qb6PxMpA7Znt-AjVO6Og
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8anYTYAQYMrQyGkTiAtLRp4jTOESgVf9qCGEjcIjt2pGqjVE176Wkfgc_IJ-E9u83KjuNmJ7GU2H55v_fHvwdwIGPtS8m1JxOfexyNCk-hIUEtFdNZTpdE0-01z-_55UP0sHCK3_FDlA43kgz7vyYBH-q8_pc0tHj8TaEDskgEF0vwkTd9Qfu6dVsSSIWovWx5FVRaHjFvzWkb_aD-dvwbgLkIU62eaa-BnL-hSy_5VZuMVS2b_kPe-J5P-AyrMxDKjt2uWYcPZrABnxaoCTchpwQQdmcQVTvW5Zc_zxfkhy5sshE7c-VzCltigl0r8jAYzbB9ePWD9eRRT12HOOYEtaRmVMgTO-2RMeymb6aoNEfysZ8VX-C-fXZ3eu7NajJ4QzQuhEdR0iRWXEaZ1hLVWyMXWuYij6WKAuGrZqxVpho60zJBc0UkmSUDDVSSS-kn4RZUBk8D8xVYpKLc8Jibhm8s7x9ix9BoXMamNCILq7AzX5J0JlhFGjZ4bINHQRX2y9soEhTnkAPzNKFnqJYaIiG_CoGd_3ToqDtSR9IcpDTzaTnz6c9up1P2tv9n0B4s37Taaeeid_UNVuiyy3nZgcp4NDG7iFzG6rvdnK-qkeeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Temperature%E2%80%90Insensitive+Electrostrain+Obtained+in+%28K%2C+Na%29NbO3%E2%80%90Based+Lead%E2%80%90Free+Piezoceramics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Huan&rft.au=Yang%2C+Ziqi&rft.au=Su%2C+Bin&rft.au=Hao%2C+Yijin&rft.date=2024-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202407848&rft.externalDBID=10.1002%252Fsmll.202407848&rft.externalDocID=SMLL202407848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon