Composition of Transformations in the Registration of Sets of Points or Oriented Points
Registration of point sets in medical imaging applications may in some cases benefit from application-specific rather than general models of deformation by which to transform the model point set to the target. Further, including orientation data with the points may improve accuracy. To facilitate th...
Saved in:
Published in | Shape in Medical Imaging Vol. 12474; pp. 3 - 17 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2020
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030610551 9783030610555 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-61056-2_1 |
Cover
Abstract | Registration of point sets in medical imaging applications may in some cases benefit from application-specific rather than general models of deformation by which to transform the model point set to the target. Further, including orientation data with the points may improve accuracy. To facilitate this, we propose an algorithm to register sets of points or oriented points through arbitrarily composed sets of transformations, so as to allow the construction of context-specific deformation spaces. The algorithm is generic with respect to the choice of transformations, requiring only that each constituent has a known solution to a particular standard form of equation. Our approach is framed in the mixture model framework, and constitutes a generalized expectation maximization algorithm. We present experimental results for two models—a 2D model of a cardiac ventricle, and a 3D model of a bug—testing the algorithm’s robustness to noise and outliers, and comparing the accuracy when using points or oriented points. The results suggest the algorithm is quite robust to both noise and outliers, with inclusion of orientation data consistently resulting in more accurate registrations. |
---|---|
AbstractList | Registration of point sets in medical imaging applications may in some cases benefit from application-specific rather than general models of deformation by which to transform the model point set to the target. Further, including orientation data with the points may improve accuracy. To facilitate this, we propose an algorithm to register sets of points or oriented points through arbitrarily composed sets of transformations, so as to allow the construction of context-specific deformation spaces. The algorithm is generic with respect to the choice of transformations, requiring only that each constituent has a known solution to a particular standard form of equation. Our approach is framed in the mixture model framework, and constitutes a generalized expectation maximization algorithm. We present experimental results for two models—a 2D model of a cardiac ventricle, and a 3D model of a bug—testing the algorithm’s robustness to noise and outliers, and comparing the accuracy when using points or oriented points. The results suggest the algorithm is quite robust to both noise and outliers, with inclusion of orientation data consistently resulting in more accurate registrations. |
Author | Ellis, Randy E. Peoples, Jacob J. |
Author_xml | – sequence: 1 givenname: Jacob J. surname: Peoples fullname: Peoples, Jacob J. email: jacob.peoples@queensu.ca – sequence: 2 givenname: Randy E. surname: Ellis fullname: Ellis, Randy E. |
BookMark | eNqVUMtOwzAQNFAQbekXcMkPBLxe26mPqOIlVSqCIrhZTuK0gTYOdvh_nFLUM6fdnd0Zzc6IDBrXWEIugV4Bpdm1yqYpphRpKoEKmTINR2SEEdjN78dkCBIgReTq5LAQMCDD2LNUZRzPyAgYZVyoKbBzMgnhg9I4M0kzPiRvM7dtXai72jWJq5KlN02onN-aHglJ3STd2ibPdlWHzpu_sxfbhb4-ubrpO58sfG2bzpZ76IKcVmYT7GRfx-T17nY5e0jni_vH2c08bdkUuujQAJaV5YXFQlSmyOPTBZ9CySvkUpUZFDYXAvNKUWSYybwEwY0UjJW5VDgm8KsbWl83K-t17txn0EB1n6GOchp1TEPvMtMxwwOn9e7r24ZO255URP_ebIq1aTvrg5YokSrUUsN_OExl8pfzA7Z6gzI |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2020 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-61056-2_1 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 303061056X 9783030610562 |
EISSN | 1611-3349 |
Editor | Lombaert, Hervé Goksel, Orcun Reuter, Martin Wachinger, Christian Paniagua, Beatriz Rekik, Islem |
Editor_xml | – sequence: 1 fullname: Goksel, Orcun – sequence: 2 fullname: Reuter, Martin – sequence: 3 fullname: Paniagua, Beatriz – sequence: 4 fullname: Rekik, Islem – sequence: 5 fullname: Lombaert, Hervé – sequence: 6 fullname: Wachinger, Christian |
EndPage | 17 |
ExternalDocumentID | EBC6363093_6_11 EBC6362976_6_11 |
GroupedDBID | 38. AABBV ACGCR AEDXK AEJLV AEJNW AEKFX ALMA_UNASSIGNED_HOLDINGS APEJL AVCSZ AZTDL BBABE CYNQG CZZ DACMV ESBCR FFUUA I4C IEZ OAOFD OPOMJ SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 AEHEY -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p281t-97a13dfe4ce3c5facb978c481d4f3469d71ceb553bf9032376bd154a6522db693 |
ISBN | 3030610551 9783030610555 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:15:05 EDT 2025 Sat Aug 02 21:41:01 EDT 2025 Thu May 29 16:50:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA75.5-76.95 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p281t-97a13dfe4ce3c5facb978c481d4f3469d71ceb553bf9032376bd154a6522db693 |
OCLC | 1202459812 |
PQID | EBC6362976_6_11 |
PageCount | 15 |
ParticipantIDs | springer_books_10_1007_978_3_030_61056_2_1 proquest_ebookcentralchapters_6363093_6_11 proquest_ebookcentralchapters_6362976_6_11 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | International Workshop, ShapeMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings |
PublicationTitle | Shape in Medical Imaging |
PublicationYear | 2020 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002426074 ssj0002792 |
Score | 1.9503411 |
Snippet | Registration of point sets in medical imaging applications may in some cases benefit from application-specific rather than general models of deformation by... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 3 |
SubjectTerms | Expectation-maximization Nonrigid registration Oriented points |
Title | Composition of Transformations in the Registration of Sets of Points or Oriented Points |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6362976&ppg=11 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6363093&ppg=11&c=UERG http://link.springer.com/10.1007/978-3-030-61056-2_1 |
Volume | 12474 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT9swGLe27jLtAIxN4ykfdhoKamzHTY6AykvbkFB53KzYsaEHWtSGC3893-c4aRp2GFzSyrIjxz_ny-97mpCfqWCFyxIT9aXtR6JwLgLWmkQm0YNCZtoZhwb9P3_l6ZU4v01uF0cd-uySUu-b53_mlbwHVWgDXDFL9g3INjeFBvgP-MIVEIZrh_wum1mrHI77_NFX_Kh9LWcP_sSh9ibAtz1EZSErHLVYaoggR955ae-a8rk-icWWITZu7INkZnsXWA0ZuWnV1DYVsH7HVFCbCjvGxpa96-BkSb3kqFDgCZrJkrxkojpY55X0bQdcwNAIx8qIqXjxsakd7HGnzX9Rh4dHkkv0zSqpMGH74yAVPfLpYHj--7qxnCGpAOKDiTr1_OKqlNJivk19qaqEcGc6S9pExwHuecVolXzBXBOKSSAwwzXywU6-kpWgGdAgd-fr5KYFJJ062gGSjicUgKRtILEbAom_FWp0OqM1kKHpG7k6Ho6OTqNwJEb0yNK4hPcoj3nhrDCWm8TlRsPjGQFKh3BcyKwYxMbqJOHaZX2OEU-6AJKcS6DZhZYZ_056k-nE_iA0k6lluXEgsZkw3OoMRqcgWFia5rl1G-RXvUjKO-5DtLCplmSuACoGZNZD9T-dG1yhc73mCvvOVV07Gx5GcQVYKY-VAqw233LnLfJ5se-3Sa-cPdkdII2l3g276AWPE2wz |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Shape+in+Medical+Imaging&rft.atitle=Composition+of+Transformations+in+the+Registration+of+Sets+of+Points+or+Oriented+Points&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030610555&rft.volume=12474&rft_id=info:doi/10.1007%2F978-3-030-61056-2_1&rft.externalDBID=11&rft.externalDocID=EBC6363093_6_11 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6362976-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6363093-l.jpg |