Interfacial Engineering of MoxSy via Boron‐Doping for Electrochemical N2‐to‐NH3 Conversion
The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) sol...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 51; pp. e2405578 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of −0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron‐deficient B sites. This work demonstrates a significant exploration, showing that Mo‐based electrocatalysts are capable of facilitating artificial N2 fixation.
A rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst demonstrates improved N2 reduction at an onset potential of −0.15 V versus. RHE, achieving Faradaic efficiencies of 78% and an NH3 yield of 5.83 µg h−1 cm−2 in 0.05 m H2SO4(aq). The outstanding NRR performance is attributed to the phase transition of MoxSy, Mo sites, and B doping, which promotes N2 reduction to NH3. |
---|---|
AbstractList | The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of −0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron‐deficient B sites. This work demonstrates a significant exploration, showing that Mo‐based electrocatalysts are capable of facilitating artificial N2 fixation.
A rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst demonstrates improved N2 reduction at an onset potential of −0.15 V versus. RHE, achieving Faradaic efficiencies of 78% and an NH3 yield of 5.83 µg h−1 cm−2 in 0.05 m H2SO4(aq). The outstanding NRR performance is attributed to the phase transition of MoxSy, Mo sites, and B doping, which promotes N2 reduction to NH3. The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of -0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron-deficient B sites. This work demonstrates a significant exploration, showing that Mo-based electrocatalysts are capable of facilitating artificial N2 fixation.The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of -0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron-deficient B sites. This work demonstrates a significant exploration, showing that Mo-based electrocatalysts are capable of facilitating artificial N2 fixation. The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of −0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron‐deficient B sites. This work demonstrates a significant exploration, showing that Mo‐based electrocatalysts are capable of facilitating artificial N2 fixation. |
Author | Azofra, Luis Miguel Hedhili, Mohamed. N. Cavallo, Luigi Alsabban, Merfat M. Peramaiah, Karthik Ahmad, Rafia Huang, Kuo‐Wei Wehbe, Nimer Ramalingam, Vinoth Genovese, Alessandro |
Author_xml | – sequence: 1 givenname: Merfat M. orcidid: 0009-0001-5578-7432 surname: Alsabban fullname: Alsabban, Merfat M. email: mmalsaban@uj.edu.sa organization: University of Jeddah – sequence: 2 givenname: Karthik surname: Peramaiah fullname: Peramaiah, Karthik organization: Technology and Research (ASTAR) – sequence: 3 givenname: Alessandro surname: Genovese fullname: Genovese, Alessandro organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Rafia surname: Ahmad fullname: Ahmad, Rafia organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Luis Miguel surname: Azofra fullname: Azofra, Luis Miguel organization: Campus de Tafira – sequence: 6 givenname: Vinoth surname: Ramalingam fullname: Ramalingam, Vinoth organization: Robert Gordon University – sequence: 7 givenname: Mohamed. N. surname: Hedhili fullname: Hedhili, Mohamed. N. organization: King Abdullah University of Science and Technology – sequence: 8 givenname: Nimer surname: Wehbe fullname: Wehbe, Nimer organization: King Abdullah University of Science and Technology – sequence: 9 givenname: Luigi surname: Cavallo fullname: Cavallo, Luigi organization: King Abdullah University of Science and Technology – sequence: 10 givenname: Kuo‐Wei surname: Huang fullname: Huang, Kuo‐Wei email: hkw@kaust.edu.sa organization: Technology and Research (ASTAR) |
BookMark | eNpdkDFPwzAQhS1UJEphZY7EwpJyjh07HktbaKW2DMAcXMcprlI7OGmhGz-B38gvIVFRB5Z7Or3vTk_vHHWssxqhKwx9DBDdymwj-xFEFOKYJyeoi-MIhxRE3EFdECQOBaPJGTqvqjUACAasi16nttY-l8rIIhjblbFae2NXgcuDuft82gc7I4M75539-foeubL1cueDcaFV7Z160xujmttF1Pi1a8ZiQoKhszvtK-PsBTrNZVHpyz_toZf78fNwEs4eH6bDwSwsCbAkjCgVipCcS7JkbbiMCaox5iAzkmumuOZKLJdJznhOVRZjTonEcZLwhgVJeujm8Lf07n2rqzrdmErpopBWu22VEhyRBLjAuEGv_6Frt_W2SddQlDEGEWkpcaA-TKH3aenNRvp9iiFt207bttNj2-lgNB8cN_ILTkd5GA |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202405578 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202405578 |
Genre | article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-p3068-2449c33f7a3b60096d694e1170ad3fe6c7e7c9bb8f67f4cd51743a1588796d0a3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:58:19 EDT 2025 Fri Jul 25 22:59:31 EDT 2025 Wed Jan 22 17:11:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p3068-2449c33f7a3b60096d694e1170ad3fe6c7e7c9bb8f67f4cd51743a1588796d0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0001-5578-7432 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202405578 |
PQID | 3146660231 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3123807911 proquest_journals_3146660231 wiley_primary_10_1002_adma_202405578_ADMA202405578 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2019; 7 2017; 7 2021; 7 2021; 5 2019; 4 2019; 3 2021; 4 2023; 6 2019; 11 2023; 15 2019; 10 2023; 8 2021; 29 2008; 602 1999; 22 2020; 59 2020; 10 2011; 14 2019; 141 2024; 17 2001; 202 2021; 14 2017; 53 2018; 8 2014; 5 2020; 4 2021; 12 2021; 33 2015; 44 2018; 235 2022; 12 2022; 13 2024; 20 2018; 30 2019; 2162 1984; 18 2021; 394 2015; 91 2012; 6 1998; 74 2018; 11 2008; 451 2018; 54 2016; 8 |
References_xml | – volume: 4 start-page: 1432 year: 2019 publication-title: ACS Energy. Lett. – volume: 11 start-page: 2439 year: 2019 publication-title: Nanoscale – volume: 14 start-page: 672 year: 2021 publication-title: Energy. Environ. Sci. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 602 start-page: 3338 year: 2008 publication-title: Surf. Sci. – volume: 451 start-page: 293 year: 2008 publication-title: Nature – volume: 394 start-page: 353 year: 2021 publication-title: J. Catal. – volume: 235 start-page: 84 year: 2018 publication-title: Appl. Catal. B – volume: 29 year: 2021 publication-title: Curr. Opin. Electrochem. – volume: 12 start-page: 4353 year: 2021 publication-title: Nat. Commun. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces. – volume: 2162 year: 2019 publication-title: AIP Conf. Proc. – volume: 74 start-page: 131 year: 1998 publication-title: Ultramicroscopy – volume: 8 start-page: 3251 year: 2023 publication-title: ACS Energy. Lett. – volume: 17 start-page: 2682 year: 2024 publication-title: Energy. Environ. Sci. – volume: 59 start-page: 3511 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: P267 year: 2019 publication-title: ECS J. Solid. State. Sci. Technol. – volume: 11 start-page: 45 year: 2018 publication-title: Energy. Environ. Sci. – volume: 10 start-page: 3898 year: 2019 publication-title: Nat. Commun. – volume: 91 year: 2015 publication-title: Phys. Rev. B Condens. Matter. Mater. Phys. – volume: 202 start-page: 100 year: 2001 publication-title: J. Catal. – volume: 4 start-page: 10 year: 2021 publication-title: Commun. Chem. – volume: 15 start-page: 4033 year: 2023 publication-title: ACS Appl. Mater. Interfaces. – volume: 8 year: 2018 publication-title: Adv. Energy. Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 12 start-page: 8474 year: 2022 publication-title: RSC Adv. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 7 start-page: 9145 year: 2019 publication-title: J. Mater. Chem. A – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 13 start-page: 9498 year: 2022 publication-title: Chem. Sci. – volume: 10 start-page: 341 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 7311 year: 2012 publication-title: ACS Nano – volume: 6 year: 2023 publication-title: ACS Appl. Energy. Mater. – volume: 53 start-page: 602 year: 2017 publication-title: Inorg. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces. – volume: 7 start-page: 1431 year: 2021 publication-title: Chem – volume: 44 start-page: 2702 year: 2015 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 1235 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 607 year: 1999 publication-title: Bull. Mater. Sci. – volume: 20 year: 2024 publication-title: Small – volume: 18 start-page: 1143 year: 1984 publication-title: Water Res. – volume: 14 start-page: 1194 year: 2021 publication-title: Energy. Environ. Sci. – volume: 7 start-page: 706 year: 2017 publication-title: ACS Catal. – volume: 5 start-page: 4615 year: 2014 publication-title: Chem. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy. Mater. – volume: 4 start-page: 16 year: 2020 publication-title: npj 2D mater. Appl. – volume: 5 start-page: 5954 year: 2021 publication-title: Mater. Chem. Front. |
SSID | ssj0009606 |
Score | 2.525905 |
Snippet | The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2405578 |
SubjectTerms | Ambient temperature Ammonia Aqueous electrolytes Boron Chemical reduction Chemical synthesis DFT calculation Doping electrocatalysis Electrocatalysts Electron density Haber Bosch process Hydrogen evolution reactions Molybdenum nitrogen reduction Nitrogenation Sulfuric acid |
Title | Interfacial Engineering of MoxSy via Boron‐Doping for Electrochemical N2‐to‐NH3 Conversion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202405578 https://www.proquest.com/docview/3146660231 https://www.proquest.com/docview/3123807911 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgRxQKMhLXbvGS5Fi6qEJqD0Cl3oLtxBJCSiraIuDEJ_CNfAkzTpeUI1yiRLYjZzIzfh6Pnwm5DhSMiTYwVdVkosoNt2BSHCauTDHR1L4ntMvyHcr-iN-Oxbiwiz_nh1gF3NAynL9GA1d6Wl-ThqrY8QbBiCRA68AJY8IWoqK7NX8UwnNHtgf9CCUPlqyNDa--2XwDXxZRqhtmentELTuYZ5c81-YzXTMfv7gb__MF-2R3gUFpK1eaA7KVpIdkp8BMeEQeXaTQKgyo00IJzSwdZG_37_T1SdEbpD_4_vzquF1XFPAv7ebH6pgFDwEdelA-y-Ay7DPaxhx3F6A7JqNe96Hdry4OY6hOYFYB1sR5aBizvmJaomRjGfIEz61RMbOJNH7im1DrwErfchMjAzZTTQFODOo2FDshpTRLk1NCJbxBMOVZ7hkujA1YDBUbSeDr2ABeK5PK8mdEC4uaRgw0SEpkqyuTq1Ux2AIucKg0yeZYx0P-fPDfZeI5yUeTnLMjytmZvQhlHq1kHrU6g9bq6ewvjc7JNt7nGS4VUpq9zJMLwCkzfel08Qc-1-G8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIBPPAZg4I0oFDASa6GNHScdSwsq0HbgIbEF24klhNQgaBEw8RP4jfwS7pwmtIywRErsRM7lzj5fzp8BDkKFY6INTUXVuF8RRlg0KYETV664X9OB52uX5duT7Rtxfuvn2YS0FibjQxQBN7IM11-TgVNA-uiHGqpiBw7CIclHtZuGWdrWm_D5rcsfghQ56A63hy2pSxHm3MaqdzR5_4SHOe6nuoHmdAl03sQsv-ThcDjQh-b9F73xX--wDIsjN5Q1Mr1ZgamkvwoLY3DCNbhzwUKrKKbOxkpYalk3fb16Yy_3ih0TAeHr47PlFl4xdIHZSbazjhmhCFjPw_JBiodem7Mmpbm7GN063JyeXDfbldF-DJVHnFigQQlRN5zbQHEtSbSxrIuEtq5RMbeJNEESmLrWoZWBFSYmCDZXNR_7MaxbVXwDZvppP9kEJvEJPleeFZ4RvrEhj7FiNQkDHRt02UpQzr9GNDKq54ijEklJwLoS7BfFaA70j0P1k3RIdTxC6GMXXgLPiT56zLAdUQZo9iKSeVTIPGq0uo3ibOsvN-3BXPu624k6Z72LbZin61nCSxlmBk_DZAfdloHedYr5DWVl5dg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEEBHUCQEB3ZEoYCRuHaLHSc5li4qSysEVOotOE4sIaSkghYBJz6Bb-RLGDtpWjjCJVJiJ3ImM_Z4Mn4GOHUFjonKlWVRp3aZSabQpBhOXKmgdj1wLDswWb593h2wi6E9nFvFn_Ih8oCbtgzTX2sDH4WqOoOGitBwg3BEslHrFmGJ8ZqnN29o3cwAUto_N7Q9bIjHmTvFNtas6s_7fziY826qGWc66yCmLUzTSx4rk3FQke-_4I3_eYUNWMucUNJItWYTFqJ4C1bn0ITbcG9ChUroiDqZKyGJIr3k9faNvDwIcqb5B18fny2z7IqgA0za6b46MgMRkL6F5eMED_0uJU2d5G4idDsw6LTvmt1ythtDeYTTCjQnxjxJqXIEDbiWbMg9FumNa0RIVcSlEznSCwJXcUcxGWoENhV1G3sxrFsTdBcKcRJHe0A4PsGmwlLMksyWyqUhVqxFrhOEEh22IpSmH8PPTOrZp6hCnGtcXRFO8mI0Bv2HQ8RRMtF1LA3Qxw68CJaRvD9KoR1-ime2fC1zP5e532j1GvnZ_l9uOobl61bHvzrvXx7Air6cZruUoDB-mkSH6LOMgyOjlt_LauSH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Engineering+of+MoxSy+via+Boron%E2%80%90Doping+for+Electrochemical+N2%E2%80%90to%E2%80%90NH3+Conversion&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Alsabban%2C+Merfat+M&rft.au=Peramaiah%2C+Karthik&rft.au=Genovese%2C+Alessandro&rft.au=Ahmad%2C+Rafia&rft.date=2024-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=51&rft_id=info:doi/10.1002%2Fadma.202405578&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |