Improved Online Algorithms for the Sorting Buffer Problem

An instance of the sorting buffer problem consists of a metric space and a server, equipped with a finite-capacity buffer capable of holding a limited number of requests. An additional ingredient of the input is an online sequence of requests, each of which is characterized by a destination in the g...

Full description

Saved in:
Bibliographic Details
Published inSTACS 2007 Vol. 4393; pp. 658 - 669
Main Authors Gamzu, Iftah, Segev, Danny
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2007
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An instance of the sorting buffer problem consists of a metric space and a server, equipped with a finite-capacity buffer capable of holding a limited number of requests. An additional ingredient of the input is an online sequence of requests, each of which is characterized by a destination in the given metric; whenever a request arrives, it must be stored in the sorting buffer. At any point in time, a currently pending request can be served by drawing it out of the buffer and moving the server to its corresponding destination. The objective is to serve all input requests in a way that minimizes the total distance traveled by the server. In this paper, we focus our attention on instances of the problem in which the underlying metric is either an evenly-spaced or a continuous line metric. Our main findings can be briefly summarized as follows: 1. We present a deterministicO(logn) competitive algorithm for n-point evenly-spaced line metrics. This result improves on a randomized O(log2n) competitive algorithm due to Khandekar and Pandit. 2. We devise a deterministicO(logN loglogN) competitive algorithm for continuous line metrics, where N is the input sequence length. 3. We establish the first non-trivial lower bound for the evenly-spaced case, by proving that the competitive ratio of any deterministic algorithm is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{ 2 + \sqrt{3} }{ \sqrt{3}} \approx 2.154$\end{document}.
AbstractList An instance of the sorting buffer problem consists of a metric space and a server, equipped with a finite-capacity buffer capable of holding a limited number of requests. An additional ingredient of the input is an online sequence of requests, each of which is characterized by a destination in the given metric; whenever a request arrives, it must be stored in the sorting buffer. At any point in time, a currently pending request can be served by drawing it out of the buffer and moving the server to its corresponding destination. The objective is to serve all input requests in a way that minimizes the total distance traveled by the server. In this paper, we focus our attention on instances of the problem in which the underlying metric is either an evenly-spaced or a continuous line metric. Our main findings can be briefly summarized as follows: 1. We present a deterministicO(logn) competitive algorithm for n-point evenly-spaced line metrics. This result improves on a randomized O(log2n) competitive algorithm due to Khandekar and Pandit. 2. We devise a deterministicO(logN loglogN) competitive algorithm for continuous line metrics, where N is the input sequence length. 3. We establish the first non-trivial lower bound for the evenly-spaced case, by proving that the competitive ratio of any deterministic algorithm is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{ 2 + \sqrt{3} }{ \sqrt{3}} \approx 2.154$\end{document}.
Author Segev, Danny
Gamzu, Iftah
Author_xml – sequence: 1
  givenname: Iftah
  surname: Gamzu
  fullname: Gamzu, Iftah
  email: iftgam@post.tau.ac.il
  organization: School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
– sequence: 2
  givenname: Danny
  surname: Segev
  fullname: Segev, Danny
  email: segevd@post.tau.ac.il
  organization: School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
BookMark eNqNkM1OAyEUhVGrsda-gYt5AfQylxlgWRt_mjSpibomHQba6nQYYerzS1s37rwbTg73I5xzRQatby0hNwxuGYC4U0JSpAUHKkCxpHVRnpBxsjGZBw9PyZCVjFFErs7-3IlyQIaAkFMlOF6kPcmV5KIQl2Qc4wekQQZM5UOiZtsu-G9bZ4u22bQ2mzQrHzb9ehsz50PWr2326kO_aVfZ_c45G7KX4KvGbq_JuVs20Y5_zxF5f3x4mz7T-eJpNp3MaZdL2dO6ELaWqhYVmpLnpi4cyEowNA5BVIYLRADGgGNeGScc58oIlRtjGDjJcUTy47uxC-kXNujK-8-oGeh9VzoF16kfDvrQy16XCeJHKIX72tnYa7unjG37sGzMetn1NkRdpn4AlC4ADvqfGELJCmCaK5UwxB-RR3o3
ContentType Book Chapter
Copyright Springer Berlin Heidelberg 2007
Copyright_xml – notice: Springer Berlin Heidelberg 2007
DBID FFUUA
DEWEY 004
DOI 10.1007/978-3-540-70918-3_56
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783540709183
3540709185
EISSN 1611-3349
Editor Thomas, Wolfgang
Weil, Pascal
Editor_xml – sequence: 1
  fullname: Weil, Pascal
– sequence: 1
  givenname: Wolfgang
  surname: Thomas
  fullname: Thomas, Wolfgang
  email: thomas@informatik.rwth-aachen.de
– sequence: 2
  fullname: Thomas, Wolfgang
– sequence: 2
  givenname: Pascal
  surname: Weil
  fullname: Weil, Pascal
  email: pascal.weil@labri.fr
EndPage 669
ExternalDocumentID EBC6743009_500_674
EBC3061501_499_673
GroupedDBID -7M
-7P
-BG
089
0D6
0DA
0E8
2HV
38.
8V7
A4J
AABBV
AABFA
AAHDE
AAUKK
ABBVZ
ABMNI
ACFGI
ADQVG
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
AGNDD
AHMWK
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
E6I
FFUUA
IEZ
IV0
JJU
LDH
LZA
MA.
MW~
MYL
NUC
NUP
SAO
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z87
Z88
Z8R
Z8W
Z92
-DT
-GH
-~X
1SB
29L
2HA
5QI
875
AASHB
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-d57ed89d7b3c642cd5f08b713cf307bc473300110432bcf7f449c792ccc10f843
ISBN 9783540709176
3540709177
ISSN 0302-9743
IngestDate Wed Nov 06 06:28:09 EST 2024
Thu Jul 25 23:13:21 EDT 2024
Wed Jun 26 06:17:50 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5 -- .S956 2007eb
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-d57ed89d7b3c642cd5f08b713cf307bc473300110432bcf7f449c792ccc10f843
Notes Due to space limitations, some proofs are omitted from this extended abstract. We refer the reader to the full version of this paper (currently available online at http://www.math.tau.ac.il/~segevd), in which all missing details are provided.
OCLC 184984757
PQID EBC3061501_499_673
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_540_70918_3_56
proquest_ebookcentralchapters_6743009_500_674
proquest_ebookcentralchapters_3061501_499_673
PublicationCentury 2000
PublicationDate 2007
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate LNCS
PublicationSubtitle 24th Annual Symposium on Theoretical Aspects of Computer Science Aachen, Germany, February 22-24, 2007, Proceedings
PublicationTitle STACS 2007
PublicationYear 2007
Publisher Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Kanade, Takeo
Rangan, C. Pandu
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
– sequence: 9
  givenname: C. Pandu
  surname: Rangan
  fullname: Rangan, C. Pandu
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0000310192
ssj0002792
Score 1.5918026
Snippet An instance of the sorting buffer problem consists of a metric space and a server, equipped with a finite-capacity buffer capable of holding a limited number...
SourceID springer
proquest
SourceType Publisher
StartPage 658
SubjectTerms Competitive Algorithm
Competitive Ratio
Input Sequence
Online Algorithm
Total Distance
Title Improved Online Algorithms for the Sorting Buffer Problem
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=3061501&ppg=673
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6743009&ppg=674
http://link.springer.com/10.1007/978-3-540-70918-3_56
Volume 4393
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66IogH3_gmB29LpW3Spjm6siKiXnzgLZi00YPsilsv_npnknTXLQXRSwmhDWm_MMxM5_uGkBNtWWJzIaJSSBGBwRORzLGbu03y1MR5YZw6_81tfvnAr56yp5mQjWOX1PrUfHXySv6DKswBrsiS_QOy00VhAsaAL1wBYbi2nN_5NKvncNTPZoKKgOIn7D5JAF6k1xDtn729jCH-f_W6C87NvBt_uFrnwSf2RkGqALaUmQv_RSv8b9J__aCOhVrnXQpZIcMjwD3w_VYa6wcOCes0pe3qCXwUxirrUK7OfaedlnL1cHCOFAfw4lQWYwUZXySLQoIdWjobXl0_TnNhKE8Knmag3rg9iuVpVsrv-QftsWtPcwFC65-2cxXu18kq0kco8jpglxtkoRptkrWmeQYNtnSLyAYp6pGiM6QoIEUBKRqQoh4pGpDaJg8Xw_vzyyj0sYje06KoozITVVnIUmhmINwzZWbjQouEGQsWVhsuGHPafZyl2lhhOZdGyNQYk8S24GyH9EbjUbVLaGqliasEoz7NsV09LFyUVtpKo9aa3CNR8xmU-9seSnyNf-mJYq4DQKIg0MWSvl_vbwG4R_rNt1V4-0Q1stcAigIgeKwcKDjO9_-4-gFZmR3xQ9KrPz6rI_D5an0cjsw35TlOSg
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Stacs+2007&rft.atitle=Improved+Online+Algorithms+for+the+Sorting+Buffer+Problem&rft.date=2007-01-01&rft.pub=Springer+Berlin+%2F+Heidelberg&rft.isbn=9783540709176&rft.volume=4393&rft_id=info:doi/10.1007%2F978-3-540-70918-3_56&rft.externalDBID=674&rft.externalDocID=EBC6743009_500_674
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F3061501-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6743009-l.jpg