Mask2Lesion: Mask-Constrained Adversarial Skin Lesion Image Synthesis

Skin lesion segmentation is a vital task in skin cancer diagnosis and further treatment. Although deep learning based approaches have significantly improved the segmentation accuracy, these algorithms are still reliant on having a large enough dataset in order to achieve adequate results. Inspired b...

Full description

Saved in:
Bibliographic Details
Published inSimulation and Synthesis in Medical Imaging Vol. 11827; pp. 71 - 80
Main Authors Abhishek, Kumar, Hamarneh, Ghassan
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Skin lesion segmentation is a vital task in skin cancer diagnosis and further treatment. Although deep learning based approaches have significantly improved the segmentation accuracy, these algorithms are still reliant on having a large enough dataset in order to achieve adequate results. Inspired by the immense success of generative adversarial networks (GANs), we propose a GAN-based augmentation of the original dataset in order to improve the segmentation performance. In particular, we use the segmentation masks available in the training dataset to train the Mask2Lesion model, and use the model to generate new lesion images given any arbitrary mask, which are then used to augment the original training dataset. We test Mask2Lesion augmentation on the ISBI ISIC 2017 Skin Lesion Segmentation Challenge dataset and achieve an improvement of $$5.17\%$$ in the mean Dice score as compared to a model trained with only classical data augmentation techniques.
Bibliography:Original Abstract: Skin lesion segmentation is a vital task in skin cancer diagnosis and further treatment. Although deep learning based approaches have significantly improved the segmentation accuracy, these algorithms are still reliant on having a large enough dataset in order to achieve adequate results. Inspired by the immense success of generative adversarial networks (GANs), we propose a GAN-based augmentation of the original dataset in order to improve the segmentation performance. In particular, we use the segmentation masks available in the training dataset to train the Mask2Lesion model, and use the model to generate new lesion images given any arbitrary mask, which are then used to augment the original training dataset. We test Mask2Lesion augmentation on the ISBI ISIC 2017 Skin Lesion Segmentation Challenge dataset and achieve an improvement of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.17\%$$\end{document} in the mean Dice score as compared to a model trained with only classical data augmentation techniques.
ISBN:3030327779
9783030327774
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-32778-1_8