Bio‐inspired Double Angstrom‐Scale Confinement in Ti‐deficient Ti0.87O2 Nanosheet Membranes for Ultrahigh‐performance Osmotic Power Generation
Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confine...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 4 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.01.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems.
We design a Ti‐deficient Ti0.87O2 nanosheet membrane with biological double angstrom‐scale confinement (DAC) ion‐permselective channels, named DAC‐Ti0.87O2, for high‐efficiency osmotic power generators. Benefiting from the precisely designed DAC ion‐permselective channels, the DAC‐Ti0.87O2 membrane achieves an unprecedented power density of up to 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution, far exceeding the reported macroscopic‐scale membranes. |
---|---|
AbstractList | Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems.
We design a Ti‐deficient Ti0.87O2 nanosheet membrane with biological double angstrom‐scale confinement (DAC) ion‐permselective channels, named DAC‐Ti0.87O2, for high‐efficiency osmotic power generators. Benefiting from the precisely designed DAC ion‐permselective channels, the DAC‐Ti0.87O2 membrane achieves an unprecedented power density of up to 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution, far exceeding the reported macroscopic‐scale membranes. Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems. |
Author | Liu, Chao Sun, Jingwen Zhang, Wenqing Wang, Xin Xue, Liang Tang, Jiheng Xiong, Pan Zhang, Tianning Mao, Kunpeng Chen, Long Zhu, Junwu Ye, Caichao Wang, Guoxiu |
Author_xml | – sequence: 1 givenname: Chao surname: Liu fullname: Liu, Chao organization: Nanjing University of Science and Technology – sequence: 2 givenname: Caichao surname: Ye fullname: Ye, Caichao organization: Southern University of Science and Technology – sequence: 3 givenname: Tianning surname: Zhang fullname: Zhang, Tianning organization: Nanjing University of Science and Technology – sequence: 4 givenname: Jiheng surname: Tang fullname: Tang, Jiheng organization: Nanjing University of Science and Technology – sequence: 5 givenname: Kunpeng surname: Mao fullname: Mao, Kunpeng organization: Nanjing University of Science and Technology – sequence: 6 givenname: Long surname: Chen fullname: Chen, Long organization: Nanjing University of Science and Technology – sequence: 7 givenname: Liang surname: Xue fullname: Xue, Liang organization: Nanjing University of Science and Technology – sequence: 8 givenname: Jingwen surname: Sun fullname: Sun, Jingwen organization: Nanjing University of Science and Technology – sequence: 9 givenname: Wenqing surname: Zhang fullname: Zhang, Wenqing organization: Southern University of Science and Technology – sequence: 10 givenname: Xin surname: Wang fullname: Wang, Xin organization: Nanjing University of Science and Technology – sequence: 11 givenname: Pan orcidid: 0000-0001-9483-6535 surname: Xiong fullname: Xiong, Pan email: pan.xiong@njust.edu.cn organization: Nanjing University of Science and Technology – sequence: 12 givenname: Guoxiu orcidid: 0000-0003-4295-8578 surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.au organization: University of Technology Sydney – sequence: 13 givenname: Junwu orcidid: 0000-0002-7518-9683 surname: Zhu fullname: Zhu, Junwu email: zhujw@njust.edu.cn organization: Nanjing University of Science and Technology |
BookMark | eNo9UE1PAjEQbQwmAnr13MTzYj_cjx4R8SNBMBHPTXd3CiVsu7ZLjDd_gid_oL_EEgynefPem5nMG6CedRYQuqRkRAlh18oaGDHCOE3FTX6C-jRlNOF5znsR33Ce5EVKz9AghE30FwXJ-ujn1rjfr29jQ2s81PjO7cot4LFdhc67JkqvlYrExFltLDRgO2wsXpqo1KBNZfbM0pBRkS8Ynivrwhqgw8_QlF5ZCFg7j9-2nVdrs1rHsRZ8pBplK8CL0LjOVPjFfYDHD2DBq844e45OtdoGuPivQ_R2P11OHpPZ4uFpMp4lLct5nnBREqYVqUVEXChQGQjNOdU1jw8WNEtFlRbAOeicUUZ1VZeaEkrSrMx0wYfo6rC39e59B6GTG7fzNp6UTMTMMkHjoSESB9eH2cKnbL1plP-UlMh98HIfvDwGL8fzp-mx438sJoDw |
ContentType | Journal Article |
Copyright | 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN 7TM K9. |
DOI | 10.1002/anie.202315947 |
DatabaseName | Wiley Open Access Wiley-Blackwell Backfiles (Open access) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202315947 |
Genre | article |
GrantInformation_xml | – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 52125202 – fundername: National Natural Science Foundation of China funderid: U2004209; 22179062 – fundername: Australian Research Council funderid: DP200101249; DP210101389; DP230101579; IH180100020 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. |
ID | FETCH-LOGICAL-p2737-39b02fa0d939b39aea6e9f331fd328881659c58e33ef72121fcdbf101056b6f83 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Thu Oct 10 18:24:40 EDT 2024 Sat Aug 24 00:45:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2737-39b02fa0d939b39aea6e9f331fd328881659c58e33ef72121fcdbf101056b6f83 |
Notes | These authors contributed equally to this work. |
ORCID | 0000-0001-9483-6535 0000-0002-7518-9683 0000-0003-4295-8578 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202315947 |
PQID | 2914369127 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2914369127 wiley_primary_10_1002_anie_202315947_ANIE202315947 |
PublicationCentury | 2000 |
PublicationDate | January 22, 2024 |
PublicationDateYYYYMMDD | 2024-01-22 |
PublicationDate_xml | – month: 01 year: 2024 text: January 22, 2024 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 1959; 63 2017; 1 2023; 35 2013; 3 2013; 25 2019; 10 2023; 7 2019; 13 2023; 145 2022; 23 2020; 59 2020; 13 2008; 3 2012; 488 2017; 552 2014; 136 2023; 62 2020; 6 2018; 4 2015; 137 2022; 32 2022; 33 2021; 81 2021; 80 2021; 9 2021; 7 2021; 6 2019; 4 2023; 17 2023; 16 2021; 143 1976; 191 2017; 139 2022; 144 2021; 16 2021; 15 2021; 12 2004; 93 2021; 11 2023 2017; 17 2022; 61 2016; 536 2017; 11 2023; 110 2022; 13 2020; 117 2015; 517 2022; 15 2018; 12 2022; 17 1996; 118 2018; 13 |
References_xml | – volume: 488 start-page: 313 year: 2012 end-page: 319 publication-title: Nature – volume: 12 start-page: 12337 year: 2018 end-page: 12346 publication-title: ACS Nano – volume: 11 start-page: 6682 year: 2017 end-page: 6690 publication-title: ACS Nano – volume: 137 start-page: 2975 year: 2015 end-page: 2983 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 4148 year: 2022 end-page: 4156 publication-title: Energy Environ. Sci. – volume: 10 start-page: 3876 year: 2019 publication-title: Nat. Commun. – volume: 25 start-page: 3137 year: 2013 end-page: 3146 publication-title: Chem. Mater. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 110 year: 2023 publication-title: Nano Energy – volume: 10 start-page: 5793 year: 2019 publication-title: Nat. Commun. – volume: 81 year: 2021 publication-title: Nano Energy – volume: 63 start-page: 1381 year: 1959 end-page: 1387 publication-title: J. Phys. Chem. – volume: 17 start-page: 17245 year: 2023 end-page: 17253 publication-title: ACS Nano – volume: 17 start-page: 3543 year: 2017 end-page: 3549 publication-title: Nano Lett. – volume: 16 start-page: 11718 year: 2023 end-page: 11730 publication-title: Nano Res. – volume: 115 start-page: 8555 year: 2011 end-page: 8566 publication-title: J. Phys. Chem. C – volume: 13 start-page: 8917 year: 2019 end-page: 8925 publication-title: ACS Nano – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 3935 year: 2022 publication-title: Nat. Commun. – volume: 59 start-page: 8720 year: 2020 end-page: 8726 publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 8905 year: 2017 end-page: 8914 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 588 year: 2019 end-page: 605 publication-title: Nat. Rev. Mater. – volume: 13 start-page: 4010 year: 2022 publication-title: Nat. Commun. – volume: 143 start-page: 16206 year: 2021 end-page: 16216 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 start-page: 2097 year: 2020 end-page: 2104 publication-title: ACS Cent. Sci. – volume: 7 start-page: 1004 year: 2023 end-page: 1024 publication-title: Mater. Chem. Front. – volume: 23 year: 2022 publication-title: Mater. Today Energy – volume: 144 start-page: 12400 year: 2022 end-page: 12409 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 14576 year: 2021 end-page: 14581 publication-title: J. Mater. Chem. A – year: 2023 publication-title: Small Methods – volume: 13 start-page: 4834 year: 2020 end-page: 4853 publication-title: Energy Environ. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 191 start-page: 557 year: 1976 end-page: 559 publication-title: Science – volume: 144 start-page: 13764 year: 2022 end-page: 13772 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 2669 year: 2023 end-page: 2678 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 1932 year: 2021 end-page: 1940 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 9415 year: 2021 end-page: 9422 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3509 year: 2021 end-page: 3521 publication-title: ACS Nano – volume: 17 start-page: 622 year: 2022 end-page: 628 publication-title: Nat. Nanotechnol. – volume: 33 start-page: 2291 year: 2022 end-page: 2300 publication-title: Chin. Chem. Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 118 start-page: 8329 year: 1996 end-page: 8335 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 13 start-page: 685 year: 2018 end-page: 690 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 2801 year: 2013 publication-title: Sci. Rep. – volume: 517 start-page: 68 year: 2015 end-page: 72 publication-title: Nature – volume: 536 start-page: 197 year: 2016 end-page: 200 publication-title: Nature – volume: 16 start-page: 811 year: 2021 end-page: 819 publication-title: Nat. Nanotechnol. – volume: 136 start-page: 15670 year: 2014 end-page: 15675 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 622 year: 2021 end-page: 639 publication-title: Nat. Rev. Mater. – volume: 1 start-page: 0091 year: 2017 publication-title: Nat. Chem. Rev. – volume: 10 start-page: 2920 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 666 year: 2008 end-page: 670 publication-title: Nat. Nanotechnol. – volume: 552 start-page: 214 year: 2017 end-page: 218 publication-title: Nature – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 12 start-page: 4184 year: 2021 publication-title: Nat. Commun. – volume: 117 start-page: 13959 year: 2020 end-page: 13966 publication-title: Proc. Natl. Acad. Sci. USA |
SSID | ssj0028806 |
Score | 2.4994307 |
Snippet | Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | 2D Membranes Channels Clean energy Confinement Double Angstrom-Scale Confinement Electric power generation Energy sources Enhanced Permselectivity Fluidics Interlayers Ion Transport Ions Membrane permeability Membranes Nanofluids Nanosheets Osmotic Energy Permeability Rivers Salinity Salinity effects Seawater Sodium Sodium chloride Two dimensional materials |
Title | Bio‐inspired Double Angstrom‐Scale Confinement in Ti‐deficient Ti0.87O2 Nanosheet Membranes for Ultrahigh‐performance Osmotic Power Generation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202315947 https://www.proquest.com/docview/2914369127 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EW95YE1JbDeJxwJFgMRD0EpsURyfIQLSioaFiZ_AxA_kl3CXtOUxgrI4sSw5-c6Xi3P3fYztCpVZ7VvKnjLGU-BCzxgHngUfVGRtmmUV2-d5eNxTpzetm29V_DU_xGTDjVZG5a9pgadmuPdFGkoV2E0S_8YXsqJy8kBGlNN1eDXhjxJonHV5kZQeqdCPWRt9sfdz-I_48nuUWr1mjuZZOp5gnV1y33wuTTN7-cXd-J87WGBzoxiUt2ujWWRTUCyxmYOx9Nsye9_P-x-vb3lBv-HBcoyyzQPwdnGL_f1H7LpGaIFTuSDOgjYYeV7wbo49FoiTgq50c78ZRxeCowfvD-8ASn4Gjzhh9K4cY2XeeyjR1eW3dzhs8FXAwC8qbaGMX5KCG6-Jscl-VljvqNM9OPZGAg7eAKMidF7a-MKlvtXYkjqFNATtpAyclYhNHIQtnbVikBIcfomKwGXWuIBEO0MTuliuskbRL2CN8UiHwqrYGHxUSkUqFs7ERuKRplrE2TrbGgOYjFbhMBEakQ91IKJ1JiokkkHN4ZHUbM0iIQySCQZJ-_ykMznb-MugTTaLbcrs8YTYYo3y6Rm2MW4pzQ6bFupyp7LQT11l7Wk |
link.rule.ids | 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4HOBCCy3i1daHXrMktjeJj8tLSwsLgl2ptyiOxxAB2RWbvXDqT-DED-SXMJNsltIjKJfEliUn8_DYmfk-xn4KlVntW8qeMsZT4ELPGAeeBR9UZG2aZRXaZy_sDtSvP-0mm5BqYWp8iNmBG1lG5a_JwOlAevcVNZRKsFvE_o0rsorm2SLavCT2hoOLGYKUQPWsC4yk9IiHvsFt9MXu2_FvIsx_49RqoTn6xEwzxTq_5KY1KU0re_gPvfFD7_CZrUzDUN6p9WaVzUGxxpb2G_a3L-xpLx8-_33MC_oTD5ZjoG1ugXeKK-wf3mHXJUoXOFUM4jTojJHnBe_n2GOBYCmopZ_7rTg6Exyd-HB8DVDyU7jDGaOD5Rgu88Ftid4uv7rGYaPXGgZ-VtELZfycSNx4jY1NKvSVDY4O-_tdb8rh4I0wMEL_pY0vXOpbjXdSp5CGoJ2UgbMShRMHYVtn7RikBIebURG4zBoXEG9naEIXy3W2UAwL2GA80qGwKjYGP5VSkYqFM7GReKWpFnG2yXYaCSZTQxwnQqPoQx2IaJOJShTJqIbxSGrAZpGQDJKZDJJO7_hw9rT1nkE_2FK3f3qSnBz3fm-zZWynRB9PiB22UN5P4BuGMaX5XinqC4bA8Ko |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUKlYALFAqCAq0PvWZJbK8TH7fACtqyoHZX4hbF8RgiILsq4cKJn8CpP5Bfwkyyu3wcQbkktiw5eePxs-N5w9h3oXJnQkenp6wNFHgdWOshcBCCip3L8rxW--zpg4H6edo-fRbF3-hDTDfcaGTU_poG-Mj5nSfRUIrAblHyb5yQVTzDPiqN9Jdo0Z-pgJRA62zii6QMKA39RLYxFDsv278gmM9paj3PdJdYNulhc7zkonVT2VZ--0q88T2v8Iktjkko7zRWs8w-QLnC5ncnud8-s_8_iuHD3X1R0n94cBxptr0E3inPsH54hVV_EVvgFC-IvaAdRl6UvF9gjQMSpaCSfhG2kvhYcHThw-tzgIofwRV2GN0rR7LMB5cV-rri7BybjZ4iGPhxnVwo5yeUwo03ythkQKts0N3v7x4E4wwOwQhpEXovY0Phs9AZvJMmg0yD8VJG3knEJol02-TtBKQEj0tREfncWR9R1k5ttU_kGpsthyWsMx4bLZxKrMVPpVSsEuFtYiVeWWZEkm-wrQmA6XgYXqfCIPLaRCLeYKJGIh01Ih5pI9csUsIgnWKQdnqH-9OnL29p9I3Nnex109-HvV-bbAGL6ZRPIMQWm63-3cA2cpjKfq3N9BHOyO9Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio%E2%80%90inspired+Double+Angstrom%E2%80%90Scale+Confinement+in+Ti%E2%80%90deficient+Ti0.87O2+Nanosheet+Membranes+for+Ultrahigh%E2%80%90performance+Osmotic+Power+Generation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Chao&rft.au=Ye%2C+Caichao&rft.au=Zhang%2C+Tianning&rft.au=Tang%2C+Jiheng&rft.date=2024-01-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202315947&rft.externalDBID=10.1002%252Fanie.202315947&rft.externalDocID=ANIE202315947 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |