Interfacial Engineering of MoxSy via Boron‐Doping for Electrochemical N2‐to‐NH3 Conversion

The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) sol...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 51; pp. e2405578 - n/a
Main Authors Alsabban, Merfat M., Peramaiah, Karthik, Genovese, Alessandro, Ahmad, Rafia, Azofra, Luis Miguel, Ramalingam, Vinoth, Hedhili, Mohamed. N., Wehbe, Nimer, Cavallo, Luigi, Huang, Kuo‐Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to  NH3 with an onset potential of −0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron‐deficient B sites. This work demonstrates a significant exploration, showing that Mo‐based electrocatalysts are capable of facilitating artificial N2 fixation. A rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst demonstrates improved N2 reduction at an onset potential of −0.15 V versus. RHE, achieving Faradaic efficiencies of 78% and an NH3 yield of 5.83 µg h−1 cm−2 in 0.05 m H2SO4(aq). The outstanding NRR performance is attributed to the phase transition of MoxSy, Mo sites, and B doping, which promotes N2 reduction to NH3.
AbstractList The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to  NH3 with an onset potential of −0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron‐deficient B sites. This work demonstrates a significant exploration, showing that Mo‐based electrocatalysts are capable of facilitating artificial N2 fixation. A rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst demonstrates improved N2 reduction at an onset potential of −0.15 V versus. RHE, achieving Faradaic efficiencies of 78% and an NH3 yield of 5.83 µg h−1 cm−2 in 0.05 m H2SO4(aq). The outstanding NRR performance is attributed to the phase transition of MoxSy, Mo sites, and B doping, which promotes N2 reduction to NH3.
The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of -0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron-deficient B sites. This work demonstrates a significant exploration, showing that Mo-based electrocatalysts are capable of facilitating artificial N2 fixation.The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of -0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron-deficient B sites. This work demonstrates a significant exploration, showing that Mo-based electrocatalysts are capable of facilitating artificial N2 fixation.
The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber–Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N2) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH3 production rates and Faradaic efficiency (FE). Herein, a rationally designed boron‐doped molybdenum sulfide (B‐Mo‐MoxSy) electrocatalyst is reported that effectively enhances N2 reduction to NH3 with an onset potential of −0.15 V versus RHE, achieving a FE of 78% and an NH3 yield of 5.83 µg h⁻¹ cm⁻2 in a 0.05 m H2SO4(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron‐deficient B sites. This work demonstrates a significant exploration, showing that Mo‐based electrocatalysts are capable of facilitating artificial N2 fixation.
Author Azofra, Luis Miguel
Hedhili, Mohamed. N.
Cavallo, Luigi
Alsabban, Merfat M.
Peramaiah, Karthik
Ahmad, Rafia
Huang, Kuo‐Wei
Wehbe, Nimer
Ramalingam, Vinoth
Genovese, Alessandro
Author_xml – sequence: 1
  givenname: Merfat M.
  orcidid: 0009-0001-5578-7432
  surname: Alsabban
  fullname: Alsabban, Merfat M.
  email: mmalsaban@uj.edu.sa
  organization: University of Jeddah
– sequence: 2
  givenname: Karthik
  surname: Peramaiah
  fullname: Peramaiah, Karthik
  organization: Technology and Research (ASTAR)
– sequence: 3
  givenname: Alessandro
  surname: Genovese
  fullname: Genovese, Alessandro
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Rafia
  surname: Ahmad
  fullname: Ahmad, Rafia
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Luis Miguel
  surname: Azofra
  fullname: Azofra, Luis Miguel
  organization: Campus de Tafira
– sequence: 6
  givenname: Vinoth
  surname: Ramalingam
  fullname: Ramalingam, Vinoth
  organization: Robert Gordon University
– sequence: 7
  givenname: Mohamed. N.
  surname: Hedhili
  fullname: Hedhili, Mohamed. N.
