High Temperature‐Insensitive Electrostrain Obtained in (K, Na)NbO3‐Based Lead‐Free Piezoceramics
Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fiel...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 51; pp. e2407848 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb‐codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V−1, is attained in the LKNNS ceramic at 20 kV cm−1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A‐site vacancy‐oxygen vacancy (VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$) defect dipoles and the increase in nano‐domains. The hierarchical domain configuration and VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.
By combining defect engineering and domain engineering, Li/Sb‐codoped (K, Na)NbO3 (KNN) ceramics achieve exceptional electrostrain and superior temperature stability under low electric fields. This work provides an effective strategy for designing KNN‐based materials suitable for high‐displacement piezoelectric actuators across a wide temperature range. |
---|---|
AbstractList | Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy ( V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration and V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy ( V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration and V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range. Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb‐codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V−1, is attained in the LKNNS ceramic at 20 kV cm−1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A‐site vacancy‐oxygen vacancy (VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$) defect dipoles and the increase in nano‐domains. The hierarchical domain configuration and VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range. By combining defect engineering and domain engineering, Li/Sb‐codoped (K, Na)NbO3 (KNN) ceramics achieve exceptional electrostrain and superior temperature stability under low electric fields. This work provides an effective strategy for designing KNN‐based materials suitable for high‐displacement piezoelectric actuators across a wide temperature range. Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric‐field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb‐codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V−1, is attained in the LKNNS ceramic at 20 kV cm−1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A‐site vacancy‐oxygen vacancy (VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$) defect dipoles and the increase in nano‐domains. The hierarchical domain configuration and VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of VA′−VO••${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range. |
Author | Yang, Ziqi Liu, Huan Su, Bin Hao, Yijin Li, Jing‐Feng Zhang, Bo‐Ping Feng, Tian‐Yi |
Author_xml | – sequence: 1 givenname: Huan orcidid: 0000-0003-3890-8914 surname: Liu fullname: Liu, Huan organization: Tsinghua University – sequence: 2 givenname: Ziqi surname: Yang fullname: Yang, Ziqi organization: Tsinghua University – sequence: 3 givenname: Bin surname: Su fullname: Su, Bin organization: Tsinghua University – sequence: 4 givenname: Yijin surname: Hao fullname: Hao, Yijin organization: University of Science and Technology Beijing – sequence: 5 givenname: Tian‐Yi surname: Feng fullname: Feng, Tian‐Yi organization: Tsinghua University – sequence: 6 givenname: Bo‐Ping orcidid: 0000-0003-1712-6868 surname: Zhang fullname: Zhang, Bo‐Ping email: bpzhang@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 7 givenname: Jing‐Feng surname: Li fullname: Li, Jing‐Feng email: jingfeng@mail.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNpdkMtOwzAQRS1UJNrClnUkNkUixXYetpdQtbQitEiUdeQkE3CVF3YCKis-gW_kS3BV1AWrOzM6c2d0B6hX1RUgdE7wmGBMr01ZFGOKqY8Z9_kR6pOQeG7IqegdaoJP0MCYDcYeoT7ro3yuXl6dNZQNaNl2Gn6-vheVgcqoVr2DMy0gbXVtWi1V5ayS1gpkjq1H91fOUl4uk5Vnd26lseMIZGabmQZwHhV81ql1LVVqTtFxLgsDZ386RM-z6Xoyd6PV3WJyE7mNh0PuBmHABEt8GaRZJjkmJOeZzHnOZBJQjpOQZUmakCzNpKBBwEVKCAs8mohcSiy8IRrtfRtdv3Vg2rhUJoWikBXUnYk9QgSjARbYohf_0E3d6cp-ZymfYXs8pJYSe-pDFbCNG61KqbcxwfEu83iXeXzIPH56iKJD5_0CMLN8KA |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202407848 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202407848 |
Genre | article |
GrantInformation_xml | – fundername: Science Center Project of NSFC funderid: 52388201 – fundername: National Natural Science Foundation of China funderid: 52032007; 52072028 – fundername: National Key Research and Development Program funderid: 2022YFB3807400 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p3068-565797b4a5cdda8011f8daf8f7ab5280b67dbcb1dcda925589c117532b9faa093 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 00:04:11 EDT 2025 Fri Jul 25 12:02:56 EDT 2025 Wed Jan 22 17:11:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p3068-565797b4a5cdda8011f8daf8f7ab5280b67dbcb1dcda925589c117532b9faa093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1712-6868 0000-0003-3890-8914 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smll.202407848 |
PQID | 3147001162 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3119725090 proquest_journals_3147001162 wiley_primary_10_1002_smll_202407848_SMLL202407848 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2022; 131 2023; 35 2023; 33 2019; 11 2018; 124 2023; 9 2010; 104 1995; 77 2020; 402 2004; 3 2011; 99 2020; 200 2020; 12 2024; 34 2023; 107 2024; 36 2018; 43 2017; 710 2019; 123 2022; 378 2012; 51 2018; 6 2010; 20 2019; 20 2017; 37 2023; 134 2018; 137 1993; 74 2022; 34 2019; 115 2018; 30 2022; 32 2022; 33 2018; 38 2019; 7 2023; 10 2023; 11 2023; 12 2018; 102 2024; 50 1994; 49 2017; 29 2024; 11 2024; 13 2019; 181 2012; 112 2004; 432 2023; 472 2023; 150 2023; 49 2023; 113 2019; 45 2000; 77 2022; 8 2022; 9 2022; 13 2019; 135 2022; 14 2020; 199 2019; 09 2015; 117 2018; 11 2016; 28 2019; 171 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 77 start-page: 1671 year: 1995 publication-title: J. Appl. Phys. – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 576 year: 2018 publication-title: MRS Bull. – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 11 start-page: 3556 year: 2023 publication-title: J. Mater. Chem. A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 112 year: 2012 publication-title: J. Appl. Phys. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 5391 year: 2019 publication-title: J. Mater. Chem., A – volume: 9 start-page: 959 year: 2023 publication-title: J. Materiomics – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 378 start-page: 1125 year: 2022 publication-title: Science – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 102 start-page: 2648 year: 2018 publication-title: J. Am. Ceram. Soc. – volume: 710 start-page: 130 year: 2017 publication-title: J. Alloys Compd. – volume: 49 year: 1994 publication-title: Phys. Rev. B. – volume: 9 start-page: 464 year: 2023 publication-title: J. Materiomics – volume: 28 start-page: 8519 year: 2016 publication-title: Adv. Mater. – volume: 13 start-page: 5086 year: 2022 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 131 year: 2022 publication-title: J. Appl. Phys. – volume: 12 start-page: 487 year: 2023 publication-title: J. Adv. Ceram. – volume: 9 start-page: 261 year: 2023 publication-title: J. Materiomics – volume: 171 start-page: 282 year: 2019 publication-title: Acta Mater. – volume: 432 start-page: 84 year: 2004 publication-title: Nature – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 150 start-page: 27 year: 2023 publication-title: J. Mater. Sci. Technol. – volume: 09 year: 2019 publication-title: J. Adv. Dielectri. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 50 year: 2024 publication-title: Ceram. Int. – volume: 472 year: 2023 publication-title: Chem. Eng. J. – volume: 20 year: 2019 publication-title: Sustainable Mater. Technol. – volume: 7 start-page: 4284 year: 2019 publication-title: J. Mater. Chem. C – volume: 3 start-page: 91 year: 2004 publication-title: Nat. Mater. – volume: 7 start-page: 2037 year: 2019 publication-title: J. Mater. Chem. C – volume: 11 year: 2023 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: J. Phys.: Condens. Matter – volume: 37 start-page: 2591 year: 2017 publication-title: J. Eur. Ceram. Soc. – volume: 77 start-page: 3824 year: 2000 publication-title: Appl. Phys. Lett. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 632 year: 2023 publication-title: J. Materiomics – volume: 35 start-page: 1659 year: 2015 publication-title: J. Eur. Ceram. Soc. – volume: 137 start-page: 184 year: 2018 publication-title: Mater. Des. – volume: 402 year: 2020 publication-title: Chem. Eng. J. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 11 start-page: 1079 year: 2024 publication-title: Mater. Horiz. – volume: 134 year: 2023 publication-title: J. Appl. Phys. – volume: 181 start-page: 238 year: 2019 publication-title: Acta Mater. – volume: 117 year: 2015 publication-title: J. Appl. Phys. – volume: 135 start-page: 1 year: 2019 publication-title: Mater. Sci. Eng. R: Rep. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 199 start-page: 542 year: 2020 publication-title: Acta Mater. – volume: 20 start-page: 1924 year: 2010 publication-title: Adv. Funct. Mater. – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 38 start-page: 3136 year: 2018 publication-title: J. Eur. Ceram. Soc. – volume: 115 year: 2019 publication-title: Appl. Phys. Lett. – volume: 113 year: 2023 publication-title: Nano Energy – volume: 11 start-page: 3531 year: 2018 publication-title: Energy Environ. Sci. – volume: 51 year: 2012 publication-title: Jpn. J. Appl. Phys. – volume: 107 year: 2023 publication-title: Phys. Rev. B. – volume: 49 year: 2023 publication-title: Ceram. Int. – volume: 74 start-page: 5129 year: 1993 publication-title: J. Appl. Phys. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 45 year: 2019 publication-title: Ceram. Int. – volume: 99 year: 2011 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 401 year: 2022 publication-title: J. Materiomics – volume: 7 start-page: 6914 year: 2019 publication-title: J. Mater. Chem. C – volume: 200 start-page: 35 year: 2020 publication-title: Acta Mater. – volume: 13 start-page: 364 year: 2024 publication-title: J. Adv. Ceram. |
SSID | ssj0031247 |
Score | 2.4636567 |
Snippet | Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)‐based lead‐free piezoceramics. However, more studies are conducted to increase its... Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2407848 |
SubjectTerms | Actuators defect engineering Defects Dipole moments Domains Electric fields electrostrain hierarchical domain configurations High temperature lead‐free piezoelectric Niobates Piezoelectric ceramics Piezoelectricity potassium‐sodium niobate Room temperature Stability Temperature temperature stability |
Title | High Temperature‐Insensitive Electrostrain Obtained in (K, Na)NbO3‐Based Lead‐Free Piezoceramics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202407848 https://www.proquest.com/docview/3147001162 https://www.proquest.com/docview/3119725090 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QTnDgjRgMFCQOINGta9O1PQJi4rkhHtJuldOk0gSMad0uO_ET-I38EuxkKxtHuCVqLbVpXH-O7c-MHUKoXAChHIhd4Qh0KhyJjgSNZEi1nDaJ5q7VuHwW152gM1PFb_khigM30gzzvyYFB5nXfkhD87dXCh2QRxIJqvalhC1CRQ8Ff5SPxst0V0Gb5RDx1pS10fVq8-Jz-HIWpRoz01xhMH1Am13yUh0NZTUd_-Ju_M8brLLlCQblp3bTrLEF3VtnSzPMhBsso_wP_qQRVFvS5a-Pzys6hs5NrhG_sN1zctNhgrclHTBoxXF8dHPCW3Dckm0fZc7QSCpOfTxx0hxoze-7eow2cwBv3TTfZM_Ni6fzS2fSksHpo28RORQkjUMpIEiVArRu9SxSkEVZCDLwIlc2QiVTWVepghi9lShODReoJ-MMwI39LVbqvff0NuOBDDItQqHrrja0fwgdfa0EelSgo9Qvs8r0kyQTvcoTvy5CEzvyyuyguIwaQWEO6On3Ed1DrdQQCLll5pn1T_qWuSOxHM1eQiufFCufPN7d3haznb8I7bJFGts8lworDQcjvYdoZSj3zY78BuXA5M0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIADb8R4BokDSHTr2pS2R0CbNtgGgiFxq5ImlRAw0LpdOPET-I38EuxkK48j3JK2kdokrv3ZzmeAfREqVwiuHBG73OEIKhyJQIJaMqSznDaJpt05btzy87tgnE1IZ2EsP0ThcCPJMP9rEnBySFe-WEPzp0eKHRAkiXg0CdNU1tugquuCQcpH9WXqq6DWcoh6a8zb6HqVn-N_WJjf7VSjaOoLIMevaPNLHsrDgSynr7_YG__1DYswPzJD2YndN0swoXvLMPeNnHAFMkoBYV2NdrXlXf54e2-SJzo36UasZgvo5KbIBLuU5GPQimH74OKIdcRhR176OOYU9aRiVMoTO_W-1uzqXr-i2uyLp_s0X4Xbeq171nBGVRmcF4QXkUNx0jiUXASpUgIVXDWLlMiiLBQy8CJXHodKprKqUiViBCxRnBo6UE_GmRBu7K_BVO-5p9eBBTLINA-5rrraMP-h9ehrxRFUCR2lfgm2xmuSjEQrT_wqD034yCvBXnEbhYIiHaKnn4f0DFVTQ1vILYFnFiB5seQdiaVp9hKa-aSY-eSm3WoVvY2_DNqFmUa33Upazc7FJszSdZv2sgVTg_5Qb6PxMpA7Znt-AjVO6Og |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8anYTYAQYMrQyGkTiAtLRp4jTOESgVf9qCGEjcIjt2pGqjVE176Wkfgc_IJ-E9u83KjuNmJ7GU2H55v_fHvwdwIGPtS8m1JxOfexyNCk-hIUEtFdNZTpdE0-01z-_55UP0sHCK3_FDlA43kgz7vyYBH-q8_pc0tHj8TaEDskgEF0vwkTd9Qfu6dVsSSIWovWx5FVRaHjFvzWkb_aD-dvwbgLkIU62eaa-BnL-hSy_5VZuMVS2b_kPe-J5P-AyrMxDKjt2uWYcPZrABnxaoCTchpwQQdmcQVTvW5Zc_zxfkhy5sshE7c-VzCltigl0r8jAYzbB9ePWD9eRRT12HOOYEtaRmVMgTO-2RMeymb6aoNEfysZ8VX-C-fXZ3eu7NajJ4QzQuhEdR0iRWXEaZ1hLVWyMXWuYij6WKAuGrZqxVpho60zJBc0UkmSUDDVSSS-kn4RZUBk8D8xVYpKLc8Jibhm8s7x9ix9BoXMamNCILq7AzX5J0JlhFGjZ4bINHQRX2y9soEhTnkAPzNKFnqJYaIiG_CoGd_3ToqDtSR9IcpDTzaTnz6c9up1P2tv9n0B4s37Taaeeid_UNVuiyy3nZgcp4NDG7iFzG6rvdnK-qkeeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Temperature%E2%80%90Insensitive+Electrostrain+Obtained+in+%28K%2C+Na%29NbO3%E2%80%90Based+Lead%E2%80%90Free+Piezoceramics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Huan&rft.au=Yang%2C+Ziqi&rft.au=Su%2C+Bin&rft.au=Hao%2C+Yijin&rft.date=2024-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202407848&rft.externalDBID=10.1002%252Fsmll.202407848&rft.externalDocID=SMLL202407848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |