Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment

Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI)...

Full description

Saved in:
Bibliographic Details
Published inBrain imaging and behavior Vol. 10; no. 4; pp. 1148 - 1159
Main Authors Zu, Chen, Jie, Biao, Liu, Mingxia, Chen, Songcan, Shen, Dinggang, Zhang, Daoqiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1931-7557
1931-7565
1931-7565
DOI10.1007/s11682-015-9480-7

Cover

Abstract Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI.
AbstractList Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer's disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI.
Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer's disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI.Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer's disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI.
Author Liu, Mingxia
Zhang, Daoqiang
Shen, Dinggang
Chen, Songcan
Zu, Chen
Jie, Biao
Author_xml – sequence: 1
  givenname: Chen
  surname: Zu
  fullname: Zu, Chen
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Biao
  surname: Jie
  fullname: Jie, Biao
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, School of Mathematics and Computer Science, Anhui Normal University
– sequence: 3
  givenname: Mingxia
  surname: Liu
  fullname: Liu, Mingxia
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Songcan
  surname: Chen
  fullname: Chen, Songcan
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Department of Brain and Cognitive Engineering, Korea University
– sequence: 6
  givenname: Daoqiang
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26572145$$D View this record in MEDLINE/PubMed
BookMark eNqNks1qFjEUhoNU7I9egBsJuHEzmt-ZzEYoRW3hAze6DufLzzQ1k3wmM4W6EG_D2_NKTPlqqa5cnQPvw3vOSd5jdJBycgg9p-Q1JWR4UyntFesIld0oFOmGR-iIjpx2g-zlwX0vh0N0XOsVIVKokT5Bh6yXA6NCHqHvG9i62EEMU3IWz2tcQrdA_YK9g2UtDkcHJYU0YZ_LXp-zhYhNhFqDDwaWkBPOHp_Gb5cuzK78-vGzYhuqg-owpGYbosUmTyks4drhMO8glNml5Sl67CFW9-yunqDP7999OjvvNh8_XJydbrodJ2TpttIY560ZR68It0wRAba3UoJgXAnac7AD555zkNzILTHghRG23e88E4SfoLd73926nZ01bXSBqHclzFBudIag_1ZSuNRTvtZC9aqNbAav7gxK_rq6uug5VONihOTyWjVVUhIlxED-A2V9z4lUsqEv_0Gv8lpSe4lGiZ7JkRHVqBcPl7_f-s8vNoDtgdqkNLnywIbo26jofVR0i4q-jYoe-G_rlrR6
Cites_doi 10.1212/01.WNL.0000055847.17752.E6
10.1016/j.neuroimage.2011.01.008
10.1002/ana.21610
10.1093/brain/awm016
10.1523/JNEUROSCI.3785-09.2010
10.1212/01.wnl.0000271375.37131.04
10.1016/j.neuroimage.2011.10.003
10.1109/42.668698
10.1016/j.neuroimage.2012.04.056
10.1016/j.neuroimage.2009.05.036
10.1034/j.1600-0404.107.s179.10.x
10.1016/j.neuroimage.2012.09.065
10.1109/42.906424
10.1007/s00259-008-0773-6
10.1016/j.neuroimage.2013.09.015
10.1001/archneur.56.3.303
10.1093/brain/awp123
10.1007/s00415-007-0610-z
10.1001/archneur.58.3.397
10.1016/j.neuroimage.2012.03.059
10.1016/S0197-4580(01)00230-5
10.1093/brain/awm177
10.1212/WNL.0b013e3181e8e8b8
10.1007/s11222-008-9111-x
10.1016/j.neurobiolaging.2008.08.013
10.1007/s00234-008-0463-x
10.1016/j.neuroimage.2011.09.069
10.1016/j.neuroimage.2010.10.081
10.1002/hbm.22642
10.1002/sim.1719
10.1016/S1474-4422(09)70299-6
10.1109/TMI.2006.886812
10.1111/j.1467-9868.2005.00532.x
10.1001/jama.2009.1064
10.1016/j.jalz.2007.04.381
10.1002/hbm.10062
10.1148/radiol.2511080924
10.1016/j.neurobiolaging.2010.05.003
10.1007/s00259-008-0869-z
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Brain Imaging and Behavior is a copyright of Springer, 2016.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Brain Imaging and Behavior is a copyright of Springer, 2016.
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
88G
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s11682-015-9480-7
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Neurosciences Abstracts
MEDLINE - Academic


ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1931-7565
EndPage 1159
ExternalDocumentID PMC4868803
4271162471
26572145
10_1007_s11682_015_9480_7
Genre Validation Study
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the NUAA Fundamental Research Funds
  grantid: NE2013105
– fundername: National Natural Science Foundation of China
  grantid: 61170151
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Institutes of Health
  grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG042599
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: the Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20123218110009
– fundername: National Natural Science Foundation of China
  grantid: 61422204; 61473149
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: the Jiangsu Natural Science Foundation for Distinguished Young Scholar
  grantid: BK20130034
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
GroupedDBID ---
-55
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
7RV
7X7
875
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
ESBYG
EX3
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LK8
LLZTM
M1P
M2M
M4Y
M7P
MA-
NAPCQ
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9L
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBS
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z82
Z83
ZMTXR
ZOVNA
~A9
~KM
AAPKM
ABDBE
AHPBZ
AYFIA
CGR
CUY
CVF
ECM
EIF
NPM
PHGZT
7TK
7XB
8FK
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
K9.
PHGZM
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-p300t-b5ccefdc99f803d2804ad6d55a42384163ad733f33a53c5b0caf4c4d931ef2403
IEDL.DBID U2A
ISSN 1931-7557
1931-7565
IngestDate Thu Aug 21 18:16:55 EDT 2025
Sun Aug 24 03:06:17 EDT 2025
Thu Sep 04 21:45:46 EDT 2025
Mon Sep 08 01:11:30 EDT 2025
Thu Apr 03 07:04:09 EDT 2025
Fri Feb 21 02:37:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multimodal classification
Feature selection
Label alignment
Alzheimer’s disease
Mild cognitive impairment
Multi-task learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p300t-b5ccefdc99f803d2804ad6d55a42384163ad733f33a53c5b0caf4c4d931ef2403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 26572145
PQID 1846259208
PQPubID 1486349
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868803
proquest_miscellaneous_1855084470
proquest_miscellaneous_1826630585
proquest_journals_1846259208
pubmed_primary_26572145
springer_journals_10_1007_s11682_015_9480_7
PublicationCentury 2000
PublicationDate 20161200
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Indianapolis
PublicationTitle Brain imaging and behavior
PublicationTitleAbbrev Brain Imaging and Behavior
PublicationTitleAlternate Brain Imaging Behav
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Du, Schuff, Kramer, Rosen, Gorno-Tempini, Rankin (CR12) 2007; 130
Mattsson, Zetterberg, Hansson, Andreasen, Parnetti, Jonsson (CR30) 2009; 302
Jie, Zhang, Cheng, Shen (CR23) 2015; 36
CR34
Leon, Mosconi, Li, Santi, Yao, Tsui (CR26) 2007; 254
Chételat, Desgranges, Sayette, La, Viader, Eustache, J-C (CR7) 2003; 60
Wolf, Jelic, Gertz, Nordberg, Julin, Wahlund (CR51) 2003; 179
Liu, Wee, Chen, Shen (CR28) 2014; 84
Jack, Knopman, Jagust, Shaw, Aisen, Weiner (CR22) 2010; 9
De, de Leon, Rusinek, Convit, Tarshish, Roche (CR9) 2001; 22
Gerardin, Chételat, Chupin, Cuingnet, Desgranges, Kim (CR17) 2009; 47
Magnin, Mesrob, Kinkingnéhun, Pélégrini-Issac, Colliot, Sarazin (CR29) 2009; 51
Sole, Clerici, Chiti, Lecchi, Mariani, Maggiore (CR46) 2008; 35
CR6
Apostolova, Hwang, Andrawis, Green, Babakchanian, Morra (CR2) 2010; 31
Mcevoy, Fennema-Notestine, Roddey, Hagler, Holland, Karow (CR31) 2009; 251
Zhang, Brady, Smith (CR55) 2001; 20
CR43
CR41
CR40
Bouwman, van der Flier, Schoonenboom, van Elk, Kok, Rijmen (CR3) 2007; 69
Yuan, Lin (CR52) 2006; 68
MJ, Kawas, Stewart, Rudow, Troncoso (CR32) 2004; 25
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (CR39) 1999; 56
Obozinski, Taskar, Jordan (CR37) 2010; 20
Walhovd, Fjell, Dale, Mcevoy, Brewer, Karow (CR49) 2010; 31
Yuan, Wang, Thompson, Narayan, Ye (CR53) 2012; 61
Chang, Lin (CR5) 2007; 2
Fjell, Walhovd, Mcevoy, Hagler, Holland, Brewer (CR15) 2010; 30
Foster, Heidebrink, Clark, Jagust, Arnold, Barbas (CR16) 2007; 130
Landau, Harvey DMadison, Reiman, Foster, Aisen, Petersen (CR25) 2010; 75
Fan, Shen, Gur, Gur, Davatzikos (CR14) 2007; 26
CR13
Obozinski, Jordan, Taskar (CR36) 2006; 7
Zhang, Shen (CR54) 2012; 59
Sled, Zijdenbos, Evans (CR44) 1997; 17
Tibshirani (CR48) 1994; 58
Shaw, Vanderstichele, Knapik‐Czajka, Clark, Aisen, Petersen (CR42) 2009; 65
Derflinger, Sorg, Gaser, Myers, Arsic, Kurz (CR10) 2011; 25
Smith, Stephen (CR45) 2002; 17
Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner (CR11) 2009; 132
Dai, Yan, Wang, Wang, Xia, Li (CR8) 2012; 59
Zhang, Wang, Zhou, Yuan, Shen (CR56) 2011; 55
Brookmeyer, Johnson, Ziegler-Grahamm, Arrighi, Brookmeyer, Johnson (CR4) 2007; 3
CR27
Oliveira, Nitrini, Busatto, Buchpiguel, Sato, Amaro (CR38) 2010; 19
CR24
Hinrichs, Singh, Xu, Johnson (CR20) 2011; 55
Morris, Storandt, Miller, McKeel, Price, Rubin (CR33) 2001; 58
Nestor, Scheltens, Hodges (CR35) 2004; 10 suppl
CR21
Al (CR1) 2008; 35
Higdon, Foster, Koeppe, DeCarli, Jagust, Clark (CR19) 2004; 23
Gray, Aljabar, Heckemann, Hammers, Rueckert (CR18) 2012; 65
Westman, Muehlboeck, Simmons (CR50) 2012; 62
Suk, Lee, Shen (CR47) 2014; 6
References_xml – volume: 25
  start-page: 1205
  issue: 25
  year: 2004
  end-page: 1212
  ident: CR32
  article-title: Hippocampal neurons in pre-clinical Alzheimer’s disease
  publication-title: Neurobiology of Aging
– volume: 60
  start-page: 1374
  issue: 8
  year: 2003
  end-page: 1377
  ident: CR7
  article-title: Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease?
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000055847.17752.E6
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: CR56
  article-title: Multimodal classification of Alzheimer’s disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 65
  start-page: 403
  issue: 4
  year: 2009
  end-page: 413
  ident: CR42
  article-title: Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects
  publication-title: Annals of Neurology
  doi: 10.1002/ana.21610
– volume: 130
  start-page: 1159
  issue: 4
  year: 2007
  end-page: 1166
  ident: CR12
  article-title: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awm016
– volume: 30
  start-page: 2088
  issue: 6
  year: 2010
  end-page: 2101
  ident: CR15
  article-title: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease
  publication-title: Journal of Neuroscience: The Official Journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.3785-09.2010
– volume: 69
  start-page: 1006
  issue: 10
  year: 2007
  end-page: 1011
  ident: CR3
  article-title: Longitudinal changes of CSF biomarkers in memory clinic patients
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000271375.37131.04
– volume: 59
  start-page: 2187
  issue: 3
  year: 2012
  end-page: 2195
  ident: CR8
  article-title: Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: CR21
– volume: 17
  start-page: 87
  issue: 1
  year: 1997
  end-page: 97
  ident: CR44
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.668698
– volume: 62
  start-page: 229
  issue: 1
  year: 2012
  end-page: 238
  ident: CR50
  article-title: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.04.056
– volume: 47
  start-page: 1476
  issue: 4
  year: 2009
  end-page: 1486
  ident: CR17
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.036
– volume: 179
  start-page: 52
  issue: Supplement s179
  year: 2003
  end-page: 76
  ident: CR51
  article-title: A critical discussion of the role of neuroimaging in mild cognitive impairment
  publication-title: Acta Neurologica Scandinavica
  doi: 10.1034/j.1600-0404.107.s179.10.x
– volume: 65
  start-page: 167
  year: 2012
  end-page: 175
  ident: CR18
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  end-page: 57
  ident: CR55
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.906424
– volume: 35
  start-page: 1357
  issue: 7
  year: 2008
  end-page: 1366
  ident: CR46
  article-title: Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-008-0773-6
– volume: 84
  start-page: 466
  year: 2014
  end-page: 475
  ident: CR28
  article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.015
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  end-page: 308
  ident: CR39
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Archives of Neurology
  doi: 10.1001/archneur.56.3.303
– volume: 132
  start-page: 2048
  issue: Part 8
  year: 2009
  end-page: 2057
  ident: CR11
  article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awp123
– volume: 254
  start-page: 1666
  issue: 12
  year: 2007
  end-page: 1675
  ident: CR26
  article-title: Longitudinal CSF isoprostane and MRI atrophy in the progression to AD
  publication-title: Journal of Neurology
  doi: 10.1007/s00415-007-0610-z
– volume: 58
  start-page: 397
  issue: 3
  year: 2001
  end-page: 405
  ident: CR33
  article-title: Mild cognitive impairment represents early-stage Alzheimer disease
  publication-title: Archives of Neurology
  doi: 10.1001/archneur.58.3.397
– volume: 61
  start-page: 622
  issue: 3
  year: 2012
  end-page: 632
  ident: CR53
  article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data ☆
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.059
– volume: 22
  start-page: 529
  issue: 4
  year: 2001
  end-page: 539
  ident: CR9
  article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD
  publication-title: Neurobiology of Aging
  doi: 10.1016/S0197-4580(01)00230-5
– volume: 130
  start-page: 2616
  issue: 10
  year: 2007
  end-page: 2635
  ident: CR16
  article-title: FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm177
– volume: 75
  start-page: 230
  issue: 3
  year: 2010
  end-page: 238
  ident: CR25
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e8e8b8
– ident: CR43
– volume: 10 suppl
  start-page: S34
  issue: 7suppl
  year: 2004
  end-page: S41
  ident: CR35
  article-title: Advances in the early detection of Alzheimer’s disease
  publication-title: Nature Medicine
– volume: 20
  start-page: 231
  issue: 2
  year: 2010
  end-page: 252
  ident: CR37
  article-title: Joint covariate selection and joint subspace selection for multiple classification problems
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-008-9111-x
– volume: 2
  start-page: 389
  issue: 3
  year: 2007
  end-page: 396
  ident: CR5
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 31
  start-page: 1107
  issue: 7
  year: 2010
  end-page: 1121
  ident: CR49
  article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2008.08.013
– volume: 51
  start-page: 73
  issue: 2
  year: 2009
  end-page: 83
  ident: CR29
  article-title: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0463-x
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  end-page: 907
  ident: CR54
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: CR6
– volume: 55
  start-page: 574
  issue: 2
  year: 2011
  end-page: 589
  ident: CR20
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 36
  start-page: 489
  issue: 2
  year: 2015
  end-page: 507
  ident: CR23
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22642
– ident: CR40
– volume: 23
  start-page: 315
  issue: 2
  year: 2004
  end-page: 326
  ident: CR19
  article-title: A comparison of classification methods for differentiating fronto-temporal dementia from Alzheimer’s disease using FDG-PET imaging
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1719
– ident: CR27
– volume: 25
  start-page: 347
  issue: 2
  year: 2011
  end-page: 357
  ident: CR10
  article-title: Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized
  publication-title: Journal of Alzheimers Disease
– volume: 9
  start-page: 119
  issue: 1
  year: 2010
  end-page: 128
  ident: CR22
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade
  publication-title: Lancet Neurology
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 26
  start-page: 93
  issue: 1
  year: 2007
  end-page: 105
  ident: CR14
  article-title: COMPARE: classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2006.886812
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  end-page: 67
  ident: CR52
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 302
  start-page: 385
  issue: 4
  year: 2009
  end-page: 393
  ident: CR30
  article-title: CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment
  publication-title: JAMA: The Journal of the American Medical Association
  doi: 10.1001/jama.2009.1064
– volume: 6
  start-page: 168
  issue: 6
  year: 2014
  ident: CR47
  article-title: Subclass-based multi-task learning for Alzheimer’s disease diagnosis
  publication-title: Frontiers in Aging Neuroscience
– ident: CR13
– volume: 58
  start-page: 267
  issue: 1
  year: 1994
  end-page: 288
  ident: CR48
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society
– ident: CR34
– volume: 3
  start-page: 186
  issue: 3
  year: 2007
  end-page: 191
  ident: CR4
  article-title: O1-02-01 forecasting the global burden of Alzheimer’s disease
  publication-title: Alzheimers & Dementia the Journal of the Alzheimers Association
  doi: 10.1016/j.jalz.2007.04.381
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  end-page: 155
  ident: CR45
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.10062
– volume: 251
  start-page: 195
  issue: 1
  year: 2009
  end-page: 205
  ident: CR31
  article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment1
  publication-title: Radiology
  doi: 10.1148/radiol.2511080924
– ident: CR41
– volume: 31
  start-page: 1284
  issue: 8
  year: 2010
  end-page: 1303
  ident: CR2
  article-title: 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2010.05.003
– ident: CR24
– volume: 35
  start-page: 2191
  issue: 12
  year: 2008
  end-page: 2202
  ident: CR1
  article-title: Principal component analysis of FDG PET in amnestic MCI
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-008-0869-z
– volume: 7
  start-page: 1693
  issue: 2
  year: 2006
  end-page: 1696
  ident: CR36
  article-title: Multi-task feature selection
  publication-title: The Workshop of Structural Knowledge Transfer for Machine Learning in International Conference on Machine Learning
– volume: 19
  start-page: 1263
  issue: 4
  year: 2010
  end-page: 1272
  ident: CR38
  article-title: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease
  publication-title: Journal of Alzheimers Disease
SSID ssj0054891
Score 2.34083
Snippet Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional...
SourceID pubmedcentral
proquest
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1148
SubjectTerms Aged
Alzheimer Disease - classification
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Atrophy
Biomarkers
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Cerebrospinal fluid
Classification
Cognitive ability
Cognitive Dysfunction - classification
Cognitive Dysfunction - diagnostic imaging
Computer science
Databases, Factual
Discriminant analysis
Disease Progression
Feature selection
Fluorodeoxyglucose F18
Humans
Image Interpretation, Computer-Assisted - methods
Machine Learning
Medical imaging
Methods
Multimodal Imaging - methods
Neuroimaging
Neuroimaging - methods
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Pattern Recognition, Automated - methods
Positron-Emission Tomography
Prognosis
Psychiatry
Radiopharmaceuticals
ROC Curve
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLj_IKtMhISByQhTd-JSdUoW4rRDlRqbfI8aNddZssu9tL1R_PjOMsFKqex8rDMx5_nhl_Q8gHa33wZSxZlEIwOQSajGW-LttggnRB4-Xkox_68Fh-O1EnOeC2ymWVo09Mjtr3DmPkn-EkglC95NWXxS-GXaMwu5pbaNwnDyaw06CdV9OD0RMDGE8d8wCjTJhRyoxZzXR1bqIrLEpQrJYVZ-Y2hPl_oeQ_2dK0CU2fkscZPdK9Qd3PyL3QbZMnY2cGmhfqNnl4lFPmz8n1d9uGOQO4fQoelaYCQra2q3MaQyL1pLlxxCkF_DrIL3oPb3EIrLGSKCmP9pHuza_OwuwiLD-uaM7sUNvBQ2dzTzeFSBRvXs6WGHZ8QY6n-z-_HrLccoEtBOdr1irnQvSurmPFhS8rLq3XXikLsAszlMJ6I0QUwirhVMudjdJJDzMcIlL7vSRbXd-F14Q6HYOOsOCFt9Krtq6l8FoYBQLuJr4gO-OEN3ndrJo_Wi7I-40YLB7TGLYL_SWOQVVzOOfcNQZOXpWUhhfk1aDDZjHQdzSlVgb52Qtibmh3MwAZt29KutlZYt6WlQZ_JwryabSDvz59w_-MltWAZTVoWY15c_ePviWPAITpoURmh2ytl5dhF4DOun2XrPk3kS3_cA
  priority: 102
  providerName: ProQuest
Title Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment
URI https://link.springer.com/article/10.1007/s11682-015-9480-7
https://www.ncbi.nlm.nih.gov/pubmed/26572145
https://www.proquest.com/docview/1846259208
https://www.proquest.com/docview/1826630585
https://www.proquest.com/docview/1855084470
https://pubmed.ncbi.nlm.nih.gov/PMC4868803
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC5MAuJFfDsalxa8SUPv9HOOq-wmqAkiLqynoacfyeJmNuxuLjkE_4Z_z19i9TxWo0HwMnOoohm6HvNV16MBXlnrg89jTqPgnIr2oElb6ou8CjoIF1RqTj46VodT8W4mZ10f97qvdu9Tko2n_tXsNlQmlRFIWgjDqN6BPYmhe7LGaT7q3S8i8OaaPAQmQ6ql1H0q86YlboKVf1dH_pEibf48k3twt4OMZNTK-D7cCvUDuH3UJcUfwtUHW4UFRUB9gj6TNCWCdGPXX0kMzdhO0l0NcUIQobb0s6XHJV2CzqlWqBEPWUYyWlyehvlZWP349n1NuuwNsTUuO194si02Iqm7cr5KR4uPYDoZf357SLtrFeg5Z2xDK-lciN4VRTSM-9wwYb3yUlqEVikLya3XnEfOreROVszZKJzwuKEhpvF9j2G3XtbhKRCnYlARjZp7K7ysikJwr7iWSGBu6DPY7_e37GxjXWJMmYKunJkMXm7JqNUpVWHrsLxIPAgc0BUZ-S8ejK6MEJpl8KQVWXnejugocyV1msGegb4mzC1Dmqp9nVLPT5vp2sIo9Gk8g9e92H_79O2M56RIJSpSmRSp1M_-i_s53EHcpdqqmH3Y3awuwgvENptqADt6pvFpJgcD2BsdfHk_xveb8fHHT4NGz38C33T8hA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqQRcWMpmKDBIIA5ohOPZ7ANCBVqlNIkQaqXezHiWNiK1Q5IKgfhN_EbeeAkUUG89z8jb--bzN_M2gKdaW2cTn1DPGaO8OWhSmtosKZxy3DgZkpNHYzk44O8PxeEa_OxyYUJYZceJNVHbyoQz8pe4EwlSPYnT17MvNHSNCt7VroVGA4s99-0rbtkWr3bfoX2fJcnO9v7bAW27CtAZi-MlLYQxzluTZT6NmU3SmGsrrRAalUVwwjFtFWOeMS2YEUVstOeG24z1nQ_V6_C6l2Cdh4zWHqy_2R5_-NhxP8r_ukcfqqI-VUKozo9aJ-v1ZRrCIATNeBpT9T9N-29o5l_-2fq3t3MDrrV6lWw1ALsJa67cgOtdLwjSUsMGXB61Tvpb8GOoCzelKPCPkMNJHbJIl3rxmXhXlxElbauKI4KKuRk_qSzexQQpH2KXariQypOt6fdjNzlx8-cL0vqSiC7xopOpJavQJxJyPSfzcNB5Gw4uxBx3oFdWpbsHxEjvpEeKYVZzK4os48xKpgQOxKZvI9jsPnjertRF_htXETxZDeMaC44TXbrqNMxBGYPEmIrz5uBeL-VcxRHcbWyYz5qCIXkihQoV4SNQZ6y7mhBqfJ8dKSfHda1vnkpkWBbBiw4Hfzz6quJ0QFaOyMoDsnJ1__wXfQxXBvujYT7cHe89gKsoAWUToLMJveX81D1EmbUsHrXYJvDpopfTL6qWPkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxRBFH5BTIgXF1RsBS0TjQdToadr6z4YQsAJyBIPksytra4FJg7d48wQo_GX-et41ZuihhvnqvT2vvf6e_U2gFdaW2cTn1DPGaO8OWhSmtosKZxy3DgZipOPjuXeCf8wEqMl-NXVwoS0ys4m1obaViackW-iJxKoehKnm75Ni_i4O9yafqVhglSItHbjNBqIHLjv39B9m7_b30VZv06S4ftPO3u0nTBApyyOF7QQxjhvTZb5NGY2SWOurbRCaGQZISDHtFWMeca0YEYUsdGeG24zNnA-dLLD696C24ohq0JdUqPe2UNHoJ7Wh_xoQJUQqouo1mV7A5mGhAhBM57GVP2P3f6bpPlXpLb-AQ7vw92WuZLtBmoPYMmVq3CvmwpBWiOxCitHbbj-Ifw81IWbUKT6p2jNSZ28SBd6_oV4VzcUJe3QilOC3LlZP68s3sUEUh-ymGrgkMqT7cmPMzc-d7M3c9JGlYgu8aLjiSV9EhQJVZ_jWTjyfAQnNyKMx7BcVqV7AsRI76RHY8Os5lYUWcaZlUwJXIjNwEaw3n3wvNXZef4bYRG87JdR20IIRZeuugh7kNCgiUzFdXvQ60s5V3EEa40M82nTOiRPpFChN3wE6op0-w2h2_fVlXJ8Vnf95qlEW8sieNvh4I9H73tPB2TliKw8ICtXT69_0RewgkqUH-4fHzyDO8gFZZOpsw7Li9mF20C-tSie18Am8PmmNekStnZBBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label-aligned+multi-task+feature+learning+for+multimodal+classification+of+Alzheimer%E2%80%99s+disease+and+mild+cognitive+impairment&rft.jtitle=Brain+imaging+and+behavior&rft.au=Zu%2C+Chen&rft.au=Jie%2C+Biao&rft.au=Liu%2C+Mingxia&rft.au=Chen%2C+Songcan&rft.date=2016-12-01&rft.pub=Springer+US&rft.issn=1931-7557&rft.eissn=1931-7565&rft.volume=10&rft.issue=4&rft.spage=1148&rft.epage=1159&rft_id=info:doi/10.1007%2Fs11682-015-9480-7&rft.externalDocID=10_1007_s11682_015_9480_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon