Photodepositing CdS on the Active Cyano Groups Decorated g‐C3N4 in Z‐Scheme Manner Promotes Visible‐Light‐Driven Hydrogen Evolution
g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this fi...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 39 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups (NC‐) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron‐withdrawing feature of cyano groups in the defective g‐C3N4/CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g‐C3N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h−1 g−1, which is 6.09 times higher than pristine g‐C3N4. Moreover, the defective g‐C3N4/CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z‐scheme heterojunctions for regulating the visible‐light‐induced photocatalytic activity for H2 evolution.
A direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups as the active bridge sites. The specific electron‐withdrawing characteristic of cyano groups is conductive to promoting the intimate contact of the two components, providing a stable channel for the charge transfer from g‐C3N4 to CdS. Consequently, the defective g‐C3N4/CdS exhibits high hydrogen evolution activity under visible light. |
---|---|
AbstractList | g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups (NC‐) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron‐withdrawing feature of cyano groups in the defective g‐C3N4/CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g‐C3N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h−1 g−1, which is 6.09 times higher than pristine g‐C3N4. Moreover, the defective g‐C3N4/CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z‐scheme heterojunctions for regulating the visible‐light‐induced photocatalytic activity for H2 evolution. g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups (NC‐) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron‐withdrawing feature of cyano groups in the defective g‐C3N4/CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g‐C3N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h−1 g−1, which is 6.09 times higher than pristine g‐C3N4. Moreover, the defective g‐C3N4/CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z‐scheme heterojunctions for regulating the visible‐light‐induced photocatalytic activity for H2 evolution. A direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups as the active bridge sites. The specific electron‐withdrawing characteristic of cyano groups is conductive to promoting the intimate contact of the two components, providing a stable channel for the charge transfer from g‐C3N4 to CdS. Consequently, the defective g‐C3N4/CdS exhibits high hydrogen evolution activity under visible light. |
Author | Zhu, Xiaodi Ai, Changzhi Zeng, Yamei Zhang, Xidong Zhang, Haoran Wang, Cai‐Zhuang Wang, Zhipeng Lin, Shiwei Si, Hewei Wang, Zilin Li, Jin Shi, Wenyan |
Author_xml | – sequence: 1 givenname: Zhipeng surname: Wang fullname: Wang, Zhipeng organization: Hainan University – sequence: 2 givenname: Zilin surname: Wang fullname: Wang, Zilin organization: Hainan University – sequence: 3 givenname: Xiaodi surname: Zhu fullname: Zhu, Xiaodi organization: University of Science and Technology of China – sequence: 4 givenname: Changzhi surname: Ai fullname: Ai, Changzhi organization: Hainan University – sequence: 5 givenname: Yamei surname: Zeng fullname: Zeng, Yamei organization: Hainan University – sequence: 6 givenname: Wenyan surname: Shi fullname: Shi, Wenyan organization: University of Cambridge – sequence: 7 givenname: Xidong surname: Zhang fullname: Zhang, Xidong organization: Hainan University – sequence: 8 givenname: Haoran surname: Zhang fullname: Zhang, Haoran organization: Hainan University – sequence: 9 givenname: Hewei surname: Si fullname: Si, Hewei organization: Hainan University – sequence: 10 givenname: Jin surname: Li fullname: Li, Jin organization: Hainan University – sequence: 11 givenname: Cai‐Zhuang surname: Wang fullname: Wang, Cai‐Zhuang organization: Iowa State University – sequence: 12 givenname: Shiwei orcidid: 0000-0001-7325-8182 surname: Lin fullname: Lin, Shiwei email: linsw@hainanu.edu.cn organization: Hainan University |
BookMark | eNo9kE9PAjEUxBuDiYBePTfxDLbdvz2SBcFkURLUg5fN7vYtlCzt2hYMN-9e_Ix-EpdgOM285JeZvOmhjtIKELqlZEgJYfd2W9dDRhglLOT8AnVpSL1BGDPeOXtKrlDP2g0hHmV-1EXfi7V2WkCjrXRSrXAillgr7NaAR6WTe8DJIVcaT43eNRaPodQmdyDw6vfrJ_GefCwVfm_9slzDFvA8VwoMXhi91Q4sfpNWFjW0QCpXa9fq2LSpCs8OwuhVayZ7Xe-c1OoaXVZ5beHmX_vo9WHykswG6fP0MRmlg4ZFHh8UAvI4Fr4oc0EJeAWHIPBJEbWPAw-DggbAK7-iYexxISrKqqqKWVj6RRAxoF4f3Z1yG6M_dmBdttE7o9rKjAVRTANOw6il-In6lDUcssbIbW4OGSXZce3suHZ2XjtbztP0fHl_NPN9QQ |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.202102699 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202102699 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61764003 – fundername: Division of Materials Science and Engineering funderid: DE‐AC02‐07CH11358 – fundername: National Energy Research Scientific Computing Centre – fundername: Major Science and Technology Planning Project of Hainan Province funderid: ZDKJ201810 – fundername: Hainan Academician Innovation Platform Funding – fundername: Basic Energy Sciences |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2739-bdea88d4dcad10e3b9e5540b7102e965b15e9f4f16839ddf12fff826c4b572e13 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Sun Jul 20 04:11:03 EDT 2025 Wed Jan 22 16:29:05 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2739-bdea88d4dcad10e3b9e5540b7102e965b15e9f4f16839ddf12fff826c4b572e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7325-8182 |
OpenAccessLink | https://www.osti.gov/biblio/1813484 |
PQID | 2578159167 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2578159167 wiley_primary_10_1002_smll_202102699_SMLL202102699 |
PublicationCentury | 2000 |
PublicationDate | October 1, 2021 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2019; 256 7 2021; 6 1999 2015 2015 2016 2021; 285 51 347 6 282 2019; 31 2020; 142 2017 2018 2018 2021; 219 225 229 2 2019 2018; 11 30 2020; 260 2019 2020 2016; 11 3 26 2006; 5 2020; 59 2020; 266 2019 2020; 245 13 2020; 11 2019 2020 2021; 58 268 87 2019 2020 2021; 12 67 2 2020 2017; 262 13 2019; 243 2019 2020 2020; 244 59 56 2018 2021; 236 417 2020; 8 2017 2014; 139 5 2018; 6 2016; 6 2021 2019 2018; 33 364 8 2020; 4 2020; 1 2019 2020 2019; 58 10 58 2021 2018 2018 2020; 281 11 229 41 2020 2019; 263 378 2019; 256 2016; 138 2017; 121 2020; 839 2020 2017; 59 203 2017 2021; 29 414 2018 2021 2021; 10 423 11 |
References_xml | – volume: 236 417 start-page: 99 year: 2018 2021 publication-title: Appl. Catal., B Chem. Eng. J. – volume: 8 start-page: 594 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 33 364 8 start-page: 11 2209 year: 2021 2019 2018 publication-title: Adv. Mater. Chem. Eng. J. ACS Catal. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 285 51 347 6 282 start-page: 687 685 970 1952 year: 1999 2015 2015 2016 2021 publication-title: Science Chem. Commun. Science Catal. Sci. Technol. Appl. Catal., B – volume: 11 30 year: 2019 2018 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. – volume: 244 59 56 start-page: 475 5218 162 year: 2019 2020 2020 publication-title: Appl. Catal., B Angew. Chem., Int. Ed. Engl. J. Mater. Sci. Technol. – volume: 260 year: 2020 publication-title: Appl. Catal., B – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 839 year: 2020 publication-title: J. Alloys Compd. – volume: 58 268 87 year: 2019 2020 2021 publication-title: Angew. Chem., Int. Ed. Appl. Catal., B Nano Energy – volume: 11 3 26 start-page: 4428 6822 year: 2019 2020 2016 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. Adv. Funct. Mater. – volume: 6 start-page: 388 year: 2021 publication-title: Nat. Energy – volume: 1 year: 2020 publication-title: Small Struct. – volume: 58 10 58 start-page: 7102 458 1985 year: 2019 2020 2019 publication-title: Angew. Chem., Int. Ed. Engl. ACS Catal. Angew. Chem., Int. Ed. Engl. – volume: 243 start-page: 556 year: 2019 publication-title: Appl. Catal., B – volume: 245 13 start-page: 399 4985 year: 2019 2020 publication-title: Appl. Catal., B ChemSusChem – volume: 59 start-page: 8255 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 256 7 year: 2019 2019 publication-title: Appl. Catal., B J. Mater. Chem. A – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 59 203 start-page: 487 300 year: 2020 2017 publication-title: Angew. Chem., Int. Ed. Engl. Appl. Catal., B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 29 414 year: 2017 2021 publication-title: Adv. Mater. Chem. Eng. J. – volume: 263 378 year: 2020 2019 publication-title: Appl. Catal., B Chem. Eng. J. – volume: 256 year: 2019 publication-title: Appl. Catal., B – volume: 139 5 start-page: 3021 3783 year: 2017 2014 publication-title: J. Am. Chem. Soc. Nat. Commun. – volume: 281 11 229 41 start-page: 1187 181 1645 year: 2021 2018 2018 2020 publication-title: Appl. Catal., B ChemSusChem Appl. Catal., B Chin. J. Catal. – volume: 11 start-page: 3043 year: 2020 publication-title: Nat. Commun. – volume: 262 13 year: 2020 2017 publication-title: Appl. Catal., B Small – volume: 8 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 10 423 11 start-page: 8066 6995 year: 2018 2021 2021 publication-title: Nanoscale Chem. Eng. J. ACS Catal. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 67 2 start-page: 2080 year: 2019 2020 2021 publication-title: Energy Environ. Sci. Nano Energy Small Struct. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 266 year: 2020 publication-title: Appl. Catal., B – volume: 219 225 229 2 start-page: 693 415 41 year: 2017 2018 2018 2021 publication-title: Appl. Catal. B Appl. Catal., B Appl. Catal., B Small Struct. – volume: 5 start-page: 782 year: 2006 publication-title: Nat. Mater. |
SSID | ssj0031247 |
Score | 2.6171768 |
Snippet | g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon nitride Catalytic activity CdS Charge efficiency Current carriers Cyano groups Density functional theory Electromagnetic absorption Heterojunctions Heterostructures Hydrogen evolution Hydrogen production Nanotechnology Photocatalysis Photocatalysts photo‐deposition polymeric carbon nitride Z‐scheme mechanism |
Title | Photodepositing CdS on the Active Cyano Groups Decorated g‐C3N4 in Z‐Scheme Manner Promotes Visible‐Light‐Driven Hydrogen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202102699 https://www.proquest.com/docview/2578159167 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EY-CbmAN1Hk49YhaUIUKQhQQYoni-AKIkqCmIMHEzsJv5Jdwl7SlMMIUR4qlxL7Hd5fzd0Ls-Kg8I411VILa8clnODqWiRMGqcbYS7Ty-TTy8YlqX_hHV8HVxCn-ih9inHBjzSjtNSt4bIq9b9LQ4qHHvw44ZFGaT_BxwRajorMxf5RHzqvsrkI-y2HirRFrY93d-zn9B76cRKmlmzmcF_HoBavqkvvdp4HZTV5_cTf-5wsWxNwQg8J-JTSLYgqzJTE7wUy4LN5Pb_NBbrGq6cpuoGm7kGdAcBH2SxMJzZc4y6HMXRXQ4iiWYKuFm8-3j6Z34sNdBtc07pJUPCBwM2bsw2lZ_YcFXN6RLvaQHuhweoCurT4bXmi_2H5OUg0Hz0OtWBEXhwfnzbYz7NvgPBIY0o6xGDca1rdJbGUdPaORQEvdMJhBrQIjA9Spn0pF6MzaVLppmlKYk_gmCF2U3qqYzvIM1wQojwJCstchEtQIG3XdkBRxYUpxlkECJ-uiNtq3aKh8RcRWiFCaVOG6cMsNiB4r6o6oIml2I176aLz0Ufe40xnfbfxl0qaY4XFV5lcT04P-E24RXBmY7VIkvwBC6ue- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NUtRAEO5CPKAHf1BKBLQPegzs5Geyc_BA7UItkt2iXKAoLzGT6SAlJNRmkVpP3r34Kr4Kj-CT2JNkV-BoFQdP-akklZqe7u_rTucbgDc-SU8LbRyZknJ8xgxHJSJ1wiBTlHipkr79G7k_kL0D__1RcDQHv6b_wtT6ELOCm_WMKl5bB7cF6Y2_qqHl2an9dmBzFqlU01e5S5NLztrKdztdNvFb193e2u_0nGZhAeec0Vo52lDSbhvfpIkRLfK0IkbVlrZoS0oGWgSkMj8TkumDMZlwsyxjHp76OghdEh4_9x7ct8uIW7n-7oeZYpXHcFmt58Io6Vipr6lOZMvduPm-NxjtdV5cAdv2Y7iaDkndz_Jl_WKs19Nvt9Qi_6sxewKPGpqNm7VfPIU5yhfh4TXxxWfwY-9zMS4M1W1r-TF2zBCLHJkR42aFAtiZJHmBVXmuxK5N1JmZGzz-_f1nxxv4eJLjR94f8sQ_I7TrTdMI96oGRyrx8ITDzSnxBZGtgPC2O7LYgr2JGRXsuLj1tXH853BwJ6OxBPN5kdMLQOlxzsuQFBKzqbDdUm3BSSVlnEpqYv61DKvTiRI38aWMbaBlIipkuAxuZfH4vFYniWsdaje2po5npo6H_SiaHb38l5tew0Jvvx_F0c5gdwUe2PN1V-MqzI9HF7TG7GysX1X-gPDprifTH6j-Rwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiE48I9oKbAHOLr12ut19sChihulNI0iQlHFxXi9s6Vqa0dxCgon7lx4FF6FV-BJmLWd0HJE6oGTf2Rb1s7OfN-sx98AvBAoQ8218WSOyhOEGZ7KeO7FkVWYhbmSwv2NvD-U_QPx-jA6XIEfi39hGn2I5YKb84w6XjsHnxi79Uc0tDo7dZ8OXMoilWrLKvdw_pmSturVbkIWfhkEvZ233b7X9hXwJgTWytMGs07HCJNnhvsYaoUEqr52YItKRppHqKywXBJ7MMbywFpLNDwXOooD5CE99xpcF9JXrllE8mYpWBUSWtbtXAgkPaf0tZCJ9IOty-97idBepMU1rvXuwM_FiDTlLCeb5zO9mX_5Syzyfxqyu3C7Jdlsu_GKe7CCxX24dUF68QF8G30sZ6XBpmitOGJdM2ZlwYgPs-0aA1h3nhUlqxfnKpa4NJ14uWFHv75-74ZDwY4L9p72xzTtz5C5btM4ZaO6vBEr9u6Ygs0p0gUDt_5B22TqkIX152ZaktuynU-t2z-EgysZjUewWpQFPgYmQ8p4CZBiJC4Vd3zV4ZRSoqVEUiOxrzXYWMyTtI0uVerCLNFQLuM1CGqDp5NGmyRtVKiD1Jk6XZo6He8PBsuj9X-56TncGCW9dLA73HsCN93ppqRxA1Zn03N8StRspp_V3sDgw1XPpd97VEW3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photodepositing+CdS+on+the+Active+Cyano+Groups+Decorated+g%E2%80%90C3N4+in+Z%E2%80%90Scheme+Manner+Promotes+Visible%E2%80%90Light%E2%80%90Driven+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Zhipeng&rft.au=Wang%2C+Zilin&rft.au=Zhu%2C+Xiaodi&rft.au=Ai%2C+Changzhi&rft.date=2021-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202102699&rft.externalDBID=10.1002%252Fsmll.202102699&rft.externalDocID=SMLL202102699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |