Metabolite T2 relaxation times decrease across the adult lifespan in a large multi‐site cohort

Purpose Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multipl...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 3; pp. 916 - 929
Main Authors Hupfeld, Kathleen E., Murali‐Manohar, Saipavitra, Zöllner, Helge J., Song, Yulu, Davies‐Jenkins, Christopher W., Gudmundson, Aaron T., Simicic, Dunja, Lamesgin Simegn, Gizeaddis, Carter, Emily E., Hui, Steve C. N., Yedavalli, Vivek, Oeltzschner, Georg, Porges, Eric C., Edden, Richard A. E.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi‐site cohort. Methods We recruited approximately 10 male and 10 female participants from each decade of life: 18–29, 30–39, 40–49, 50–59, and 60+ y old (n = 101 total). We collected PRESS data at eight TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white‐matter‐rich centrum semiovale (CSO) and gray‐matter‐rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2. Results Older age was correlated with shorter T2 for tNAA2.0, tCr3.0, tCr3.9, tCho, and tissue water (CSO and PCC), as well as mI and Glx (PCC only); rs = −0.22 to −0.63, all p < 0.05, false discovery rate (FDR)‐corrected. These associations largely remained statistically significant when controlling for cortical atrophy. By region, T2 values were longer in the CSO for tNAA2.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. T2 did not differ by region for tCr3.0. Conclusion These findings underscore the importance of considering metabolite T2 differences with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age‐specific T2 values instead of relying on uniform default values.
AbstractList Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi-site cohort.PURPOSERelaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi-site cohort.We recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ y old (n = 101 total). We collected PRESS data at eight TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2.METHODSWe recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ y old (n = 101 total). We collected PRESS data at eight TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2.Older age was correlated with shorter T2 for tNAA2.0, tCr3.0, tCr3.9, tCho, and tissue water (CSO and PCC), as well as mI and Glx (PCC only); rs = -0.22 to -0.63, all p < 0.05, false discovery rate (FDR)-corrected. These associations largely remained statistically significant when controlling for cortical atrophy. By region, T2 values were longer in the CSO for tNAA2.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. T2 did not differ by region for tCr3.0.RESULTSOlder age was correlated with shorter T2 for tNAA2.0, tCr3.0, tCr3.9, tCho, and tissue water (CSO and PCC), as well as mI and Glx (PCC only); rs = -0.22 to -0.63, all p < 0.05, false discovery rate (FDR)-corrected. These associations largely remained statistically significant when controlling for cortical atrophy. By region, T2 values were longer in the CSO for tNAA2.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. T2 did not differ by region for tCr3.0.These findings underscore the importance of considering metabolite T2 differences with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T2 values instead of relying on uniform default values.CONCLUSIONThese findings underscore the importance of considering metabolite T2 differences with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T2 values instead of relying on uniform default values.
PurposeRelaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi‐site cohort.MethodsWe recruited approximately 10 male and 10 female participants from each decade of life: 18–29, 30–39, 40–49, 50–59, and 60+ y old (n = 101 total). We collected PRESS data at eight TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white‐matter‐rich centrum semiovale (CSO) and gray‐matter‐rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2.ResultsOlder age was correlated with shorter T2 for tNAA2.0, tCr3.0, tCr3.9, tCho, and tissue water (CSO and PCC), as well as mI and Glx (PCC only); rs = −0.22 to −0.63, all p < 0.05, false discovery rate (FDR)‐corrected. These associations largely remained statistically significant when controlling for cortical atrophy. By region, T2 values were longer in the CSO for tNAA2.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. T2 did not differ by region for tCr3.0.ConclusionThese findings underscore the importance of considering metabolite T2 differences with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age‐specific T2 values instead of relying on uniform default values.
Purpose Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi‐site cohort. Methods We recruited approximately 10 male and 10 female participants from each decade of life: 18–29, 30–39, 40–49, 50–59, and 60+ y old (n = 101 total). We collected PRESS data at eight TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white‐matter‐rich centrum semiovale (CSO) and gray‐matter‐rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2. Results Older age was correlated with shorter T2 for tNAA2.0, tCr3.0, tCr3.9, tCho, and tissue water (CSO and PCC), as well as mI and Glx (PCC only); rs = −0.22 to −0.63, all p < 0.05, false discovery rate (FDR)‐corrected. These associations largely remained statistically significant when controlling for cortical atrophy. By region, T2 values were longer in the CSO for tNAA2.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. T2 did not differ by region for tCr3.0. Conclusion These findings underscore the importance of considering metabolite T2 differences with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age‐specific T2 values instead of relying on uniform default values.
Author Carter, Emily E.
Gudmundson, Aaron T.
Hupfeld, Kathleen E.
Davies‐Jenkins, Christopher W.
Yedavalli, Vivek
Murali‐Manohar, Saipavitra
Song, Yulu
Simicic, Dunja
Oeltzschner, Georg
Lamesgin Simegn, Gizeaddis
Porges, Eric C.
Hui, Steve C. N.
Zöllner, Helge J.
Edden, Richard A. E.
Author_xml – sequence: 1
  givenname: Kathleen E.
  surname: Hupfeld
  fullname: Hupfeld, Kathleen E.
  organization: Kennedy Krieger Institute
– sequence: 2
  givenname: Saipavitra
  orcidid: 0000-0002-4978-0736
  surname: Murali‐Manohar
  fullname: Murali‐Manohar, Saipavitra
  organization: Kennedy Krieger Institute
– sequence: 3
  givenname: Helge J.
  orcidid: 0000-0002-7148-292X
  surname: Zöllner
  fullname: Zöllner, Helge J.
  organization: Kennedy Krieger Institute
– sequence: 4
  givenname: Yulu
  surname: Song
  fullname: Song, Yulu
  organization: Kennedy Krieger Institute
– sequence: 5
  givenname: Christopher W.
  orcidid: 0000-0002-6015-762X
  surname: Davies‐Jenkins
  fullname: Davies‐Jenkins, Christopher W.
  organization: Kennedy Krieger Institute
– sequence: 6
  givenname: Aaron T.
  orcidid: 0000-0001-5104-0959
  surname: Gudmundson
  fullname: Gudmundson, Aaron T.
  organization: Johns Hopkins University
– sequence: 7
  givenname: Dunja
  orcidid: 0000-0002-6600-2696
  surname: Simicic
  fullname: Simicic, Dunja
  organization: Kennedy Krieger Institute
– sequence: 8
  givenname: Gizeaddis
  surname: Lamesgin Simegn
  fullname: Lamesgin Simegn, Gizeaddis
  organization: Kennedy Krieger Institute
– sequence: 9
  givenname: Emily E.
  surname: Carter
  fullname: Carter, Emily E.
  organization: University of Florida
– sequence: 10
  givenname: Steve C. N.
  orcidid: 0000-0002-1523-4040
  surname: Hui
  fullname: Hui, Steve C. N.
  organization: The George Washington University School of Medicine and Health Sciences
– sequence: 11
  givenname: Vivek
  surname: Yedavalli
  fullname: Yedavalli, Vivek
  organization: Johns Hopkins University School of Medicine
– sequence: 12
  givenname: Georg
  orcidid: 0000-0003-3083-9811
  surname: Oeltzschner
  fullname: Oeltzschner, Georg
  organization: Kennedy Krieger Institute
– sequence: 13
  givenname: Eric C.
  surname: Porges
  fullname: Porges, Eric C.
  organization: University of Florida
– sequence: 14
  givenname: Richard A. E.
  orcidid: 0000-0002-0671-7374
  surname: Edden
  fullname: Edden, Richard A. E.
  email: redden1@jh.edu
  organization: Kennedy Krieger Institute
BookMark eNpdkM1KAzEUhYMoWKsL3yDgxs3ozV-nWUrxD1oEqesxTe5oJDOpyRTtzkfwGX0Sp60rV_fA_TgcviOy38YWCTllcMEA-GWTmgsBQsIeGTDFecGVlvtkAKWEQjAtD8lRzm8AoHUpB-R5hp1ZxOA7pHNOEwbzaTofW9r5BjN1aBOajNTYFHOm3Wsf3Sp0NPga89K01LfU0GDSC9Kmf_ifr--8qbPxNabumBzUJmQ8-btD8nRzPZ_cFdOH2_vJ1bRYcs2g4E7bshYCS6Wds8YiX3BhcFGPWSmcAi6VtXphypF2Y83GVjLOHLiRrZVBJ4bkfNe7TPF9hbmrGp8thmBajKtcCcYB1FiUZY-e_UPf4iq1_bqeknokQakNdbmjPnzAdbVMvjFpXTGoNqKrXnS1FV3NHmfbIH4BRLt11w
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID 8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30340
DatabaseName Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 929
ExternalDocumentID MRM30340
Genre researchArticle
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: P41 EB031771; R01 EB016089; R01 EB023963; R21 EB033516
– fundername: National Institute on Aging
  funderid: K00 AG068440; K99 AG080084; R00 AG062230
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-p2910-2d9c7f33e759ddcace2b23aebf8173d50245cc9ba769d8918c4121d0d6cf5aed3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 11:39:15 EDT 2025
Fri Jul 25 12:14:09 EDT 2025
Wed Jan 22 17:13:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2910-2d9c7f33e759ddcace2b23aebf8173d50245cc9ba769d8918c4121d0d6cf5aed3
Notes Kathleen E. Hupfeld and Saipavitra Murali‐Manohar contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6600-2696
0000-0002-6015-762X
0000-0002-4978-0736
0000-0002-1523-4040
0000-0001-5104-0959
0000-0002-0671-7374
0000-0002-7148-292X
0000-0003-3083-9811
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30340
PQID 3149640557
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_3120058377
proquest_journals_3149640557
wiley_primary_10_1002_mrm_30340_MRM30340
PublicationCentury 2000
PublicationDate March 2025
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 73
2017; 44
2018; 80
2013; 8
2024; 37
2016; 37
1993; 35
2021; 34
2019; 63
2020; 95
2017; 77
2017; 78
2022; 35
2007; 6
2014; 13
2018; 71
2001; 11
2018; 33
2008; 60
2018; 31
2001; 14
1994; 32
2021; 46
2009; 62
2016; 19
2002; 31
2009; 61
2020; 83
1995; 57
2020; 343
2022; 87
2022; 88
2007; 57
2018; 18
2022; 264
2019; 82
2004; 51
2023; 89
2023
2004; 19
2021
1993; 11
2024; 91
2005; 53
2022; 14
2023; 676
2005; 54
2014; 2464
2015
2016; 29
2003; 62
References_xml – volume: 19
  start-page: 537
  year: 2004
  end-page: 545
  article-title: H metabolite relaxation times at 3.0 tesla: measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation
  publication-title: J Magn Reson Imaging
– volume: 95
  start-page: 168
  year: 2020
  end-page: 175
  article-title: Changes in the intracellular microenvironment in the aging human brain
  publication-title: Neurobiol Aging
– year: 2021
– volume: 80
  start-page: 452
  year: 2018
  end-page: 461
  article-title: In vivo estimation of transverse relaxation time constant (T ) of 17 human brain metabolites at 3T: T of 17 human brain metabolites at 3T
  publication-title: Magn Reson Med
– volume: 60
  start-page: 790
  year: 2008
  end-page: 795
  article-title: Age dependence of regional proton metabolites relaxation times in the human brain at 3 T
  publication-title: Magn Reson Med
– volume: 53
  start-page: 695
  year: 2005
  end-page: 699
  article-title: The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment
  publication-title: J Am Geriatr Soc
– volume: 31
  start-page: 581
  year: 2002
  end-page: 593
  article-title: The effects of normal aging on myelin and nerve fibers: a review
  publication-title: J Neurocytol
– volume: 71
  start-page: 161
  year: 2018
  end-page: 170
  article-title: Re‐examining age‐related differences in white matter microstructure with free‐water corrected diffusion tensor imaging
  publication-title: Neurobiol Aging
– volume: 37
  issue: 9
  year: 2024
  article-title: Metabolite T relaxation times differ across the adult lifespan
  publication-title: NMR Biomed
– volume: 62
  start-page: 1326
  year: 2009
  end-page: 1330
  article-title: Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T
  publication-title: Magn Reson Med
– volume: 46
  start-page: 2662
