Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment
Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI)...
Saved in:
Published in | Brain imaging and behavior Vol. 10; no. 4; pp. 1148 - 1159 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1931-7557 1931-7565 1931-7565 |
DOI | 10.1007/s11682-015-9480-7 |
Cover
Abstract | Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. |
---|---|
AbstractList | Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer's disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer's disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI.Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer's disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. |
Author | Liu, Mingxia Zhang, Daoqiang Shen, Dinggang Chen, Songcan Zu, Chen Jie, Biao |
Author_xml | – sequence: 1 givenname: Chen surname: Zu fullname: Zu, Chen organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Biao surname: Jie fullname: Jie, Biao organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, School of Mathematics and Computer Science, Anhui Normal University – sequence: 3 givenname: Mingxia surname: Liu fullname: Liu, Mingxia organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 4 givenname: Songcan surname: Chen fullname: Chen, Songcan organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 5 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Department of Brain and Cognitive Engineering, Korea University – sequence: 6 givenname: Daoqiang surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26572145$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1qFjEUhoNU7I9egBsJuHEzmt-ZzEYoRW3hAze6DufLzzQ1k3wmM4W6EG_D2_NKTPlqqa5cnQPvw3vOSd5jdJBycgg9p-Q1JWR4UyntFesIld0oFOmGR-iIjpx2g-zlwX0vh0N0XOsVIVKokT5Bh6yXA6NCHqHvG9i62EEMU3IWz2tcQrdA_YK9g2UtDkcHJYU0YZ_LXp-zhYhNhFqDDwaWkBPOHp_Gb5cuzK78-vGzYhuqg-owpGYbosUmTyks4drhMO8glNml5Sl67CFW9-yunqDP7999OjvvNh8_XJydbrodJ2TpttIY560ZR68It0wRAba3UoJgXAnac7AD555zkNzILTHghRG23e88E4SfoLd73926nZ01bXSBqHclzFBudIag_1ZSuNRTvtZC9aqNbAav7gxK_rq6uug5VONihOTyWjVVUhIlxED-A2V9z4lUsqEv_0Gv8lpSe4lGiZ7JkRHVqBcPl7_f-s8vNoDtgdqkNLnywIbo26jofVR0i4q-jYoe-G_rlrR6 |
Cites_doi | 10.1212/01.WNL.0000055847.17752.E6 10.1016/j.neuroimage.2011.01.008 10.1002/ana.21610 10.1093/brain/awm016 10.1523/JNEUROSCI.3785-09.2010 10.1212/01.wnl.0000271375.37131.04 10.1016/j.neuroimage.2011.10.003 10.1109/42.668698 10.1016/j.neuroimage.2012.04.056 10.1016/j.neuroimage.2009.05.036 10.1034/j.1600-0404.107.s179.10.x 10.1016/j.neuroimage.2012.09.065 10.1109/42.906424 10.1007/s00259-008-0773-6 10.1016/j.neuroimage.2013.09.015 10.1001/archneur.56.3.303 10.1093/brain/awp123 10.1007/s00415-007-0610-z 10.1001/archneur.58.3.397 10.1016/j.neuroimage.2012.03.059 10.1016/S0197-4580(01)00230-5 10.1093/brain/awm177 10.1212/WNL.0b013e3181e8e8b8 10.1007/s11222-008-9111-x 10.1016/j.neurobiolaging.2008.08.013 10.1007/s00234-008-0463-x 10.1016/j.neuroimage.2011.09.069 10.1016/j.neuroimage.2010.10.081 10.1002/hbm.22642 10.1002/sim.1719 10.1016/S1474-4422(09)70299-6 10.1109/TMI.2006.886812 10.1111/j.1467-9868.2005.00532.x 10.1001/jama.2009.1064 10.1016/j.jalz.2007.04.381 10.1002/hbm.10062 10.1148/radiol.2511080924 10.1016/j.neurobiolaging.2010.05.003 10.1007/s00259-008-0869-z |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 Brain Imaging and Behavior is a copyright of Springer, 2016. |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Brain Imaging and Behavior is a copyright of Springer, 2016. |
CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 88G 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
DOI | 10.1007/s11682-015-9480-7 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1931-7565 |
EndPage | 1159 |
ExternalDocumentID | PMC4868803 4271162471 26572145 10_1007_s11682_015_9480_7 |
Genre | Validation Study Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: the NUAA Fundamental Research Funds grantid: NE2013105 – fundername: National Natural Science Foundation of China grantid: 61170151 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Institutes of Health grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG042599 funderid: http://dx.doi.org/10.13039/100000002 – fundername: the Specialized Research Fund for the Doctoral Program of Higher Education grantid: 20123218110009 – fundername: National Natural Science Foundation of China grantid: 61422204; 61473149 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: the Jiangsu Natural Science Foundation for Distinguished Young Scholar grantid: BK20130034 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 |
GroupedDBID | --- -55 -5G -BR -EM -Y2 -~C .86 .VR 04C 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 7RV 7X7 875 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMOBN ESBYG EX3 F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LK8 LLZTM M1P M2M M4Y M7P MA- NAPCQ NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9L PF0 PQQKQ PROAC PSQYO PSYQQ PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBS SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z82 Z83 ZMTXR ZOVNA ~A9 ~KM AAPKM ABDBE AHPBZ AYFIA CGR CUY CVF ECM EIF NPM PHGZT 7TK 7XB 8FK ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHWEU AIXLP ATHPR K9. PHGZM PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-p300t-b5ccefdc99f803d2804ad6d55a42384163ad733f33a53c5b0caf4c4d931ef2403 |
IEDL.DBID | U2A |
ISSN | 1931-7557 1931-7565 |
IngestDate | Thu Aug 21 18:16:55 EDT 2025 Sun Aug 24 03:06:17 EDT 2025 Thu Sep 04 21:45:46 EDT 2025 Mon Sep 08 01:11:30 EDT 2025 Thu Apr 03 07:04:09 EDT 2025 Fri Feb 21 02:37:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Multimodal classification Feature selection Label alignment Alzheimer’s disease Mild cognitive impairment Multi-task learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p300t-b5ccefdc99f803d2804ad6d55a42384163ad733f33a53c5b0caf4c4d931ef2403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
PMID | 26572145 |
PQID | 1846259208 |
PQPubID | 1486349 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868803 proquest_miscellaneous_1855084470 proquest_miscellaneous_1826630585 proquest_journals_1846259208 pubmed_primary_26572145 springer_journals_10_1007_s11682_015_9480_7 |
PublicationCentury | 2000 |
PublicationDate | 20161200 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Indianapolis |
PublicationTitle | Brain imaging and behavior |
PublicationTitleAbbrev | Brain Imaging and Behavior |
PublicationTitleAlternate | Brain Imaging Behav |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Du, Schuff, Kramer, Rosen, Gorno-Tempini, Rankin (CR12) 2007; 130 Mattsson, Zetterberg, Hansson, Andreasen, Parnetti, Jonsson (CR30) 2009; 302 Jie, Zhang, Cheng, Shen (CR23) 2015; 36 CR34 Leon, Mosconi, Li, Santi, Yao, Tsui (CR26) 2007; 254 Chételat, Desgranges, Sayette, La, Viader, Eustache, J-C (CR7) 2003; 60 Wolf, Jelic, Gertz, Nordberg, Julin, Wahlund (CR51) 2003; 179 Liu, Wee, Chen, Shen (CR28) 2014; 84 Jack, Knopman, Jagust, Shaw, Aisen, Weiner (CR22) 2010; 9 De, de Leon, Rusinek, Convit, Tarshish, Roche (CR9) 2001; 22 Gerardin, Chételat, Chupin, Cuingnet, Desgranges, Kim (CR17) 2009; 47 Magnin, Mesrob, Kinkingnéhun, Pélégrini-Issac, Colliot, Sarazin (CR29) 2009; 51 Sole, Clerici, Chiti, Lecchi, Mariani, Maggiore (CR46) 2008; 35 CR6 Apostolova, Hwang, Andrawis, Green, Babakchanian, Morra (CR2) 2010; 31 Mcevoy, Fennema-Notestine, Roddey, Hagler, Holland, Karow (CR31) 2009; 251 Zhang, Brady, Smith (CR55) 2001; 20 CR43 CR41 CR40 Bouwman, van der Flier, Schoonenboom, van Elk, Kok, Rijmen (CR3) 2007; 69 Yuan, Lin (CR52) 2006; 68 MJ, Kawas, Stewart, Rudow, Troncoso (CR32) 2004; 25 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (CR39) 1999; 56 Obozinski, Taskar, Jordan (CR37) 2010; 20 Walhovd, Fjell, Dale, Mcevoy, Brewer, Karow (CR49) 2010; 31 Yuan, Wang, Thompson, Narayan, Ye (CR53) 2012; 61 Chang, Lin (CR5) 2007; 2 Fjell, Walhovd, Mcevoy, Hagler, Holland, Brewer (CR15) 2010; 30 Foster, Heidebrink, Clark, Jagust, Arnold, Barbas (CR16) 2007; 130 Landau, Harvey DMadison, Reiman, Foster, Aisen, Petersen (CR25) 2010; 75 Fan, Shen, Gur, Gur, Davatzikos (CR14) 2007; 26 CR13 Obozinski, Jordan, Taskar (CR36) 2006; 7 Zhang, Shen (CR54) 2012; 59 Sled, Zijdenbos, Evans (CR44) 1997; 17 Tibshirani (CR48) 1994; 58 Shaw, Vanderstichele, Knapik‐Czajka, Clark, Aisen, Petersen (CR42) 2009; 65 Derflinger, Sorg, Gaser, Myers, Arsic, Kurz (CR10) 2011; 25 Smith, Stephen (CR45) 2002; 17 Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner (CR11) 2009; 132 Dai, Yan, Wang, Wang, Xia, Li (CR8) 2012; 59 Zhang, Wang, Zhou, Yuan, Shen (CR56) 2011; 55 Brookmeyer, Johnson, Ziegler-Grahamm, Arrighi, Brookmeyer, Johnson (CR4) 2007; 3 CR27 Oliveira, Nitrini, Busatto, Buchpiguel, Sato, Amaro (CR38) 2010; 19 CR24 Hinrichs, Singh, Xu, Johnson (CR20) 2011; 55 Morris, Storandt, Miller, McKeel, Price, Rubin (CR33) 2001; 58 Nestor, Scheltens, Hodges (CR35) 2004; 10 suppl CR21 Al (CR1) 2008; 35 Higdon, Foster, Koeppe, DeCarli, Jagust, Clark (CR19) 2004; 23 Gray, Aljabar, Heckemann, Hammers, Rueckert (CR18) 2012; 65 Westman, Muehlboeck, Simmons (CR50) 2012; 62 Suk, Lee, Shen (CR47) 2014; 6 |
References_xml | – volume: 25 start-page: 1205 issue: 25 year: 2004 end-page: 1212 ident: CR32 article-title: Hippocampal neurons in pre-clinical Alzheimer’s disease publication-title: Neurobiology of Aging – volume: 60 start-page: 1374 issue: 8 year: 2003 end-page: 1377 ident: CR7 article-title: Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? publication-title: Neurology doi: 10.1212/01.WNL.0000055847.17752.E6 – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: CR56 article-title: Multimodal classification of Alzheimer’s disease and mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 65 start-page: 403 issue: 4 year: 2009 end-page: 413 ident: CR42 article-title: Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects publication-title: Annals of Neurology doi: 10.1002/ana.21610 – volume: 130 start-page: 1159 issue: 4 year: 2007 end-page: 1166 ident: CR12 article-title: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awm016 – volume: 30 start-page: 2088 issue: 6 year: 2010 end-page: 2101 ident: CR15 article-title: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease publication-title: Journal of Neuroscience: The Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.3785-09.2010 – volume: 69 start-page: 1006 issue: 10 year: 2007 end-page: 1011 ident: CR3 article-title: Longitudinal changes of CSF biomarkers in memory clinic patients publication-title: Neurology doi: 10.1212/01.wnl.0000271375.37131.04 – volume: 59 start-page: 2187 issue: 3 year: 2012 end-page: 2195 ident: CR8 article-title: Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.003 – ident: CR21 – volume: 17 start-page: 87 issue: 1 year: 1997 end-page: 97 ident: CR44 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.668698 – volume: 62 start-page: 229 issue: 1 year: 2012 end-page: 238 ident: CR50 article-title: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 47 start-page: 1476 issue: 4 year: 2009 end-page: 1486 ident: CR17 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.036 – volume: 179 start-page: 52 issue: Supplement s179 year: 2003 end-page: 76 ident: CR51 article-title: A critical discussion of the role of neuroimaging in mild cognitive impairment publication-title: Acta Neurologica Scandinavica doi: 10.1034/j.1600-0404.107.s179.10.x – volume: 65 start-page: 167 year: 2012 end-page: 175 ident: CR18 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 20 start-page: 45 issue: 1 year: 2001 end-page: 57 ident: CR55 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.906424 – volume: 35 start-page: 1357 issue: 7 year: 2008 end-page: 1366 ident: CR46 article-title: Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study publication-title: European Journal of Nuclear Medicine and Molecular Imaging doi: 10.1007/s00259-008-0773-6 – volume: 84 start-page: 466 year: 2014 end-page: 475 ident: CR28 article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.09.015 – volume: 56 start-page: 303 issue: 3 year: 1999 end-page: 308 ident: CR39 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Archives of Neurology doi: 10.1001/archneur.56.3.303 – volume: 132 start-page: 2048 issue: Part 8 year: 2009 end-page: 2057 ident: CR11 article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awp123 – volume: 254 start-page: 1666 issue: 12 year: 2007 end-page: 1675 ident: CR26 article-title: Longitudinal CSF isoprostane and MRI atrophy in the progression to AD publication-title: Journal of Neurology doi: 10.1007/s00415-007-0610-z – volume: 58 start-page: 397 issue: 3 year: 2001 end-page: 405 ident: CR33 article-title: Mild cognitive impairment represents early-stage Alzheimer disease publication-title: Archives of Neurology doi: 10.1001/archneur.58.3.397 – volume: 61 start-page: 622 issue: 3 year: 2012 end-page: 632 ident: CR53 article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data ☆ publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.059 – volume: 22 start-page: 529 issue: 4 year: 2001 end-page: 539 ident: CR9 article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD publication-title: Neurobiology of Aging doi: 10.1016/S0197-4580(01)00230-5 – volume: 130 start-page: 2616 issue: 10 year: 2007 end-page: 2635 ident: CR16 article-title: FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm177 – volume: 75 start-page: 230 issue: 3 year: 2010 end-page: 238 ident: CR25 article-title: Comparing predictors of conversion and decline in mild cognitive impairment publication-title: Neurology doi: 10.1212/WNL.0b013e3181e8e8b8 – ident: CR43 – volume: 10 suppl start-page: S34 issue: 7suppl year: 2004 end-page: S41 ident: CR35 article-title: Advances in the early detection of Alzheimer’s disease publication-title: Nature Medicine – volume: 20 start-page: 231 issue: 2 year: 2010 end-page: 252 ident: CR37 article-title: Joint covariate selection and joint subspace selection for multiple classification problems publication-title: Statistics and Computing doi: 10.1007/s11222-008-9111-x – volume: 2 start-page: 389 issue: 3 year: 2007 end-page: 396 ident: CR5 article-title: LIBSVM: a library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – volume: 31 start-page: 1107 issue: 7 year: 2010 end-page: 1121 ident: CR49 article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2008.08.013 – volume: 51 start-page: 73 issue: 2 year: 2009 end-page: 83 ident: CR29 article-title: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI publication-title: Neuroradiology doi: 10.1007/s00234-008-0463-x – volume: 59 start-page: 895 issue: 2 year: 2012 end-page: 907 ident: CR54 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – ident: CR6 – volume: 55 start-page: 574 issue: 2 year: 2011 end-page: 589 ident: CR20 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.081 – volume: 36 start-page: 489 issue: 2 year: 2015 end-page: 507 ident: CR23 article-title: Manifold regularized multitask feature learning for multimodality disease classification publication-title: Human Brain Mapping doi: 10.1002/hbm.22642 – ident: CR40 – volume: 23 start-page: 315 issue: 2 year: 2004 end-page: 326 ident: CR19 article-title: A comparison of classification methods for differentiating fronto-temporal dementia from Alzheimer’s disease using FDG-PET imaging publication-title: Statistics in Medicine doi: 10.1002/sim.1719 – ident: CR27 – volume: 25 start-page: 347 issue: 2 year: 2011 end-page: 357 ident: CR10 article-title: Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized publication-title: Journal of Alzheimers Disease – volume: 9 start-page: 119 issue: 1 year: 2010 end-page: 128 ident: CR22 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade publication-title: Lancet Neurology doi: 10.1016/S1474-4422(09)70299-6 – volume: 26 start-page: 93 issue: 1 year: 2007 end-page: 105 ident: CR14 article-title: COMPARE: classification of morphological patterns using adaptive regional elements publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2006.886812 – volume: 68 start-page: 49 issue: 1 year: 2006 end-page: 67 ident: CR52 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.1467-9868.2005.00532.x – volume: 302 start-page: 385 issue: 4 year: 2009 end-page: 393 ident: CR30 article-title: CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment publication-title: JAMA: The Journal of the American Medical Association doi: 10.1001/jama.2009.1064 – volume: 6 start-page: 168 issue: 6 year: 2014 ident: CR47 article-title: Subclass-based multi-task learning for Alzheimer’s disease diagnosis publication-title: Frontiers in Aging Neuroscience – ident: CR13 – volume: 58 start-page: 267 issue: 1 year: 1994 end-page: 288 ident: CR48 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society – ident: CR34 – volume: 3 start-page: 186 issue: 3 year: 2007 end-page: 191 ident: CR4 article-title: O1-02-01 forecasting the global burden of Alzheimer’s disease publication-title: Alzheimers & Dementia the Journal of the Alzheimers Association doi: 10.1016/j.jalz.2007.04.381 – volume: 17 start-page: 143 issue: 3 year: 2002 end-page: 155 ident: CR45 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping doi: 10.1002/hbm.10062 – volume: 251 start-page: 195 issue: 1 year: 2009 end-page: 205 ident: CR31 article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment1 publication-title: Radiology doi: 10.1148/radiol.2511080924 – ident: CR41 – volume: 31 start-page: 1284 issue: 8 year: 2010 end-page: 1303 ident: CR2 article-title: 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2010.05.003 – ident: CR24 – volume: 35 start-page: 2191 issue: 12 year: 2008 end-page: 2202 ident: CR1 article-title: Principal component analysis of FDG PET in amnestic MCI publication-title: European Journal of Nuclear Medicine and Molecular Imaging doi: 10.1007/s00259-008-0869-z – volume: 7 start-page: 1693 issue: 2 year: 2006 end-page: 1696 ident: CR36 article-title: Multi-task feature selection publication-title: The Workshop of Structural Knowledge Transfer for Machine Learning in International Conference on Machine Learning – volume: 19 start-page: 1263 issue: 4 year: 2010 end-page: 1272 ident: CR38 article-title: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease publication-title: Journal of Alzheimers Disease |
SSID | ssj0054891 |
Score | 2.34083 |
Snippet | Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional... |
SourceID | pubmedcentral proquest pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1148 |
SubjectTerms | Aged Alzheimer Disease - classification Alzheimer Disease - diagnostic imaging Alzheimer's disease Atrophy Biomarkers Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Cerebrospinal fluid Classification Cognitive ability Cognitive Dysfunction - classification Cognitive Dysfunction - diagnostic imaging Computer science Databases, Factual Discriminant analysis Disease Progression Feature selection Fluorodeoxyglucose F18 Humans Image Interpretation, Computer-Assisted - methods Machine Learning Medical imaging Methods Multimodal Imaging - methods Neuroimaging Neuroimaging - methods Neuropsychology Neuroradiology Neurosciences Original Research Pattern Recognition, Automated - methods Positron-Emission Tomography Prognosis Psychiatry Radiopharmaceuticals ROC Curve |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLj_IKtMhISByQhTd-JSdUoW4rRDlRqbfI8aNddZssu9tL1R_PjOMsFKqex8rDMx5_nhl_Q8gHa33wZSxZlEIwOQSajGW-LttggnRB4-Xkox_68Fh-O1EnOeC2ymWVo09Mjtr3DmPkn-EkglC95NWXxS-GXaMwu5pbaNwnDyaw06CdV9OD0RMDGE8d8wCjTJhRyoxZzXR1bqIrLEpQrJYVZ-Y2hPl_oeQ_2dK0CU2fkscZPdK9Qd3PyL3QbZMnY2cGmhfqNnl4lFPmz8n1d9uGOQO4fQoelaYCQra2q3MaQyL1pLlxxCkF_DrIL3oPb3EIrLGSKCmP9pHuza_OwuwiLD-uaM7sUNvBQ2dzTzeFSBRvXs6WGHZ8QY6n-z-_HrLccoEtBOdr1irnQvSurmPFhS8rLq3XXikLsAszlMJ6I0QUwirhVMudjdJJDzMcIlL7vSRbXd-F14Q6HYOOsOCFt9Krtq6l8FoYBQLuJr4gO-OEN3ndrJo_Wi7I-40YLB7TGLYL_SWOQVVzOOfcNQZOXpWUhhfk1aDDZjHQdzSlVgb52Qtibmh3MwAZt29KutlZYt6WlQZ_JwryabSDvz59w_-MltWAZTVoWY15c_ePviWPAITpoURmh2ytl5dhF4DOun2XrPk3kS3_cA priority: 102 providerName: ProQuest |
Title | Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment |
URI | https://link.springer.com/article/10.1007/s11682-015-9480-7 https://www.ncbi.nlm.nih.gov/pubmed/26572145 https://www.proquest.com/docview/1846259208 https://www.proquest.com/docview/1826630585 https://www.proquest.com/docview/1855084470 https://pubmed.ncbi.nlm.nih.gov/PMC4868803 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC5MAuJFfDsalxa8SUPv9HOOq-wmqAkiLqynoacfyeJmNuxuLjkE_4Z_z19i9TxWo0HwMnOoohm6HvNV16MBXlnrg89jTqPgnIr2oElb6ou8CjoIF1RqTj46VodT8W4mZ10f97qvdu9Tko2n_tXsNlQmlRFIWgjDqN6BPYmhe7LGaT7q3S8i8OaaPAQmQ6ql1H0q86YlboKVf1dH_pEibf48k3twt4OMZNTK-D7cCvUDuH3UJcUfwtUHW4UFRUB9gj6TNCWCdGPXX0kMzdhO0l0NcUIQobb0s6XHJV2CzqlWqBEPWUYyWlyehvlZWP349n1NuuwNsTUuO194si02Iqm7cr5KR4uPYDoZf357SLtrFeg5Z2xDK-lciN4VRTSM-9wwYb3yUlqEVikLya3XnEfOreROVszZKJzwuKEhpvF9j2G3XtbhKRCnYlARjZp7K7ysikJwr7iWSGBu6DPY7_e37GxjXWJMmYKunJkMXm7JqNUpVWHrsLxIPAgc0BUZ-S8ejK6MEJpl8KQVWXnejugocyV1msGegb4mzC1Dmqp9nVLPT5vp2sIo9Gk8g9e92H_79O2M56RIJSpSmRSp1M_-i_s53EHcpdqqmH3Y3awuwgvENptqADt6pvFpJgcD2BsdfHk_xveb8fHHT4NGz38C33T8hA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqQRcWMpmKDBIIA5ohOPZ7ANCBVqlNIkQaqXezHiWNiK1Q5IKgfhN_EbeeAkUUG89z8jb--bzN_M2gKdaW2cTn1DPGaO8OWhSmtosKZxy3DgZkpNHYzk44O8PxeEa_OxyYUJYZceJNVHbyoQz8pe4EwlSPYnT17MvNHSNCt7VroVGA4s99-0rbtkWr3bfoX2fJcnO9v7bAW27CtAZi-MlLYQxzluTZT6NmU3SmGsrrRAalUVwwjFtFWOeMS2YEUVstOeG24z1nQ_V6_C6l2Cdh4zWHqy_2R5_-NhxP8r_ukcfqqI-VUKozo9aJ-v1ZRrCIATNeBpT9T9N-29o5l_-2fq3t3MDrrV6lWw1ALsJa67cgOtdLwjSUsMGXB61Tvpb8GOoCzelKPCPkMNJHbJIl3rxmXhXlxElbauKI4KKuRk_qSzexQQpH2KXariQypOt6fdjNzlx8-cL0vqSiC7xopOpJavQJxJyPSfzcNB5Gw4uxBx3oFdWpbsHxEjvpEeKYVZzK4os48xKpgQOxKZvI9jsPnjertRF_htXETxZDeMaC44TXbrqNMxBGYPEmIrz5uBeL-VcxRHcbWyYz5qCIXkihQoV4SNQZ6y7mhBqfJ8dKSfHda1vnkpkWBbBiw4Hfzz6quJ0QFaOyMoDsnJ1__wXfQxXBvujYT7cHe89gKsoAWUToLMJveX81D1EmbUsHrXYJvDpopfTL6qWPkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxRBFH5BTIgXF1RsBS0TjQdToadr6z4YQsAJyBIPksytra4FJg7d48wQo_GX-et41ZuihhvnqvT2vvf6e_U2gFdaW2cTn1DPGaO8OWhSmtosKZxy3DgZipOPjuXeCf8wEqMl-NXVwoS0ys4m1obaViackW-iJxKoehKnm75Ni_i4O9yafqVhglSItHbjNBqIHLjv39B9m7_b30VZv06S4ftPO3u0nTBApyyOF7QQxjhvTZb5NGY2SWOurbRCaGQZISDHtFWMeca0YEYUsdGeG24zNnA-dLLD696C24ohq0JdUqPe2UNHoJ7Wh_xoQJUQqouo1mV7A5mGhAhBM57GVP2P3f6bpPlXpLb-AQ7vw92WuZLtBmoPYMmVq3CvmwpBWiOxCitHbbj-Ifw81IWbUKT6p2jNSZ28SBd6_oV4VzcUJe3QilOC3LlZP68s3sUEUh-ymGrgkMqT7cmPMzc-d7M3c9JGlYgu8aLjiSV9EhQJVZ_jWTjyfAQnNyKMx7BcVqV7AsRI76RHY8Os5lYUWcaZlUwJXIjNwEaw3n3wvNXZef4bYRG87JdR20IIRZeuugh7kNCgiUzFdXvQ60s5V3EEa40M82nTOiRPpFChN3wE6op0-w2h2_fVlXJ8Vnf95qlEW8sieNvh4I9H73tPB2TliKw8ICtXT69_0RewgkqUH-4fHzyDO8gFZZOpsw7Li9mF20C-tSie18Am8PmmNekStnZBBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label-aligned+multi-task+feature+learning+for+multimodal+classification+of+Alzheimer%E2%80%99s+disease+and+mild+cognitive+impairment&rft.jtitle=Brain+imaging+and+behavior&rft.au=Zu%2C+Chen&rft.au=Jie%2C+Biao&rft.au=Liu%2C+Mingxia&rft.au=Chen%2C+Songcan&rft.date=2016-12-01&rft.pub=Springer+US&rft.issn=1931-7557&rft.eissn=1931-7565&rft.volume=10&rft.issue=4&rft.spage=1148&rft.epage=1159&rft_id=info:doi/10.1007%2Fs11682-015-9480-7&rft.externalDocID=10_1007_s11682_015_9480_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon |