MtNet: A Multi-Task Neural Network for Dynamic Malware Classification

In this paper, we propose a new multi-task, deep learning architecture for malware classification for the binary (i.e. malware versus benign) malware classification task. All models are trained with data extracted from dynamic analysis of malicious and benign files. For the first time, we see improv...

Full description

Saved in:
Bibliographic Details
Published inDetection of Intrusions and Malware, and Vulnerability Assessment Vol. 9721; pp. 399 - 418
Main Authors Huang, Wenyi, Stokes, Jack W.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319406664
3319406663
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-40667-1_20

Cover

Loading…
Abstract In this paper, we propose a new multi-task, deep learning architecture for malware classification for the binary (i.e. malware versus benign) malware classification task. All models are trained with data extracted from dynamic analysis of malicious and benign files. For the first time, we see improvements using multiple layers in a deep neural network architecture for malware classification. The system is trained on 4.5 million files and tested on a holdout test set of 2 million files which is the largest study to date. To achieve a binary classification error rate of 0.358 %, the objective functions for the binary classification task and malware family classification task are combined in the multi-task architecture. In addition, we propose a standard (i.e. non multi-task) malware family classification architecture which also achieves a malware family classification error rate of 2.94 %.
AbstractList In this paper, we propose a new multi-task, deep learning architecture for malware classification for the binary (i.e. malware versus benign) malware classification task. All models are trained with data extracted from dynamic analysis of malicious and benign files. For the first time, we see improvements using multiple layers in a deep neural network architecture for malware classification. The system is trained on 4.5 million files and tested on a holdout test set of 2 million files which is the largest study to date. To achieve a binary classification error rate of 0.358 %, the objective functions for the binary classification task and malware family classification task are combined in the multi-task architecture. In addition, we propose a standard (i.e. non multi-task) malware family classification architecture which also achieves a malware family classification error rate of 2.94 %.
Author Huang, Wenyi
Stokes, Jack W.
Author_xml – sequence: 1
  givenname: Wenyi
  surname: Huang
  fullname: Huang, Wenyi
– sequence: 2
  givenname: Jack W.
  surname: Stokes
  fullname: Stokes, Jack W.
  email: jstokes@microsoft.com
BookMark eNqNkMtOwzAQRQ0URCj9Axb5AYOd8ZNdVcpDasumrC0ncSA0JCV2VfH3uC1CYsdiNNIdn9H4XKBB27UOoStKrikh8kZLhQED1ZgRISSmJiNHaBRjiOE-o8cooYJSDMD0yZ-ZYAOUECAZ1pLBGUo0zxiJc32ORt6_E0KoBKkUS9B0HhYu3KbjdL5pQo2X1q_Shdv0toktbLt-lVZdn959tfajLtK5bba2d-mksd7XVV3YUHftJTqtbOPd6KcP0cv9dDl5xLPnh6fJeIbXmVIBM6XKjEtaqrwSOSggUkqwmokqr0otuHYiPmAglCx5UVZQSOZ0xTNQ8X4OQ5Qd9vp1X7evrjd51628ocTsvJkowYCJGszekdl5ixA7QOu--9w4H4zbUYVrQ_xl8WbXwfXeCCBUscyA5rH0fzHOlWRM_WLfFlR9qA
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DBID FFUUA
DEWEY 005.8
DOI 10.1007/978-3-319-40667-1_20
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319406671
3319406671
EISSN 1611-3349
Editor Zurutuza, Urko
Rodríguez, Ricardo J
Caballero, Juan
Editor_xml – sequence: 1
  fullname: Rodríguez, Ricardo J
– sequence: 2
  fullname: Caballero, Juan
– sequence: 3
  fullname: Zurutuza, Urko
EndPage 418
ExternalDocumentID EBC6301842_395_399
EBC5587448_395_399
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAPIT
AAQZU
ABOWU
ACLMJ
ADCXD
AEDXK
AEJGN
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AWFBM
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SWNTM
TPJZQ
TSXQS
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-488d2571d8bf6b38307773a946fbfd9659e6d2543687d5cdf3c74e9f523807853
ISBN 9783319406664
3319406663
ISSN 0302-9743
IngestDate Tue Jul 29 20:13:03 EDT 2025
Thu May 29 01:04:35 EDT 2025
Wed May 28 23:44:05 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A25QA76.9.A25
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-488d2571d8bf6b38307773a946fbfd9659e6d2543687d5cdf3c74e9f523807853
OCLC 952407839
1197563114
PQID EBC5587448_395_399
PageCount 20
ParticipantIDs springer_books_10_1007_978_3_319_40667_1_20
proquest_ebookcentralchapters_6301842_395_399
proquest_ebookcentralchapters_5587448_395_399
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Security and Cryptology
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings
PublicationTitle Detection of Intrusions and Malware, and Vulnerability Assessment
PublicationYear 2016
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001737884
ssj0002792
Score 2.3287017
Snippet In this paper, we propose a new multi-task, deep learning architecture for malware classification for the binary (i.e. malware versus benign) malware...
SourceID springer
proquest
SourceType Publisher
StartPage 399
SubjectTerms Computer security
Title MtNet: A Multi-Task Neural Network for Dynamic Malware Classification
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5587448&ppg=399
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6301842&ppg=399
http://link.springer.com/10.1007/978-3-319-40667-1_20
Volume 9721
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYuSAO_BYbG_KBW2XUxHbscOtGYUysp27azYoT-zR1SA1C7K_nPTtu0qjSNA6J0ih1LX_O6_Pze99HyCdRuzLzOmPgDUsmmlIz7ZVklcuth-WGckE64XJZnF-Jixt5kzTbu-qS1n6u7_fWlfwPqnAPcMUq2Ucgu20UbsA14AtnQBjOI-d3N8wac1lc6-rk7_1YY_FESGqLmRO3f6oYXcaP179vkVw65MH-nc63ZJzD-XLZLl0ME05DUS5bVRusggi0HMuYLB5yEr9GDfv0G1FWExOOeoy7KEI2jiKkKOIoDjkIhc2_76w8Oby6Atc-YmhKkQpor10epmJg2RR-VbHM5LP-fyjtvfOomDSiwV6cnhVgjLTIDS8lHOUBOVBaTsjT-eLi53UfWFNIkY9yXts-8si01Pd5UEO5r087q43RBnnwO1YvyXOsRaFYJAK9fEWeuPVr8iIpcdDOML8hi4DeFzqnPXY0Ykc77ChgRzvsaIcd3cXuLbn6tlidnbNOIIP9yrVuGRjfBkxu1mjrC8s12GuleFWKwlvfIFWkKxpkOyi0amTdeF4r4Uov8yAzIPk7Mlnfrd17Qq2sage-oytQuEp4q73wamZnnGsvrTwkLA2JCdv4Xe5wHQdgY6REIQWdwHnw-RGYh2Saxtng4xuT-LQBIMMNAGQCQAYBOnpk6x_Is37SH5MJvJLuBJzJ1n7sps8_f1FvOw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Detection+of+Intrusions+and+Malware%2C+and+Vulnerability+Assessment&rft.atitle=MtNet%3A+A+Multi-Task+Neural+Network+for+Dynamic+Malware+Classification&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319406664&rft.volume=9721&rft_id=info:doi/10.1007%2F978-3-319-40667-1_20&rft.externalDBID=399&rft.externalDocID=EBC6301842_395_399
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5587448-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6301842-l.jpg