  year: 2021
  end-page: 2675
  article-title: Physiological and pathological ageing of astrocytes in the human brain
  publication-title: Neurochem Res
– volume: 35
  start-page: 119
  year: 1993
  end-page: 124
  article-title: Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen
  publication-title: Neuroradiology
– volume: 57
  start-page: 859
  year: 2007
  end-page: 865
  article-title: Fast mapping of the relaxation time of cerebral metabolites using proton echo‐planar spectroscopic imaging (PEPSI)
  publication-title: Magn Reson Med
– volume: 32
  start-page: 565
  year: 1994
  end-page: 571
  article-title: Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T
  publication-title: Magn Reson Med
– volume: 51
  start-page: 661
  year: 2004
  end-page: 667
  article-title: Inversion recovery TrueFISP: quantification of , , and spin density
  publication-title: Magn Reson Med
– volume: 91
  start-page: 2229
  year: 2024
  end-page: 2246
  article-title: Universal dynamic fitting of magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 61
  start-page: 579
  year: 2009
  end-page: 586
  article-title: Functional changes in CSF volume estimated using measurement of water relaxation
  publication-title: Magn Reson Med
– volume: 83
  start-page: 22
  year: 2020
  end-page: 44
  article-title: Potential clinical impact of multiparametric quantitative MR spectroscopy in neurological disorders: a review and analysis
  publication-title: Magn Reson Med
– volume: 37
  start-page: 447
  year: 2016
  end-page: 454
  article-title: Detection of Normal aging effects on human brain metabolite concentrations and microstructure with whole‐brain MR spectroscopic imaging and quantitative MR imaging
  publication-title: Am J Neuroradiol
– volume: 29
  start-page: 284
  year: 2016
  end-page: 292
  article-title: The age dependence of T relaxation times of N‐acetyl aspartate, creatine and choline in the human brain at 3 and 4T
  publication-title: NMR Biomed
– volume: 63
  start-page: 235
  year: 2019
  end-page: 243
  article-title: Three‐dimensional high‐resolution simultaneous quantitative mapping of the whole brain with 3D‐QALAS: An accuracy and repeatability study
  publication-title: Magn Reson Imaging
– volume: 89
  start-page: 499
  year: 2023
  end-page: 507
  article-title: The future is  : fitting of dynamic MRS data provides exponential gains in precision over conventional approaches
  publication-title: Magn Reson Med
– volume: 13
  start-page: 1059
  year: 2014
  end-page: 1067
  article-title: Astrocytic metabolic and inflammatory changes as a function of age
  publication-title: Aging Cell
– volume: 62
  start-page: 1087
  year: 2003
  end-page: 1095
  article-title: Neuropathology of cognitively Normal elderly
  publication-title: J Neuropathol Exp Neurol
– volume: 34
  year: 2021
  article-title: Spectral editing in 1H magnetic resonance spectroscopy: Experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 14
  start-page: 325
  year: 2001
  end-page: 331
  article-title: Proton and relaxation times of human brain metabolites at 3 tesla: Metabolite and in human brain at 3 T
  publication-title: NMR Biomed
– volume: 11
  start-page: 799
  year: 1993
  end-page: 806
  article-title: The concentration of N‐acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 833
  year: 2016
  end-page: 842
  article-title: Quantitative T1 and T2 MRI signal characteristics in the human brain: different patterns of MR contrasts in normal ageing
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 343
  year: 2020
  article-title: Osprey: open‐source processing, reconstruction & estimation of magnetic resonance spectroscopy data
  publication-title: J Neurosci Methods
– volume: 78
  start-page: 2072
  year: 2017
  end-page: 2081
  article-title: Simultaneous determination of metabolite concentrations, and relaxation times
  publication-title: Magn Reson Med
– volume: 33
  start-page: 379
  year: 2018
  end-page: 388
  article-title: A re‐examination of Montreal cognitive assessment (MoCA) cutoff scores
  publication-title: Int J Geriatr Psychiatry
– volume: 87
  start-page: 11
  year: 2022
  end-page: 32
  article-title: Team the 2016 IMSGFC. Results and interpretation of a fitting challenge for MR spectroscopy set up by the MRS study group of ISMRM
  publication-title: Magn Reson Med
– volume: 44
  start-page: 72
  year: 2017
  end-page: 81
  article-title: Transverse relaxation of cerebrospinal fluid depends on glucose concentration
  publication-title: Magn Reson Imaging
– volume: 77
  start-page: 23
  year: 2017
  end-page: 33
  article-title: Advanced processing and simulation of MRS data using the FID appliance ( )—An open source, MATLAB ‐based toolkit
  publication-title: Magn Reson Med
– volume: 2464
  start-page: 4
  year: 2014
– volume: 88
  start-page: 1994
  year: 2022
  end-page: 2004
  article-title:  : a cloud‐based MRS tool for basis set simulation
  publication-title: Magn Reson Med
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution and mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: Preprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 18
  start-page: 859
  year: 2018
  end-page: 869
  article-title: The influence of language and culture on cognitive assessment tools in the diagnosis of early cognitive impairment and dementia
  publication-title: Expert Rev Neurother
– volume: 34
  year: 2021
  article-title: Comparison of different linear‐combination modeling algorithms for short‐TE proton spectra
  publication-title: NMR Biomed
– start-page: 733
  year: 2015
  end-page: 750
– volume: 264
  year: 2022
  article-title: Neurometabolic timecourse of healthy aging
  publication-title: Neuroimage
– volume: 8
  year: 2013
  article-title: Faster metabolite 1H transverse relaxation in the elder human brain
  publication-title: PLoS One
– volume: 14
  year: 2022
  article-title: Differential relationships between brain structure and dual task walking in young and older adults
  publication-title: Front Aging Neurosci
– volume: 82
  start-page: 527
  year: 2019
  end-page: 550
  article-title: Methodological consensus on clinical proton MRS of the brain: review and recommendations
  publication-title: Magn Reson Med
– volume: 54
  start-page: 761
  year: 2005
  end-page: 768
  article-title: Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects
  publication-title: Magn Reson Med
– year: 2023
– volume: 11
  start-page: 598
  year: 2001
  end-page: 605
  article-title: A proton magnetic resonance spectroscopy study of age‐related changes in frontal lobe metabolite concentrations
  publication-title: Cereb Cortex
– volume: 73
  start-page: 553
  year: 1987
  end-page: 557
  article-title: Improved algorithm for noniterative time‐domain model fitting to exponentially damped magnetic resonance signals
  publication-title: J Magn Reson 1969
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B Methodol
– volume: 19
  start-page: 995
  year: 2016
  end-page: 998
  article-title: Age‐related myelin degradation burdens the clearance function of microglia during aging
  publication-title: Nat Neurosci
– volume: 6
  start-page: 275
  year: 2007
  end-page: 284
  article-title: Changes in the structural complexity of the aged brain
  publication-title: Aging Cell
– volume: 35
  year: 2022
  article-title: Comparison of seven modelling algorithms for γ‐aminobutyric acid–edited proton magnetic resonance spectroscopy
  publication-title: NMR Biomed
– volume: 57
  start-page: 172
  year: 2007
  end-page: 180
  article-title: Correlation of proton transverse relaxation rates ( ) with iron concentrations in postmortem brain tissue from alzheimer's disease patients
  publication-title: Magn Reson Med
– volume: 31
  start-page: 415
  year: 2018
  end-page: 424
  article-title: T 2 mapping of cerebrospinal fluid: 3 T versus 7 T
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 676
  year: 2023
  article-title: Meta‐analysis and open‐source database for in vivo brain magnetic resonance spectroscopy in health and disease
  publication-title: Anal Biochem
SSID ssj0009974
Score 2.473306
Snippet Purpose Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS...
PurposeRelaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS...
Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo MRS. However, the majority of MRS quantification...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 916
SubjectTerms Age
Aging
Atrophy
Cortex (cingulate)
healthy aging
In vivo methods and tests
Life span
magnetic resonance spectroscopy (MRS)
Metabolites
Statistical analysis
T2 relaxation times
TE series
Title Metabolite T2 relaxation times decrease across the adult lifespan in a large multi‐site cohort
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30340
https://www.proquest.com/docview/3149640557
https://www.proquest.com/docview/3120058377
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FULz4qIrVKhE8eNm2m2R3GzyJKEVYD0XBg7DmMQtFXUu7BfHkT_A3-kvMZPtQT-JtYScQMpnJl8zMN4QcSx1bFmoIko4VgbCgA62UDHisHbwPHYbW-DSQXse9W3F1F93VyOmsFqbih5g_uKFleH-NBq70uL0gDX0ePbec_xV4X8dcLQRE_QV1lJQVA3Mi0M9IMWMV6rD2fOQPVPkdm_rD5XKd3M-mVeWUPLYmpW6Zt1-Mjf-c9wZZm4JOelbtkk1Sg6JOVtJpWL1Oln0eqBlvkYcUSrctsDCZ3jCKlS6vXnfUN6Gn1qPMMVDlj1fq4CP1FB70aZCD804FHRRU0SdMMKc-W_Hz_QMj1BRb8Y7KbXJ7eXFz3gumTRiCIXNQImBWmiTnHJJIWmuUAaYZV6DzbphwG2Ho1hipVRJLi9o1ImSh7djY5JECy3fIUvFSwC6hXQ6gEkSJ3VjkJtFcgtUAkXMyXQc0G6Q5U0c2taRxxt0VLhbIFNYgR_PfzgYwsKEKeJmgDL6Nuau2kznxa58NK66OrGJlZplb9cyvepb2U_-x93fRfbLKsO2vTz1rkqVyNIEDh0VKfeg33RcrotxX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUCkXoFBUHgVX4sAly8Z2krXEBbVFyyMc0CJxQakfE2lVCGg3KyFO_AR-I78Ej7O70J6q3iLFlix7Zvx5Ht8A7CqTOh4bjLK2k5F0aCKjtYpEajy8jz2GNuQayM_T7qU8uUquZuBgUgvT8ENMHW6kGcFek4KTQ3r_jTX0dnDb8gZY-gf7HHX0Jub8Hxdv5FFKNRzMmSRLo-SEV6jN96dT_8CV79FpuF6OluB6srAmq-R3a1Sbln38i7Pxf1e-DItj3MkOG0H5BDNYrcB8Po6sr8CHkApqh6vwK8faSwbVJrMeZ1Ts8hCOj4U-9MwFoDlEpsMNyzyCZIHFg930S_QGqmL9iml2QznmLCQsvjw9U5CaUTfeQf0ZLo9-9r53o3EfhuieezQRcadsVgqBWaKcs9oiN1xoNGUnzoRLKHprrTI6S5WjA7Yy5rFru9SWiUYn1mC2uqvwC7COQNQZAcVOKkubGaHQGcTE25mOx5rrsDU5j2KsTMNC-FdcKoksbB2-TX97NaDYhq7wbkRjyD3mX9t-zF7Y_OK-oesoGmJmXvhdL8KuF_lFHj42_n3oDnzs9vKz4uz4_HQTFjh1AQ6ZaFswWw9G-NVDk9psBwl8BfSv4HM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EUfbia3dZ3xE87KXH6STdPcGTqIO627KIgoeF3jyqQVbbYaYHxJM_wd_oLzGVnhkfp2VvDV2BkEpVvqSqvgLYUSZ1PDYYZW0nI-nQREZrFYnUeHgfewxt6GkgP0uPL-XpVXI1BXvjWpiGH2Ly4EaWEfw1GXjPlbuvpKG3_duW97_S39dnZNpW1Lfh8PyVO0qphoI5k-RolBzTCrX57mToO1j5FpyG06W7AL_H82qSSv62hrVp2YcPlI3_OfFFmB-hTrbfbJMlmMJqGebyUVx9GWZDIqgdfIY_OdZ-X1BlMrvgjEpd7oPyWOhCz1yAmQNkOpyvzONHFjg82M11id49Vey6YprdUIY5C-mKz49PFKJm1Iu3X3-By-7RxcFxNOrCEPW4xxIRd8pmpRCYJco5qy1yw4VGU3biTLiEYrfWKqOzVDlSr5Uxj13bpbZMNDrxFaaruwq_AesIRJ0RTOyksrSZEQqdQUy8l-l4pLkC62N1FCNTGhTC3-FSSVRhK7A9-e2NgCIbusK7IcnQ45i_a3uZ72Hti15D1lE0tMy88KtehFUv8vM8fKz-u-gWzP067BY_T85-rMEnTi2AQxraOkzX_SFueFxSm82w_14AdvrfIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolite+T2+relaxation+times+decrease+across+the+adult+lifespan+in+a+large+multi%E2%80%90site+cohort&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Hupfeld%2C+Kathleen+E&rft.au=Saipavitra+Murali%E2%80%90Manohar&rft.au=Z%C3%B6llner%2C+Helge+J&rft.au=Song%2C+Yulu&rft.date=2025-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=3&rft.spage=916&rft.epage=929&rft_id=info:doi/10.1002%2Fmrm.30340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon