Photodepositing CdS on the Active Cyano Groups Decorated g‐C3N4 in Z‐Scheme Manner Promotes Visible‐Light‐Driven Hydrogen Evolution

g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this fi...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 39
Main Authors Wang, Zhipeng, Wang, Zilin, Zhu, Xiaodi, Ai, Changzhi, Zeng, Yamei, Shi, Wenyan, Zhang, Xidong, Zhang, Haoran, Si, Hewei, Li, Jin, Wang, Cai‐Zhuang, Lin, Shiwei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups (NC‐) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron‐withdrawing feature of cyano groups in the defective g‐C3N4/CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g‐C3N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h−1 g−1, which is 6.09 times higher than pristine g‐C3N4. Moreover, the defective g‐C3N4/CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z‐scheme heterojunctions for regulating the visible‐light‐induced photocatalytic activity for H2 evolution. A direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups as the active bridge sites. The specific electron‐withdrawing characteristic of cyano groups is conductive to promoting the intimate contact of the two components, providing a stable channel for the charge transfer from g‐C3N4 to CdS. Consequently, the defective g‐C3N4/CdS exhibits high hydrogen evolution activity under visible light.
AbstractList g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups (NC‐) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron‐withdrawing feature of cyano groups in the defective g‐C3N4/CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g‐C3N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h−1 g−1, which is 6.09 times higher than pristine g‐C3N4. Moreover, the defective g‐C3N4/CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z‐scheme heterojunctions for regulating the visible‐light‐induced photocatalytic activity for H2 evolution.
g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z‐scheme g‐C3N4/CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups (NC‐) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron‐withdrawing feature of cyano groups in the defective g‐C3N4/CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g‐C3N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h−1 g−1, which is 6.09 times higher than pristine g‐C3N4. Moreover, the defective g‐C3N4/CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z‐scheme heterojunctions for regulating the visible‐light‐induced photocatalytic activity for H2 evolution. A direct Z‐scheme heterojunction of defective g‐C3N4/CdS is designed by introducing cyano groups as the active bridge sites. The specific electron‐withdrawing characteristic of cyano groups is conductive to promoting the intimate contact of the two components, providing a stable channel for the charge transfer from g‐C3N4 to CdS. Consequently, the defective g‐C3N4/CdS exhibits high hydrogen evolution activity under visible light.
Author Zhu, Xiaodi
Ai, Changzhi
Zeng, Yamei
Zhang, Xidong
Zhang, Haoran
Wang, Cai‐Zhuang
Wang, Zhipeng
Lin, Shiwei
Si, Hewei
Wang, Zilin
Li, Jin
Shi, Wenyan
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: Wang
  fullname: Wang, Zhipeng
  organization: Hainan University
– sequence: 2
  givenname: Zilin
  surname: Wang
  fullname: Wang, Zilin
  organization: Hainan University
– sequence: 3
  givenname: Xiaodi
  surname: Zhu
  fullname: Zhu, Xiaodi
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Changzhi
  surname: Ai
  fullname: Ai, Changzhi
  organization: Hainan University
– sequence: 5
  givenname: Yamei
  surname: Zeng
  fullname: Zeng, Yamei
  organization: Hainan University
– sequence: 6
  givenname: Wenyan
  surname: Shi
  fullname: Shi, Wenyan
  organization: University of Cambridge
– sequence: 7
  givenname: Xidong
  surname: Zhang
  fullname: Zhang, Xidong
  organization: Hainan University
– sequence: 8
  givenname: Haoran
  surname: Zhang
  fullname: Zhang, Haoran
  organization: Hainan University
– sequence: 9
  givenname: Hewei
  surname: Si
  fullname: Si, Hewei
  organization: Hainan University
– sequence: 10
  givenname: Jin
  surname: Li
  fullname: Li, Jin
  organization: Hainan University
– sequence: 11
  givenname: Cai‐Zhuang
  surname: Wang
  fullname: Wang, Cai‐Zhuang
  organization: Iowa State University
– sequence: 12
  givenname: Shiwei
  orcidid: 0000-0001-7325-8182
  surname: Lin
  fullname: Lin, Shiwei
  email: linsw@hainanu.edu.cn
  organization: Hainan University
BookMark eNo9kE9PAjEUxBuDiYBePTfxDLbdvz2SBcFkURLUg5fN7vYtlCzt2hYMN-9e_Ix-EpdgOM285JeZvOmhjtIKELqlZEgJYfd2W9dDRhglLOT8AnVpSL1BGDPeOXtKrlDP2g0hHmV-1EXfi7V2WkCjrXRSrXAillgr7NaAR6WTe8DJIVcaT43eNRaPodQmdyDw6vfrJ_GefCwVfm_9slzDFvA8VwoMXhi91Q4sfpNWFjW0QCpXa9fq2LSpCs8OwuhVayZ7Xe-c1OoaXVZ5beHmX_vo9WHykswG6fP0MRmlg4ZFHh8UAvI4Fr4oc0EJeAWHIPBJEbWPAw-DggbAK7-iYexxISrKqqqKWVj6RRAxoF4f3Z1yG6M_dmBdttE7o9rKjAVRTANOw6il-In6lDUcssbIbW4OGSXZce3suHZ2XjtbztP0fHl_NPN9QQ
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202102699
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202102699
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61764003
– fundername: Division of Materials Science and Engineering
  funderid: DE‐AC02‐07CH11358
– fundername: National Energy Research Scientific Computing Centre
– fundername: Major Science and Technology Planning Project of Hainan Province
  funderid: ZDKJ201810
– fundername: Hainan Academician Innovation Platform Funding
– fundername: Basic Energy Sciences
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2739-bdea88d4dcad10e3b9e5540b7102e965b15e9f4f16839ddf12fff826c4b572e13
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sun Jul 20 04:11:03 EDT 2025
Wed Jan 22 16:29:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2739-bdea88d4dcad10e3b9e5540b7102e965b15e9f4f16839ddf12fff826c4b572e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7325-8182
OpenAccessLink https://www.osti.gov/biblio/1813484
PQID 2578159167
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_journals_2578159167
wiley_primary_10_1002_smll_202102699_SMLL202102699
PublicationCentury 2000
PublicationDate October 1, 2021
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2019; 256 7
2021; 6
1999 2015 2015 2016 2021; 285 51 347 6 282
2019; 31
2020; 142
2017 2018 2018 2021; 219 225 229 2
2019 2018; 11 30
2020; 260
2019 2020 2016; 11 3 26
2006; 5
2020; 59
2020; 266
2019 2020; 245 13
2020; 11
2019 2020 2021; 58 268 87
2019 2020 2021; 12 67 2
2020 2017; 262 13
2019; 243
2019 2020 2020; 244 59 56
2018 2021; 236 417
2020; 8
2017 2014; 139 5
2018; 6
2016; 6
2021 2019 2018; 33 364 8
2020; 4
2020; 1
2019 2020 2019; 58 10 58
2021 2018 2018 2020; 281 11 229 41
2020 2019; 263 378
2019; 256
2016; 138
2017; 121
2020; 839
2020 2017; 59 203
2017 2021; 29 414
2018 2021 2021; 10 423 11
References_xml – volume: 236 417
  start-page: 99
  year: 2018 2021
  publication-title: Appl. Catal., B Chem. Eng. J.
– volume: 8
  start-page: 594
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 33 364 8
  start-page: 11 2209
  year: 2021 2019 2018
  publication-title: Adv. Mater. Chem. Eng. J. ACS Catal.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 285 51 347 6 282
  start-page: 687 685 970 1952
  year: 1999 2015 2015 2016 2021
  publication-title: Science Chem. Commun. Science Catal. Sci. Technol. Appl. Catal., B
– volume: 11 30
  year: 2019 2018
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 244 59 56
  start-page: 475 5218 162
  year: 2019 2020 2020
  publication-title: Appl. Catal., B Angew. Chem., Int. Ed. Engl. J. Mater. Sci. Technol.
– volume: 260
  year: 2020
  publication-title: Appl. Catal., B
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 839
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 58 268 87
  year: 2019 2020 2021
  publication-title: Angew. Chem., Int. Ed. Appl. Catal., B Nano Energy
– volume: 11 3 26
  start-page: 4428 6822
  year: 2019 2020 2016
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. Adv. Funct. Mater.
– volume: 6
  start-page: 388
  year: 2021
  publication-title: Nat. Energy
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 58 10 58
  start-page: 7102 458 1985
  year: 2019 2020 2019
  publication-title: Angew. Chem., Int. Ed. Engl. ACS Catal. Angew. Chem., Int. Ed. Engl.
– volume: 243
  start-page: 556
  year: 2019
  publication-title: Appl. Catal., B
– volume: 245 13
  start-page: 399 4985
  year: 2019 2020
  publication-title: Appl. Catal., B ChemSusChem
– volume: 59
  start-page: 8255
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 256 7
  year: 2019 2019
  publication-title: Appl. Catal., B J. Mater. Chem. A
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 59 203
  start-page: 487 300
  year: 2020 2017
  publication-title: Angew. Chem., Int. Ed. Engl. Appl. Catal., B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 29 414
  year: 2017 2021
  publication-title: Adv. Mater. Chem. Eng. J.
– volume: 263 378
  year: 2020 2019
  publication-title: Appl. Catal., B Chem. Eng. J.
– volume: 256
  year: 2019
  publication-title: Appl. Catal., B
– volume: 139 5
  start-page: 3021 3783
  year: 2017 2014
  publication-title: J. Am. Chem. Soc. Nat. Commun.
– volume: 281 11 229 41
  start-page: 1187 181 1645
  year: 2021 2018 2018 2020
  publication-title: Appl. Catal., B ChemSusChem Appl. Catal., B Chin. J. Catal.
– volume: 11
  start-page: 3043
  year: 2020
  publication-title: Nat. Commun.
– volume: 262 13
  year: 2020 2017
  publication-title: Appl. Catal., B Small
– volume: 8
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10 423 11
  start-page: 8066 6995
  year: 2018 2021 2021
  publication-title: Nanoscale Chem. Eng. J. ACS Catal.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12 67 2
  start-page: 2080
  year: 2019 2020 2021
  publication-title: Energy Environ. Sci. Nano Energy Small Struct.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 266
  year: 2020
  publication-title: Appl. Catal., B
– volume: 219 225 229 2
  start-page: 693 415 41
  year: 2017 2018 2018 2021
  publication-title: Appl. Catal. B Appl. Catal., B Appl. Catal., B Small Struct.
– volume: 5
  start-page: 782
  year: 2006
  publication-title: Nat. Mater.
SSID ssj0031247
Score 2.6171768
Snippet g‐C3N4/CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type‐II configuration generally leads to weak oxidative...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nitride
Catalytic activity
CdS
Charge efficiency
Current carriers
Cyano groups
Density functional theory
Electromagnetic absorption
Heterojunctions
Heterostructures
Hydrogen evolution
Hydrogen production
Nanotechnology
Photocatalysis
Photocatalysts
photo‐deposition
polymeric carbon nitride
Z‐scheme mechanism
Title Photodepositing CdS on the Active Cyano Groups Decorated g‐C3N4 in Z‐Scheme Manner Promotes Visible‐Light‐Driven Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202102699
https://www.proquest.com/docview/2578159167
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EY-CbmAN1Hk49YhaUIUKQhQQYoni-AKIkqCmIMHEzsJv5Jdwl7SlMMIUR4qlxL7Hd5fzd0Ls-Kg8I411VILa8clnODqWiRMGqcbYS7Ty-TTy8YlqX_hHV8HVxCn-ih9inHBjzSjtNSt4bIq9b9LQ4qHHvw44ZFGaT_BxwRajorMxf5RHzqvsrkI-y2HirRFrY93d-zn9B76cRKmlmzmcF_HoBavqkvvdp4HZTV5_cTf-5wsWxNwQg8J-JTSLYgqzJTE7wUy4LN5Pb_NBbrGq6cpuoGm7kGdAcBH2SxMJzZc4y6HMXRXQ4iiWYKuFm8-3j6Z34sNdBtc07pJUPCBwM2bsw2lZ_YcFXN6RLvaQHuhweoCurT4bXmi_2H5OUg0Hz0OtWBEXhwfnzbYz7NvgPBIY0o6xGDca1rdJbGUdPaORQEvdMJhBrQIjA9Spn0pF6MzaVLppmlKYk_gmCF2U3qqYzvIM1wQojwJCstchEtQIG3XdkBRxYUpxlkECJ-uiNtq3aKh8RcRWiFCaVOG6cMsNiB4r6o6oIml2I176aLz0Ufe40xnfbfxl0qaY4XFV5lcT04P-E24RXBmY7VIkvwBC6ue-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NUtRAEO5CPKAHf1BKBLQPegzs5Geyc_BA7UItkt2iXKAoLzGT6SAlJNRmkVpP3r34Kr4Kj-CT2JNkV-BoFQdP-akklZqe7u_rTucbgDc-SU8LbRyZknJ8xgxHJSJ1wiBTlHipkr79G7k_kL0D__1RcDQHv6b_wtT6ELOCm_WMKl5bB7cF6Y2_qqHl2an9dmBzFqlU01e5S5NLztrKdztdNvFb193e2u_0nGZhAeec0Vo52lDSbhvfpIkRLfK0IkbVlrZoS0oGWgSkMj8TkumDMZlwsyxjHp76OghdEh4_9x7ct8uIW7n-7oeZYpXHcFmt58Io6Vipr6lOZMvduPm-NxjtdV5cAdv2Y7iaDkndz_Jl_WKs19Nvt9Qi_6sxewKPGpqNm7VfPIU5yhfh4TXxxWfwY-9zMS4M1W1r-TF2zBCLHJkR42aFAtiZJHmBVXmuxK5N1JmZGzz-_f1nxxv4eJLjR94f8sQ_I7TrTdMI96oGRyrx8ITDzSnxBZGtgPC2O7LYgr2JGRXsuLj1tXH853BwJ6OxBPN5kdMLQOlxzsuQFBKzqbDdUm3BSSVlnEpqYv61DKvTiRI38aWMbaBlIipkuAxuZfH4vFYniWsdaje2po5npo6H_SiaHb38l5tew0Jvvx_F0c5gdwUe2PN1V-MqzI9HF7TG7GysX1X-gPDprifTH6j-Rwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiE48I9oKbAHOLr12ut19sChihulNI0iQlHFxXi9s6Vqa0dxCgon7lx4FF6FV-BJmLWd0HJE6oGTf2Rb1s7OfN-sx98AvBAoQ8218WSOyhOEGZ7KeO7FkVWYhbmSwv2NvD-U_QPx-jA6XIEfi39hGn2I5YKb84w6XjsHnxi79Uc0tDo7dZ8OXMoilWrLKvdw_pmSturVbkIWfhkEvZ233b7X9hXwJgTWytMGs07HCJNnhvsYaoUEqr52YItKRppHqKywXBJ7MMbywFpLNDwXOooD5CE99xpcF9JXrllE8mYpWBUSWtbtXAgkPaf0tZCJ9IOty-97idBepMU1rvXuwM_FiDTlLCeb5zO9mX_5Syzyfxqyu3C7Jdlsu_GKe7CCxX24dUF68QF8G30sZ6XBpmitOGJdM2ZlwYgPs-0aA1h3nhUlqxfnKpa4NJ14uWFHv75-74ZDwY4L9p72xzTtz5C5btM4ZaO6vBEr9u6Ygs0p0gUDt_5B22TqkIX152ZaktuynU-t2z-EgysZjUewWpQFPgYmQ8p4CZBiJC4Vd3zV4ZRSoqVEUiOxrzXYWMyTtI0uVerCLNFQLuM1CGqDp5NGmyRtVKiD1Jk6XZo6He8PBsuj9X-56TncGCW9dLA73HsCN93ppqRxA1Zn03N8StRspp_V3sDgw1XPpd97VEW3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photodepositing+CdS+on+the+Active+Cyano+Groups+Decorated+g%E2%80%90C3N4+in+Z%E2%80%90Scheme+Manner+Promotes+Visible%E2%80%90Light%E2%80%90Driven+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Zhipeng&rft.au=Wang%2C+Zilin&rft.au=Zhu%2C+Xiaodi&rft.au=Ai%2C+Changzhi&rft.date=2021-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202102699&rft.externalDBID=10.1002%252Fsmll.202102699&rft.externalDocID=SMLL202102699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon