On Applying Probabilistic Logic Programming to Breast Cancer Data
Medical data is particularly interesting as a subject for relational data mining due to the complex interactions which exist between different entities. Furthermore, the ambiguity of medical imaging causes interpretation to be complex and error-prone, and thus particularly amenable to improvement th...
Saved in:
Published in | Inductive Logic Programming Vol. 10759; pp. 31 - 45 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | Medical data is particularly interesting as a subject for relational data mining due to the complex interactions which exist between different entities. Furthermore, the ambiguity of medical imaging causes interpretation to be complex and error-prone, and thus particularly amenable to improvement through automated decision support. Probabilistic Inductive Logic Programming (PILP) is a particularly well-suited tool for this task, since it makes it possible to combine the relational nature of this field with the ambiguity inherent in human interpretation of medical imaging. This work presents a PILP setting for breast cancer data, where several clinical and demographic variables were collected retrospectively, and new probabilistic variables and rules reflecting domain knowledge were introduced. A PILP predictive model was built automatically from this data and experiments show that it can not only match the predictions of a team of experts in the area, but also consistently reduce the error rate of malignancy prediction, when compared to other non-relational techniques. |
---|---|
ISBN: | 9783319780894 3319780891 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-78090-0_3 |