  organization: King Abdullah University of Science and Technology
– sequence: 8
  givenname: Nimer
  surname: Wehbe
  fullname: Wehbe, Nimer
  organization: King Abdullah University of Science and Technology
– sequence: 9
  givenname: Luigi
  surname: Cavallo
  fullname: Cavallo, Luigi
  organization: King Abdullah University of Science and Technology
– sequence: 10
  givenname: Kuo‐Wei
  surname: Huang
  fullname: Huang, Kuo‐Wei
  email: hkw@kaust.edu.sa
  organization: Technology and Research (ASTAR)
BookMark eNpdkDFPwzAQhS1UJEphZY7EwpJyjh07HktbaKW2DMAcXMcprlI7OGmhGz-B38gvIVFRB5Z7Or3vTk_vHHWssxqhKwx9DBDdymwj-xFEFOKYJyeoi-MIhxRE3EFdECQOBaPJGTqvqjUACAasi16nttY-l8rIIhjblbFae2NXgcuDuft82gc7I4M75539-foeubL1cueDcaFV7Z160xujmttF1Pi1a8ZiQoKhszvtK-PsBTrNZVHpyz_toZf78fNwEs4eH6bDwSwsCbAkjCgVipCcS7JkbbiMCaox5iAzkmumuOZKLJdJznhOVRZjTonEcZLwhgVJeujm8Lf07n2rqzrdmErpopBWu22VEhyRBLjAuEGv_6Frt_W2SddQlDEGEWkpcaA-TKH3aenNRvp9iiFt207bttNj2-lgNB8cN_ILTkd5GA
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202405578
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202405578
Genre article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p3068-2449c33f7a3b60096d694e1170ad3fe6c7e7c9bb8f67f4cd51743a1588796d0a3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:58:19 EDT 2025
Fri Jul 25 22:59:31 EDT 2025
Wed Jan 22 17:11:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3068-2449c33f7a3b60096d694e1170ad3fe6c7e7c9bb8f67f4cd51743a1588796d0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-5578-7432
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202405578
PQID 3146660231
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_3123807911
proquest_journals_3146660231
wiley_primary_10_1002_adma_202405578_ADMA202405578
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2019; 7
2017; 7
2021; 7
2021; 5
2019; 4
2019; 3
2021; 4
2023; 6
2019; 11
2023; 15
2019; 10
2023; 8
2021; 29
2008; 602
1999; 22
2020; 59
2020; 10
2011; 14
2019; 141
2024; 17
2001; 202
2021; 14
2017; 53
2018; 8
2014; 5
2020; 4
2021; 12
2021; 33
2015; 44
2018; 235
2022; 12
2022; 13
2024; 20
2018; 30
2019; 2162
1984; 18
2021; 394
2015; 91
2012; 6
1998; 74
2018; 11
2008; 451
2018; 54
2016; 8
References_xml – volume: 4
  start-page: 1432
  year: 2019
  publication-title: ACS Energy. Lett.
– volume: 11
  start-page: 2439
  year: 2019
  publication-title: Nanoscale
– volume: 14
  start-page: 672
  year: 2021
  publication-title: Energy. Environ. Sci.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 602
  start-page: 3338
  year: 2008
  publication-title: Surf. Sci.
– volume: 451
  start-page: 293
  year: 2008
  publication-title: Nature
– volume: 394
  start-page: 353
  year: 2021
  publication-title: J. Catal.
– volume: 235
  start-page: 84
  year: 2018
  publication-title: Appl. Catal. B
– volume: 29
  year: 2021
  publication-title: Curr. Opin. Electrochem.
– volume: 12
  start-page: 4353
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 2162
  year: 2019
  publication-title: AIP Conf. Proc.
– volume: 74
  start-page: 131
  year: 1998
  publication-title: Ultramicroscopy
– volume: 8
  start-page: 3251
  year: 2023
  publication-title: ACS Energy. Lett.
– volume: 17
  start-page: 2682
  year: 2024
  publication-title: Energy. Environ. Sci.
– volume: 59
  start-page: 3511
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: P267
  year: 2019
  publication-title: ECS J. Solid. State. Sci. Technol.
– volume: 11
  start-page: 45
  year: 2018
  publication-title: Energy. Environ. Sci.
– volume: 10
  start-page: 3898
  year: 2019
  publication-title: Nat. Commun.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B Condens. Matter. Mater. Phys.
– volume: 202
  start-page: 100
  year: 2001
  publication-title: J. Catal.
– volume: 4
  start-page: 10
  year: 2021
  publication-title: Commun. Chem.
– volume: 15
  start-page: 4033
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 8
  year: 2018
  publication-title: Adv. Energy. Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 12
  start-page: 8474
  year: 2022
  publication-title: RSC Adv.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 7
  start-page: 9145
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 13
  start-page: 9498
  year: 2022
  publication-title: Chem. Sci.
– volume: 10
  start-page: 341
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7311
  year: 2012
  publication-title: ACS Nano
– volume: 6
  year: 2023
  publication-title: ACS Appl. Energy. Mater.
– volume: 53
  start-page: 602
  year: 2017
  publication-title: Inorg. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 7
  start-page: 1431
  year: 2021
  publication-title: Chem
– volume: 44
  start-page: 2702
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 1235
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 607
  year: 1999
  publication-title: Bull. Mater. Sci.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 18
  start-page: 1143
  year: 1984
  publication-title: Water Res.
– volume: 14
  start-page: 1194
  year: 2021
  publication-title: Energy. Environ. Sci.
– volume: 7
  start-page: 706
  year: 2017
  publication-title: ACS Catal.
– volume: 5
  start-page: 4615
  year: 2014
  publication-title: Chem. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy. Mater.
– volume: 4
  start-page: 16
  year: 2020
  publication-title: npj 2D mater. Appl.
– volume: 5
  start-page: 5954
  year: 2021
  publication-title: Mater. Chem. Front.
