Compositional Sentence Representation from Character Within Large Context Text
This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and sentence. This model is designed to overcome two problems of representing a sentence on the basis of a constituent word sequence. The first is a dat...
Saved in:
Published in | Neural Information Processing Vol. 10635; pp. 674 - 685 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and sentence. This model is designed to overcome two problems of representing a sentence on the basis of a constituent word sequence. The first is a data sparsity problem when estimating the embedding of rare words, and the other is no usage of inter-sentence dependency. In the HCRN, word representations are built from characters, thus resolving the data-sparsity problem, and inter-sentence dependency is embedded into sentence representation at the level of sentence composition. We propose a hierarchy-wise language learning scheme in order to alleviate the optimization difficulties when training deep hierarchical recurrent networks in an end-to-end fashion. The HCRN was quantitatively and qualitatively evaluated on a dialogue act classification task. In the end, the HCRN achieved the state-of-the-art performance with a test error rate of 22.7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document} for dialogue act classification on the SWBD-DAMSL database. |
---|---|
AbstractList | This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and sentence. This model is designed to overcome two problems of representing a sentence on the basis of a constituent word sequence. The first is a data sparsity problem when estimating the embedding of rare words, and the other is no usage of inter-sentence dependency. In the HCRN, word representations are built from characters, thus resolving the data-sparsity problem, and inter-sentence dependency is embedded into sentence representation at the level of sentence composition. We propose a hierarchy-wise language learning scheme in order to alleviate the optimization difficulties when training deep hierarchical recurrent networks in an end-to-end fashion. The HCRN was quantitatively and qualitatively evaluated on a dialogue act classification task. In the end, the HCRN achieved the state-of-the-art performance with a test error rate of 22.7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document} for dialogue act classification on the SWBD-DAMSL database. |
Author | Kim, Geonmin Lee, Soo-young Lee, Hwaran Kim, Bokyeong |
Author_xml | – sequence: 1 givenname: Geonmin surname: Kim fullname: Kim, Geonmin email: gmkim90@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea – sequence: 2 givenname: Hwaran surname: Lee fullname: Lee, Hwaran email: hwaran.lee@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea – sequence: 3 givenname: Bokyeong surname: Kim fullname: Kim, Bokyeong email: bokyeong1015@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea – sequence: 4 givenname: Soo-young surname: Lee fullname: Lee, Soo-young email: sy-lee@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea |
BookMark | eNqNkMtOwzAQRQ0URFv6ByzyA4bxM_ESRbykCiQoYmk5rtMG2jjYQeLzcVoEWzZje67PSHMmaNT61iF0TuCCAOSXKi8ww4wonAMoiUFLdYAmLHV2DThEYyIJwYxxdfQXCDpCY2BAsco5O0ETAoSydFfyFM1ifAMAmhIl8jF6KP2287HpG9-aTfbs2t611mVPrgsuppcZkqwOfpuVaxOM7V3IXpt-3bTZ3ISVy0qfmK8-W6Ryho5rs4lu9nNO0cvN9aK8w_PH2_vyao47WhQ9NlXhuIGa8NqInCq7ZNJWlkBRVFYYxpc2lVqKnFScV2AEcDBLB86kH8KyKaL7ubELTbtyQVfev0dNQA_udHKnmU5C9E6VHtwliO-hLviPTxd77QbKpi2D2di16dJuUUuqVBKkC8kSRf-LCaEIE-IX-wYs54Km |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2017 |
Copyright_xml | – notice: Springer International Publishing AG 2017 |
DBID | FFUUA |
DEWEY | 006.32 |
DOI | 10.1007/978-3-319-70096-0_69 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3319700960 9783319700960 |
EISSN | 1611-3349 |
Editor | Li, Yuanqing El-Alfy, El-Sayed M Xie, Shengli Liu, Derong Zhao, Dongbin |
Editor_xml | – sequence: 1 fullname: El-Alfy, El-Sayed M – sequence: 1 givenname: Derong surname: Liu fullname: Liu, Derong email: derongliu@foxmail.com – sequence: 2 fullname: Liu, Derong – sequence: 2 givenname: Shengli surname: Xie fullname: Xie, Shengli email: shlxie@gdut.edu.cn – sequence: 3 fullname: Zhao, Dongbin – sequence: 3 givenname: Yuanqing surname: Li fullname: Li, Yuanqing email: auyqli@scut.edu.cn – sequence: 4 fullname: Li, Yuanqing – sequence: 4 givenname: Dongbin surname: Zhao fullname: Zhao, Dongbin email: Dongbin.zhao@ia.ac.cn – sequence: 5 fullname: Xie, Shengli – sequence: 5 givenname: El-Sayed M. surname: El-Alfy fullname: El-Alfy, El-Sayed M. email: alfy@kfupm.edu.sa |
EndPage | 685 |
ExternalDocumentID | EBC6299027_863_692 EBC5591355_863_692 |
GroupedDBID | 0D6 0DA 38. AABBV AALVI ABBVZ ABHTH ABQUB ACDJR ADCXD AEDXK AEJLV AEKFX AETDV AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BATQV BBABE CVWCR CZZ FFUUA I4C IEZ LDH NUC SAO SBO SWYDZ TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS AEFIE EJD F5P FEDTE HVGLF LAS P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p288t-ab8e4a0f14fa5729cd36cbc1088bc5a34dca34f6571b44b0a5040ade0ea88b5c3 |
ISBN | 3319700952 9783319700953 |
ISSN | 0302-9743 |
IngestDate | Wed Nov 06 06:11:48 EST 2024 Thu Jul 25 23:38:01 EDT 2024 Fri Jul 26 00:38:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342TA1637-1638T |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p288t-ab8e4a0f14fa5729cd36cbc1088bc5a34dca34f6571b44b0a5040ade0ea88b5c3 |
OCLC | 1012397496 |
PQID | EBC5591355_863_692 |
PageCount | 12 |
ParticipantIDs | springer_books_10_1007_978_3_319_70096_0_69 proquest_ebookcentralchapters_6299027_863_692 proquest_ebookcentralchapters_5591355_863_692 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II |
PublicationTitle | Neural Information Processing |
PublicationYear | 2017 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0002743957 ssj0002792 |
Score | 1.882527 |
Snippet | This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 674 |
SubjectTerms | Dialogue act Hierarchical recurrent neural network Hierarchy-wise learning Inter-sentence dependency Rare word |
Title | Compositional Sentence Representation from Character Within Large Context Text |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5591355&ppg=692 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6299027&ppg=692 http://link.springer.com/10.1007/978-3-319-70096-0_69 |
Volume | 10635 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LuLBN77JwdsS2W6SPo66rIqoB1nFW0jSFL1U0Qrir3cmTXe3ZUH0EkpJQ8iXTGamM98QcpIlLga1tmBGOMcEaLRMR1nBpDPapnlUSE8pdHsXXz2I6yf5NK3N57NLKnNqv-fmlfwHVXgHuGKW7B-QnQwKL-AZ8IUWEIa2o_y23ayBcMkzZoR8Ig9jiPpvbqOwE_DIh9AspP5AEk48zfc-BjakHpV1nsmwoW8GaVE9v5S9GwwU73kKq6-qN4Zm1k0QJR03QeMm7DgaZ3xdZ5ct05LD2UxQAeMtWQkajZwreWeDLTAxCr-NWV_VhVjaRNdxXf6uQ3Q9Oh-CeROBAqTSmMOHcLMuJhmIreWz0fXN48R1NkAjSmK1xckkBzWX0nTSM1mS8-bUsic6v8C9ZjFeJ6uYbUIxDQRmuUEWXLlJ1ppaGzSI3i1y10KRNijSNooUUaQTFGmNIvUo0oAiRRS3ycPFaDy8YqEWBnsbpGnFtEmd0P0iEoWWYBDZnMfW2AguCWOl5iK30BSxTCIjhOlrCdJZ567vNPSQlu-QpfK1dLuE2gSsBAy-KGA0noFNm4uM4-CpcaLge4Q1a6P8H_sQJmzrlfhQHZR-7R-jyjNIpv17zYIr7P6hGupsQEpxBUgpj5RCpPb_OJsDsjLd_odkqXr_dEegN1bmOOyjHzUua-4 |
link.rule.ids | 782,783,787,796,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.atitle=Compositional+Sentence+Representation+from+Character+Within+Large+Context+Text&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319700953&rft.volume=10635&rft_id=info:doi/10.1007%2F978-3-319-70096-0_69&rft.externalDBID=692&rft.externalDocID=EBC5591355_863_692 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5591355-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6299027-l.jpg |