Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks

Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning. However, the performance of these systems often degrades when they are applied on new data that differ from the training data, for example, du...

Full description

Saved in:
Bibliographic Details
Published inInformation Processing in Medical Imaging Vol. 10265; pp. 597 - 609
Main Author Niethammer, Marc
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319590493
3319590499
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-59050-9_47

Cover

Loading…
Abstract Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning. However, the performance of these systems often degrades when they are applied on new data that differ from the training data, for example, due to variations in imaging protocols. Manually annotating new data for each test domain is not a feasible solution. In this work we investigate unsupervised domain adaptation using adversarial neural networks to train a segmentation method which is more robust to differences in the input data, and which does not require any annotations on the test domain. Specifically, we derive domain-invariant features by learning to counter an adversarial network, which attempts to classify the domain of the input data by observing the activations of the segmentation network. Furthermore, we propose a multi-connected domain discriminator for improved adversarial training. Our system is evaluated using two MR databases of subjects with traumatic brain injuries, acquired using different scanners and imaging protocols. Using our unsupervised approach, we obtain segmentation accuracies which are close to the upper bound of supervised domain adaptation.
AbstractList Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning. However, the performance of these systems often degrades when they are applied on new data that differ from the training data, for example, due to variations in imaging protocols. Manually annotating new data for each test domain is not a feasible solution. In this work we investigate unsupervised domain adaptation using adversarial neural networks to train a segmentation method which is more robust to differences in the input data, and which does not require any annotations on the test domain. Specifically, we derive domain-invariant features by learning to counter an adversarial network, which attempts to classify the domain of the input data by observing the activations of the segmentation network. Furthermore, we propose a multi-connected domain discriminator for improved adversarial training. Our system is evaluated using two MR databases of subjects with traumatic brain injuries, acquired using different scanners and imaging protocols. Using our unsupervised approach, we obtain segmentation accuracies which are close to the upper bound of supervised domain adaptation.
Author Niethammer, Marc
Author_xml – sequence: 1
  fullname: Niethammer, Marc
BookMark eNqNkM9OwzAMxgMMxDb2Bhz2AgGnTpvkOP4jTXCAnaO09VjZ1pakg9cnhYkz8sHyZ3-Wvt-IDeqmJsbOBVwIAHVplObIURieGkiBGyvVARthVH6E5JANRSYER5TmiE3i_X4nDQ7YEBASbpTEEzYSoLIEEZU4ZZMQ3gFAaJnFGrLFog67lvxnFaic3jRbV9XTWenaznVVU0_jdOV7bU6hn1_obUv1fvlVdat4_Ek-OF-5zfSJuq_Gr8MZO166TaDJvo_Z4u729fqBz5_vH69nc94mWnfcgVCAWqlcLmnpwBS5RloSJSUZIVWOMpeqFNpkpnSoQBujnSLhREGpKnDMkt-_ofVV_Ube5k2zDlaA7SnaSMWijVzsDzTbU4wm-WtqffOxo9BZ6l1FjOXdpljF7DGQzRKTRZY2RbQZJP-1pamRmKk_2zcDgYVV
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 616.07540285
DOI 10.1007/978-3-319-59050-9_47
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 3319590502
9783319590509
EISSN 1611-3349
Editor Styner, Martin
Oguz, Ipek
Aylward, Stephen
Yap, Pew-Thian
Zhu, Hongtu
Shen, Dinggang
Niethammer, Marc
Editor_xml – sequence: 1
  fullname: Styner, Martin
– sequence: 2
  fullname: Oguz, Ipek
– sequence: 3
  fullname: Aylward, Stephen
– sequence: 4
  fullname: Yap, Pew-Thian
– sequence: 5
  fullname: Zhu, Hongtu
– sequence: 6
  fullname: Shen, Dinggang
– sequence: 7
  fullname: Niethammer, Marc
EndPage 609
ExternalDocumentID EBC6296493_533_602
EBC5594367_533_602
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
ADCXD
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-a01703877b4fefa09cb83efee2de9147b34b47d18969da3708998a7e1a1ce57c3
ISBN 9783319590493
3319590499
ISSN 0302-9743
IngestDate Tue Jul 29 20:14:39 EDT 2025
Thu May 29 00:59:19 EDT 2025
Thu May 29 16:04:35 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1637-1638TA1634Q33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-a01703877b4fefa09cb83efee2de9147b34b47d18969da3708998a7e1a1ce57c3
Notes K. Kamnitsas—Part of this work was carried on when KK was an intern at Microsoft Research.
OCLC 1076233371
992450099
PQID EBC5594367_533_602
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_319_59050_9_47
proquest_ebookcentralchapters_6296493_533_602
proquest_ebookcentralchapters_5594367_533_602
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings
PublicationTitle Information Processing in Medical Imaging
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001846464
ssj0002792
Score 2.4282508
Snippet Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning....
SourceID springer
proquest
SourceType Publisher
StartPage 597
SubjectTerms Convolutional Neural Network
Domain Adaptation
Source Domain
Target Domain
Transfer Learning
Title Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5594367&ppg=602
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6296493&ppg=602
http://link.springer.com/10.1007/978-3-319-59050-9_47
Volume 10265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagSAhxAAaIbYB84DYZJXFiO8dtFMa07bSi3SzbcTi1q5buwl_Pe7G9JlElNFQpaiwnsvI5L-_X9x4hX7gRss5Nw2A3GQbfa8NgZsu4464UynpeIHf48kqcLcrzm-omtXeP7JKN_er-7OSV_A-qMAa4Ikv2Ecg-3BQG4D_gC0dAGI4T5XfsZo3pgg_Ew5TuH_kpKfjyc9m3IBruisWqu1-jeOhA0fx2uzTo7mjMOuYcwtkJ9ow4uvBdkCS_l5GcFOjeoYFzZ_peH1chhXzkOcjlxHOQPIcT3-PA_XX8Y2Rtco6VaMCk4CPxCVZctVMYD_MvkCsF11YZq3UosTmufS2yYjzYf2LnJ6cC48I116CWaoFVQ59KVc3Is-P5-cWvrTcN1Cj4IXknLbIO5ZW2ix4QJ3etaWRiTKLivbJx_Zq8RAIKRWYIrPINeeJXe-RVNBdoFMbdHnl-GfMi3pLFEFcacKVbXCmc9bjSgCsd4koRVzrAlSZc35HF9_n16RmLDTPYulBqwwwWQ-JKSlu2vjVZ7azivvW-aHydl9Ly0payyVUt6sZwiSFfZaTPTe58JR1_T2ar25X_QGjucrgEdL_CyrJS3gjlm5aDMS9cZkW2T1h6WroP68dcYheeTafBUi25kAm3f86f4LxPjhIEGqd3OtXXBuw014Cd7rHTiN3BI-9-SF5sX4iPZLa5u_efQLnc2M9xZ_0F32V4Ig
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Processing+in+Medical+Imaging&rft.atitle=Unsupervised+Domain+Adaptation+in+Brain+Lesion+Segmentation+with+Adversarial+Networks&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319590493&rft.volume=10265&rft_id=info:doi/10.1007%2F978-3-319-59050-9_47&rft.externalDBID=602&rft.externalDocID=EBC6296493_533_602
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5594367-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6296493-l.jpg