SSID ssj0009606
Score 2.525905
Snippet The electrocatalytic synthesis of ammonia (NH3) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2405578
SubjectTerms Ambient temperature
Ammonia
Aqueous electrolytes
Boron
Chemical reduction
Chemical synthesis
DFT calculation
Doping
electrocatalysis
Electrocatalysts
Electron density
Haber Bosch process
Hydrogen evolution reactions
Molybdenum
nitrogen reduction
Nitrogenation
Sulfuric acid
Title Interfacial Engineering of MoxSy via Boron‐Doping for Electrochemical N2‐to‐NH3 Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202405578
https://www.proquest.com/docview/3146660231
https://www.proquest.com/docview/3123807911
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgRxQKMhLXbvGS5Fi6qEJqD0Cl3oLtxBJCSiraIuDEJ_CNfAkzTpeUI1yiRLYjZzIzfh6Pnwm5DhSMiTYwVdVkosoNt2BSHCauTDHR1L4ntMvyHcr-iN-Oxbiwiz_nh1gF3NAynL9GA1d6Wl-ThqrY8QbBiCRA68AJY8IWoqK7NX8UwnNHtgf9CCUPlqyNDa--2XwDXxZRqhtmentELTuYZ5c81-YzXTMfv7gb__MF-2R3gUFpK1eaA7KVpIdkp8BMeEQeXaTQKgyo00IJzSwdZG_37_T1SdEbpD_4_vzquF1XFPAv7ebH6pgFDwEdelA-y-Ay7DPaxhx3F6A7JqNe96Hdry4OY6hOYFYB1sR5aBizvmJaomRjGfIEz61RMbOJNH7im1DrwErfchMjAzZTTQFODOo2FDshpTRLk1NCJbxBMOVZ7hkujA1YDBUbSeDr2ABeK5PK8mdEC4uaRgw0SEpkqyuTq1Ux2AIucKg0yeZYx0P-fPDfZeI5yUeTnLMjytmZvQhlHq1kHrU6g9bq6ewvjc7JNt7nGS4VUpq9zJMLwCkzfel08Qc-1-G8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIBPPAZg4I0oFDASa6GNHScdSwsq0HbgIbEF24klhNQgaBEw8RP4jfwS7pwmtIywRErsRM7lzj5fzp8BDkKFY6INTUXVuF8RRlg0KYETV664X9OB52uX5duT7Rtxfuvn2YS0FibjQxQBN7IM11-TgVNA-uiHGqpiBw7CIclHtZuGWdrWm_D5rcsfghQ56A63hy2pSxHm3MaqdzR5_4SHOe6nuoHmdAl03sQsv-ThcDjQh-b9F73xX--wDIsjN5Q1Mr1ZgamkvwoLY3DCNbhzwUKrKKbOxkpYalk3fb16Yy_3ih0TAeHr47PlFl4xdIHZSbazjhmhCFjPw_JBiodem7Mmpbm7GN063JyeXDfbldF-DJVHnFigQQlRN5zbQHEtSbSxrIuEtq5RMbeJNEESmLrWoZWBFSYmCDZXNR_7MaxbVXwDZvppP9kEJvEJPleeFZ4RvrEhj7FiNQkDHRt02UpQzr9GNDKq54ijEklJwLoS7BfFaA70j0P1k3RIdTxC6GMXXgLPiT56zLAdUQZo9iKSeVTIPGq0uo3ibOsvN-3BXPu624k6Z72LbZin61nCSxlmBk_DZAfdloHedYr5DWVl5dg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEEBHUCQEB3ZEoYCRuHaLHSc5li4qSysEVOotOE4sIaSkghYBJz6Bb-RLGDtpWjjCJVJiJ3ImM_Z4Mn4GOHUFjonKlWVRp3aZSabQpBhOXKmgdj1wLDswWb593h2wi6E9nFvFn_Ih8oCbtgzTX2sDH4WqOoOGitBwg3BEslHrFmGJ8ZqnN29o3cwAUto_N7Q9bIjHmTvFNtas6s_7fziY826qGWc66yCmLUzTSx4rk3FQke-_4I3_eYUNWMucUNJItWYTFqJ4C1bn0ITbcG9ChUroiDqZKyGJIr3k9faNvDwIcqb5B18fny2z7IqgA0za6b46MgMRkL6F5eMED_0uJU2d5G4idDsw6LTvmt1ythtDeYTTCjQnxjxJqXIEDbiWbMg9FumNa0RIVcSlEznSCwJXcUcxGWoENhV1G3sxrFsTdBcKcRJHe0A4PsGmwlLMksyWyqUhVqxFrhOEEh22IpSmH8PPTOrZp6hCnGtcXRFO8mI0Bv2HQ8RRMtF1LA3Qxw68CJaRvD9KoR1-ime2fC1zP5e532j1GvnZ_l9uOobl61bHvzrvXx7Air6cZruUoDB-mkSH6LOMgyOjlt_LauSH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Engineering+of+MoxSy+via+Boron%E2%80%90Doping+for+Electrochemical+N2%E2%80%90to%E2%80%90NH3+Conversion&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Alsabban%2C+Merfat+M&rft.au=Peramaiah%2C+Karthik&rft.au=Genovese%2C+Alessandro&rft.au=Ahmad%2C+Rafia&rft.date=2024-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=51&rft_id=info:doi/10.1002%2Fadma.202405578&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon