Bio‐inspired Double Angstrom‐Scale Confinement in Ti‐deficient Ti0.87O2 Nanosheet Membranes for Ultrahigh‐performance Osmotic Power Generation

Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confine...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 4
Main Authors Liu, Chao, Ye, Caichao, Zhang, Tianning, Tang, Jiheng, Mao, Kunpeng, Chen, Long, Xue, Liang, Sun, Jingwen, Zhang, Wenqing, Wang, Xin, Xiong, Pan, Wang, Guoxiu, Zhu, Junwu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.01.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems. We design a Ti‐deficient Ti0.87O2 nanosheet membrane with biological double angstrom‐scale confinement (DAC) ion‐permselective channels, named DAC‐Ti0.87O2, for high‐efficiency osmotic power generators. Benefiting from the precisely designed DAC ion‐permselective channels, the DAC‐Ti0.87O2 membrane achieves an unprecedented power density of up to 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution, far exceeding the reported macroscopic‐scale membranes.
AbstractList Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems. We design a Ti‐deficient Ti0.87O2 nanosheet membrane with biological double angstrom‐scale confinement (DAC) ion‐permselective channels, named DAC‐Ti0.87O2, for high‐efficiency osmotic power generators. Benefiting from the precisely designed DAC ion‐permselective channels, the DAC‐Ti0.87O2 membrane achieves an unprecedented power density of up to 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution, far exceeding the reported macroscopic‐scale membranes.
Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems.
Author Liu, Chao
Sun, Jingwen
Zhang, Wenqing
Wang, Xin
Xue, Liang
Tang, Jiheng
Xiong, Pan
Zhang, Tianning
Mao, Kunpeng
Chen, Long
Zhu, Junwu
Ye, Caichao
Wang, Guoxiu
Author_xml – sequence: 1
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Caichao
  surname: Ye
  fullname: Ye, Caichao
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Tianning
  surname: Zhang
  fullname: Zhang, Tianning
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Jiheng
  surname: Tang
  fullname: Tang, Jiheng
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Kunpeng
  surname: Mao
  fullname: Mao, Kunpeng
  organization: Nanjing University of Science and Technology
– sequence: 6
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: Nanjing University of Science and Technology
– sequence: 7
  givenname: Liang
  surname: Xue
  fullname: Xue, Liang
  organization: Nanjing University of Science and Technology
– sequence: 8
  givenname: Jingwen
  surname: Sun
  fullname: Sun, Jingwen
  organization: Nanjing University of Science and Technology
– sequence: 9
  givenname: Wenqing
  surname: Zhang
  fullname: Zhang, Wenqing
  organization: Southern University of Science and Technology
– sequence: 10
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Nanjing University of Science and Technology
– sequence: 11
  givenname: Pan
  orcidid: 0000-0001-9483-6535
  surname: Xiong
  fullname: Xiong, Pan
  email: pan.xiong@njust.edu.cn
  organization: Nanjing University of Science and Technology
– sequence: 12
  givenname: Guoxiu
  orcidid: 0000-0003-4295-8578
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.au
  organization: University of Technology Sydney
– sequence: 13
  givenname: Junwu
  orcidid: 0000-0002-7518-9683
  surname: Zhu
  fullname: Zhu, Junwu
  email: zhujw@njust.edu.cn
  organization: Nanjing University of Science and Technology
BookMark eNo9UE1PAjEQbQwmAnr13MTzYj_cjx4R8SNBMBHPTXd3CiVsu7ZLjDd_gid_oL_EEgynefPem5nMG6CedRYQuqRkRAlh18oaGDHCOE3FTX6C-jRlNOF5znsR33Ce5EVKz9AghE30FwXJ-ujn1rjfr29jQ2s81PjO7cot4LFdhc67JkqvlYrExFltLDRgO2wsXpqo1KBNZfbM0pBRkS8Ynivrwhqgw8_QlF5ZCFg7j9-2nVdrs1rHsRZ8pBplK8CL0LjOVPjFfYDHD2DBq844e45OtdoGuPivQ_R2P11OHpPZ4uFpMp4lLct5nnBREqYVqUVEXChQGQjNOdU1jw8WNEtFlRbAOeicUUZ1VZeaEkrSrMx0wYfo6rC39e59B6GTG7fzNp6UTMTMMkHjoSESB9eH2cKnbL1plP-UlMh98HIfvDwGL8fzp-mx438sJoDw
ContentType Journal Article
Copyright 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
7TM
K9.
DOI 10.1002/anie.202315947
DatabaseName Wiley Open Access
Wiley-Blackwell Backfiles (Open access)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202315947
Genre article
GrantInformation_xml – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 52125202
– fundername: National Natural Science Foundation of China
  funderid: U2004209; 22179062
– fundername: Australian Research Council
  funderid: DP200101249; DP210101389; DP230101579; IH180100020
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
ID FETCH-LOGICAL-p2737-39b02fa0d939b39aea6e9f331fd328881659c58e33ef72121fcdbf101056b6f83
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Thu Oct 10 18:24:40 EDT 2024
Sat Aug 24 00:45:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2737-39b02fa0d939b39aea6e9f331fd328881659c58e33ef72121fcdbf101056b6f83
Notes These authors contributed equally to this work.
ORCID 0000-0001-9483-6535
0000-0002-7518-9683
0000-0003-4295-8578
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202315947
PQID 2914369127
PQPubID 946352
PageCount 11
ParticipantIDs proquest_journals_2914369127
wiley_primary_10_1002_anie_202315947_ANIE202315947
PublicationCentury 2000
PublicationDate January 22, 2024
PublicationDateYYYYMMDD 2024-01-22
PublicationDate_xml – month: 01
  year: 2024
  text: January 22, 2024
  day: 22
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
1959; 63
2017; 1
2023; 35
2013; 3
2013; 25
2019; 10
2023; 7
2019; 13
2023; 145
2022; 23
2020; 59
2020; 13
2008; 3
2012; 488
2017; 552
2014; 136
2023; 62
2020; 6
2018; 4
2015; 137
2022; 32
2022; 33
2021; 81
2021; 80
2021; 9
2021; 7
2021; 6
2019; 4
2023; 17
2023; 16
2021; 143
1976; 191
2017; 139
2022; 144
2021; 16
2021; 15
2021; 12
2004; 93
2021; 11
2023
2017; 17
2022; 61
2016; 536
2017; 11
2023; 110
2022; 13
2020; 117
2015; 517
2022; 15
2018; 12
2022; 17
1996; 118
2018; 13
References_xml – volume: 488
  start-page: 313
  year: 2012
  end-page: 319
  publication-title: Nature
– volume: 12
  start-page: 12337
  year: 2018
  end-page: 12346
  publication-title: ACS Nano
– volume: 11
  start-page: 6682
  year: 2017
  end-page: 6690
  publication-title: ACS Nano
– volume: 137
  start-page: 2975
  year: 2015
  end-page: 2983
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 4148
  year: 2022
  end-page: 4156
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 3876
  year: 2019
  publication-title: Nat. Commun.
– volume: 25
  start-page: 3137
  year: 2013
  end-page: 3146
  publication-title: Chem. Mater.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 110
  year: 2023
  publication-title: Nano Energy
– volume: 10
  start-page: 5793
  year: 2019
  publication-title: Nat. Commun.
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 63
  start-page: 1381
  year: 1959
  end-page: 1387
  publication-title: J. Phys. Chem.
– volume: 17
  start-page: 17245
  year: 2023
  end-page: 17253
  publication-title: ACS Nano
– volume: 17
  start-page: 3543
  year: 2017
  end-page: 3549
  publication-title: Nano Lett.
– volume: 16
  start-page: 11718
  year: 2023
  end-page: 11730
  publication-title: Nano Res.
– volume: 115
  start-page: 8555
  year: 2011
  end-page: 8566
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 8917
  year: 2019
  end-page: 8925
  publication-title: ACS Nano
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 3935
  year: 2022
  publication-title: Nat. Commun.
– volume: 59
  start-page: 8720
  year: 2020
  end-page: 8726
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 8905
  year: 2017
  end-page: 8914
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 588
  year: 2019
  end-page: 605
  publication-title: Nat. Rev. Mater.
– volume: 13
  start-page: 4010
  year: 2022
  publication-title: Nat. Commun.
– volume: 143
  start-page: 16206
  year: 2021
  end-page: 16216
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 2097
  year: 2020
  end-page: 2104
  publication-title: ACS Cent. Sci.
– volume: 7
  start-page: 1004
  year: 2023
  end-page: 1024
  publication-title: Mater. Chem. Front.
– volume: 23
  year: 2022
  publication-title: Mater. Today Energy
– volume: 144
  start-page: 12400
  year: 2022
  end-page: 12409
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 14576
  year: 2021
  end-page: 14581
  publication-title: J. Mater. Chem. A
– year: 2023
  publication-title: Small Methods
– volume: 13
  start-page: 4834
  year: 2020
  end-page: 4853
  publication-title: Energy Environ. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 191
  start-page: 557
  year: 1976
  end-page: 559
  publication-title: Science
– volume: 144
  start-page: 13764
  year: 2022
  end-page: 13772
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 2669
  year: 2023
  end-page: 2678
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 1932
  year: 2021
  end-page: 1940
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 9415
  year: 2021
  end-page: 9422
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 3509
  year: 2021
  end-page: 3521
  publication-title: ACS Nano
– volume: 17
  start-page: 622
  year: 2022
  end-page: 628
  publication-title: Nat. Nanotechnol.
– volume: 33
  start-page: 2291
  year: 2022
  end-page: 2300
  publication-title: Chin. Chem. Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 118
  start-page: 8329
  year: 1996
  end-page: 8335
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 13
  start-page: 685
  year: 2018
  end-page: 690
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 2801
  year: 2013
  publication-title: Sci. Rep.
– volume: 517
  start-page: 68
  year: 2015
  end-page: 72
  publication-title: Nature
– volume: 536
  start-page: 197
  year: 2016
  end-page: 200
  publication-title: Nature
– volume: 16
  start-page: 811
  year: 2021
  end-page: 819
  publication-title: Nat. Nanotechnol.
– volume: 136
  start-page: 15670
  year: 2014
  end-page: 15675
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 622
  year: 2021
  end-page: 639
  publication-title: Nat. Rev. Mater.
– volume: 1
  start-page: 0091
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 10
  start-page: 2920
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 666
  year: 2008
  end-page: 670
  publication-title: Nat. Nanotechnol.
– volume: 552
  start-page: 214
  year: 2017
  end-page: 218
  publication-title: Nature
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 12
  start-page: 4184
  year: 2021
  publication-title: Nat. Commun.
– volume: 117
  start-page: 13959
  year: 2020
  end-page: 13966
  publication-title: Proc. Natl. Acad. Sci. USA
SSID ssj0028806
Score 2.4994307
Snippet Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 2D Membranes
Channels
Clean energy
Confinement
Double Angstrom-Scale Confinement
Electric power generation
Energy sources
Enhanced Permselectivity
Fluidics
Interlayers
Ion Transport
Ions
Membrane permeability
Membranes
Nanofluids
Nanosheets
Osmotic Energy
Permeability
Rivers
Salinity
Salinity effects
Seawater
Sodium
Sodium chloride
Two dimensional materials
Title Bio‐inspired Double Angstrom‐Scale Confinement in Ti‐deficient Ti0.87O2 Nanosheet Membranes for Ultrahigh‐performance Osmotic Power Generation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202315947
https://www.proquest.com/docview/2914369127
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EW95YE1JbDeJxwJFgMRD0EpsURyfIQLSioaFiZ_AxA_kl3CXtOUxgrI4sSw5-c6Xi3P3fYztCpVZ7VvKnjLGU-BCzxgHngUfVGRtmmUV2-d5eNxTpzetm29V_DU_xGTDjVZG5a9pgadmuPdFGkoV2E0S_8YXsqJy8kBGlNN1eDXhjxJonHV5kZQeqdCPWRt9sfdz-I_48nuUWr1mjuZZOp5gnV1y33wuTTN7-cXd-J87WGBzoxiUt2ujWWRTUCyxmYOx9Nsye9_P-x-vb3lBv-HBcoyyzQPwdnGL_f1H7LpGaIFTuSDOgjYYeV7wbo49FoiTgq50c78ZRxeCowfvD-8ASn4Gjzhh9K4cY2XeeyjR1eW3dzhs8FXAwC8qbaGMX5KCG6-Jscl-VljvqNM9OPZGAg7eAKMidF7a-MKlvtXYkjqFNATtpAyclYhNHIQtnbVikBIcfomKwGXWuIBEO0MTuliuskbRL2CN8UiHwqrYGHxUSkUqFs7ERuKRplrE2TrbGgOYjFbhMBEakQ91IKJ1JiokkkHN4ZHUbM0iIQySCQZJ-_ykMznb-MugTTaLbcrs8YTYYo3y6Rm2MW4pzQ6bFupyp7LQT11l7Wk
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4HOBCCy3i1daHXrMktjeJj8tLSwsLgl2ptyiOxxAB2RWbvXDqT-DED-SXMJNsltIjKJfEliUn8_DYmfk-xn4KlVntW8qeMsZT4ELPGAeeBR9UZG2aZRXaZy_sDtSvP-0mm5BqYWp8iNmBG1lG5a_JwOlAevcVNZRKsFvE_o0rsorm2SLavCT2hoOLGYKUQPWsC4yk9IiHvsFt9MXu2_FvIsx_49RqoTn6xEwzxTq_5KY1KU0re_gPvfFD7_CZrUzDUN6p9WaVzUGxxpb2G_a3L-xpLx8-_33MC_oTD5ZjoG1ugXeKK-wf3mHXJUoXOFUM4jTojJHnBe_n2GOBYCmopZ_7rTg6Exyd-HB8DVDyU7jDGaOD5Rgu88Ftid4uv7rGYaPXGgZ-VtELZfycSNx4jY1NKvSVDY4O-_tdb8rh4I0wMEL_pY0vXOpbjXdSp5CGoJ2UgbMShRMHYVtn7RikBIebURG4zBoXEG9naEIXy3W2UAwL2GA80qGwKjYGP5VSkYqFM7GReKWpFnG2yXYaCSZTQxwnQqPoQx2IaJOJShTJqIbxSGrAZpGQDJKZDJJO7_hw9rT1nkE_2FK3f3qSnBz3fm-zZWynRB9PiB22UN5P4BuGMaX5XinqC4bA8Ko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUKlYALFAqCAq0PvWZJbK8TH7fACtqyoHZX4hbF8RgiILsq4cKJn8CpP5Bfwkyyu3wcQbkktiw5eePxs-N5w9h3oXJnQkenp6wNFHgdWOshcBCCip3L8rxW--zpg4H6edo-fRbF3-hDTDfcaGTU_poG-Mj5nSfRUIrAblHyb5yQVTzDPiqN9Jdo0Z-pgJRA62zii6QMKA39RLYxFDsv278gmM9paj3PdJdYNulhc7zkonVT2VZ--0q88T2v8Iktjkko7zRWs8w-QLnC5ncnud8-s_8_iuHD3X1R0n94cBxptr0E3inPsH54hVV_EVvgFC-IvaAdRl6UvF9gjQMSpaCSfhG2kvhYcHThw-tzgIofwRV2GN0rR7LMB5cV-rri7BybjZ4iGPhxnVwo5yeUwo03ythkQKts0N3v7x4E4wwOwQhpEXovY0Phs9AZvJMmg0yD8VJG3knEJol02-TtBKQEj0tREfncWR9R1k5ttU_kGpsthyWsMx4bLZxKrMVPpVSsEuFtYiVeWWZEkm-wrQmA6XgYXqfCIPLaRCLeYKJGIh01Ih5pI9csUsIgnWKQdnqH-9OnL29p9I3Nnex109-HvV-bbAGL6ZRPIMQWm63-3cA2cpjKfq3N9BHOyO9Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio%E2%80%90inspired+Double+Angstrom%E2%80%90Scale+Confinement+in+Ti%E2%80%90deficient+Ti0.87O2+Nanosheet+Membranes+for+Ultrahigh%E2%80%90performance+Osmotic+Power+Generation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Chao&rft.au=Ye%2C+Caichao&rft.au=Zhang%2C+Tianning&rft.au=Tang%2C+Jiheng&rft.date=2024-01-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202315947&rft.externalDBID=10.1002%252Fanie.202315947&rft.externalDocID=ANIE202315947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon