Compositional Sentence Representation from Character Within Large Context Text

This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and sentence. This model is designed to overcome two problems of representing a sentence on the basis of a constituent word sequence. The first is a dat...

Full description

Saved in:
Bibliographic Details
Published inNeural Information Processing Vol. 10635; pp. 674 - 685
Main Authors Kim, Geonmin, Lee, Hwaran, Kim, Bokyeong, Lee, Soo-young
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and sentence. This model is designed to overcome two problems of representing a sentence on the basis of a constituent word sequence. The first is a data sparsity problem when estimating the embedding of rare words, and the other is no usage of inter-sentence dependency. In the HCRN, word representations are built from characters, thus resolving the data-sparsity problem, and inter-sentence dependency is embedded into sentence representation at the level of sentence composition. We propose a hierarchy-wise language learning scheme in order to alleviate the optimization difficulties when training deep hierarchical recurrent networks in an end-to-end fashion. The HCRN was quantitatively and qualitatively evaluated on a dialogue act classification task. In the end, the HCRN achieved the state-of-the-art performance with a test error rate of 22.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for dialogue act classification on the SWBD-DAMSL database.
AbstractList This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and sentence. This model is designed to overcome two problems of representing a sentence on the basis of a constituent word sequence. The first is a data sparsity problem when estimating the embedding of rare words, and the other is no usage of inter-sentence dependency. In the HCRN, word representations are built from characters, thus resolving the data-sparsity problem, and inter-sentence dependency is embedded into sentence representation at the level of sentence composition. We propose a hierarchy-wise language learning scheme in order to alleviate the optimization difficulties when training deep hierarchical recurrent networks in an end-to-end fashion. The HCRN was quantitatively and qualitatively evaluated on a dialogue act classification task. In the end, the HCRN achieved the state-of-the-art performance with a test error rate of 22.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for dialogue act classification on the SWBD-DAMSL database.
Author Kim, Geonmin
Lee, Soo-young
Lee, Hwaran
Kim, Bokyeong
Author_xml – sequence: 1
  givenname: Geonmin
  surname: Kim
  fullname: Kim, Geonmin
  email: gmkim90@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea
– sequence: 2
  givenname: Hwaran
  surname: Lee
  fullname: Lee, Hwaran
  email: hwaran.lee@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea
– sequence: 3
  givenname: Bokyeong
  surname: Kim
  fullname: Kim, Bokyeong
  email: bokyeong1015@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea
– sequence: 4
  givenname: Soo-young
  surname: Lee
  fullname: Lee, Soo-young
  email: sy-lee@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology, Deajeon, South Korea
BookMark eNqNkMtOwzAQRQ0URFv6ByzyA4bxM_ESRbykCiQoYmk5rtMG2jjYQeLzcVoEWzZje67PSHMmaNT61iF0TuCCAOSXKi8ww4wonAMoiUFLdYAmLHV2DThEYyIJwYxxdfQXCDpCY2BAsco5O0ETAoSydFfyFM1ifAMAmhIl8jF6KP2287HpG9-aTfbs2t611mVPrgsuppcZkqwOfpuVaxOM7V3IXpt-3bTZ3ISVy0qfmK8-W6Ryho5rs4lu9nNO0cvN9aK8w_PH2_vyao47WhQ9NlXhuIGa8NqInCq7ZNJWlkBRVFYYxpc2lVqKnFScV2AEcDBLB86kH8KyKaL7ubELTbtyQVfev0dNQA_udHKnmU5C9E6VHtwliO-hLviPTxd77QbKpi2D2di16dJuUUuqVBKkC8kSRf-LCaEIE-IX-wYs54Km
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 006.32
DOI 10.1007/978-3-319-70096-0_69
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3319700960
9783319700960
EISSN 1611-3349
Editor Li, Yuanqing
El-Alfy, El-Sayed M
Xie, Shengli
Liu, Derong
Zhao, Dongbin
Editor_xml – sequence: 1
  fullname: El-Alfy, El-Sayed M
– sequence: 1
  givenname: Derong
  surname: Liu
  fullname: Liu, Derong
  email: derongliu@foxmail.com
– sequence: 2
  fullname: Liu, Derong
– sequence: 2
  givenname: Shengli
  surname: Xie
  fullname: Xie, Shengli
  email: shlxie@gdut.edu.cn
– sequence: 3
  fullname: Zhao, Dongbin
– sequence: 3
  givenname: Yuanqing
  surname: Li
  fullname: Li, Yuanqing
  email: auyqli@scut.edu.cn
– sequence: 4
  fullname: Li, Yuanqing
– sequence: 4
  givenname: Dongbin
  surname: Zhao
  fullname: Zhao, Dongbin
  email: Dongbin.zhao@ia.ac.cn
– sequence: 5
  fullname: Xie, Shengli
– sequence: 5
  givenname: El-Sayed M.
  surname: El-Alfy
  fullname: El-Alfy, El-Sayed M.
  email: alfy@kfupm.edu.sa
EndPage 685
ExternalDocumentID EBC6299027_863_692
EBC5591355_863_692
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
ADCXD
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
I4C
IEZ
LDH
NUC
SAO
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-ab8e4a0f14fa5729cd36cbc1088bc5a34dca34f6571b44b0a5040ade0ea88b5c3
ISBN 3319700952
9783319700953
ISSN 0302-9743
IngestDate Wed Nov 06 06:11:48 EST 2024
Thu Jul 25 23:38:01 EDT 2024
Fri Jul 26 00:38:16 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342TA1637-1638T
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-ab8e4a0f14fa5729cd36cbc1088bc5a34dca34f6571b44b0a5040ade0ea88b5c3
OCLC 1012397496
PQID EBC5591355_863_692
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_70096_0_69
proquest_ebookcentralchapters_6299027_863_692
proquest_ebookcentralchapters_5591355_863_692
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II
PublicationTitle Neural Information Processing
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0002743957
ssj0002792
Score 1.882527
Snippet This paper describes a Hierarchical Composition Recurrent Network (HCRN) consisting of a 3-level hierarchy of compositional models: character, word and...
SourceID springer
proquest
SourceType Publisher
StartPage 674
SubjectTerms Dialogue act
Hierarchical recurrent neural network
Hierarchy-wise learning
Inter-sentence dependency
Rare word
Title Compositional Sentence Representation from Character Within Large Context Text
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5591355&ppg=692
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6299027&ppg=692
http://link.springer.com/10.1007/978-3-319-70096-0_69
Volume 10635
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LuLBN77JwdsS2W6SPo66rIqoB1nFW0jSFL1U0Qrir3cmTXe3ZUH0EkpJQ8iXTGamM98QcpIlLga1tmBGOMcEaLRMR1nBpDPapnlUSE8pdHsXXz2I6yf5NK3N57NLKnNqv-fmlfwHVXgHuGKW7B-QnQwKL-AZ8IUWEIa2o_y23ayBcMkzZoR8Ig9jiPpvbqOwE_DIh9AspP5AEk48zfc-BjakHpV1nsmwoW8GaVE9v5S9GwwU73kKq6-qN4Zm1k0QJR03QeMm7DgaZ3xdZ5ct05LD2UxQAeMtWQkajZwreWeDLTAxCr-NWV_VhVjaRNdxXf6uQ3Q9Oh-CeROBAqTSmMOHcLMuJhmIreWz0fXN48R1NkAjSmK1xckkBzWX0nTSM1mS8-bUsic6v8C9ZjFeJ6uYbUIxDQRmuUEWXLlJ1ppaGzSI3i1y10KRNijSNooUUaQTFGmNIvUo0oAiRRS3ycPFaDy8YqEWBnsbpGnFtEmd0P0iEoWWYBDZnMfW2AguCWOl5iK30BSxTCIjhOlrCdJZ567vNPSQlu-QpfK1dLuE2gSsBAy-KGA0noFNm4uM4-CpcaLge4Q1a6P8H_sQJmzrlfhQHZR-7R-jyjNIpv17zYIr7P6hGupsQEpxBUgpj5RCpPb_OJsDsjLd_odkqXr_dEegN1bmOOyjHzUua-4
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.atitle=Compositional+Sentence+Representation+from+Character+Within+Large+Context+Text&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319700953&rft.volume=10635&rft_id=info:doi/10.1007%2F978-3-319-70096-0_69&rft.externalDBID=692&rft.externalDocID=EBC5591355_863_692
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5591355-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6299027-l.jpg