Coexistence of Negative and Positive Photoconductivity in Few‐Layer PtSe2 Field‐Effect Transistors
Platinum diselenide (PtSe2) field‐effect transistors with ultrathin channel regions exhibit p‐type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 43 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Platinum diselenide (PtSe2) field‐effect transistors with ultrathin channel regions exhibit p‐type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the same device. The dominance of one type of photoconductivity over the other is controlled by environmental pressure. Indeed, positive photoconductivity observed in high vacuum converts to negative photoconductivity when the pressure is raised. Density functional theory calculations confirm that physisorbed oxygen molecules on the PtSe2 surface act as acceptors. The desorption of oxygen molecules from the surface, caused by light irradiation, leads to decreased carrier concentration in the channel conductivity. The understanding of the charge transfer occurring between the physisorbed oxygen molecules and the PtSe2 film provides an effective route for modulating the density of carriers and the optical properties of the material.
The channel current measured in the PtSe2 field‐effect transistor under switching light shows positive photoconductivity at low pressure that converts into negative photoconductivity at atmospheric pressure. Experimental observations and density functional theory calculations demonstrate that such behavior is caused by light‐induced oxygen desorption. |
---|---|
AbstractList | Platinum diselenide (PtSe2) field‐effect transistors with ultrathin channel regions exhibit p‐type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the same device. The dominance of one type of photoconductivity over the other is controlled by environmental pressure. Indeed, positive photoconductivity observed in high vacuum converts to negative photoconductivity when the pressure is raised. Density functional theory calculations confirm that physisorbed oxygen molecules on the PtSe2 surface act as acceptors. The desorption of oxygen molecules from the surface, caused by light irradiation, leads to decreased carrier concentration in the channel conductivity. The understanding of the charge transfer occurring between the physisorbed oxygen molecules and the PtSe2 film provides an effective route for modulating the density of carriers and the optical properties of the material.
The channel current measured in the PtSe2 field‐effect transistor under switching light shows positive photoconductivity at low pressure that converts into negative photoconductivity at atmospheric pressure. Experimental observations and density functional theory calculations demonstrate that such behavior is caused by light‐induced oxygen desorption. Platinum diselenide (PtSe2) field‐effect transistors with ultrathin channel regions exhibit p‐type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the same device. The dominance of one type of photoconductivity over the other is controlled by environmental pressure. Indeed, positive photoconductivity observed in high vacuum converts to negative photoconductivity when the pressure is raised. Density functional theory calculations confirm that physisorbed oxygen molecules on the PtSe2 surface act as acceptors. The desorption of oxygen molecules from the surface, caused by light irradiation, leads to decreased carrier concentration in the channel conductivity. The understanding of the charge transfer occurring between the physisorbed oxygen molecules and the PtSe2 film provides an effective route for modulating the density of carriers and the optical properties of the material. |
Author | Grillo, Alessandro Giubileo, Filippo Di Bartolomeo, Antonio Gity, Farzan Faella, Enver Pelella, Aniello Ansari, Lida Hurley, Paul K. McEvoy, Niall |
Author_xml | – sequence: 1 givenname: Alessandro orcidid: 0000-0002-8909-9865 surname: Grillo fullname: Grillo, Alessandro organization: University of Salerno – sequence: 2 givenname: Enver orcidid: 0000-0002-5782-6685 surname: Faella fullname: Faella, Enver organization: University of Salerno – sequence: 3 givenname: Aniello orcidid: 0000-0002-3831-0210 surname: Pelella fullname: Pelella, Aniello organization: University of Salerno – sequence: 4 givenname: Filippo orcidid: 0000-0003-2233-3810 surname: Giubileo fullname: Giubileo, Filippo organization: CNR‐SPIN Salerno – sequence: 5 givenname: Lida orcidid: 0000-0002-9284-2832 surname: Ansari fullname: Ansari, Lida organization: Lee Maltings, Dyke Parade – sequence: 6 givenname: Farzan orcidid: 0000-0003-3128-1426 surname: Gity fullname: Gity, Farzan organization: Lee Maltings, Dyke Parade – sequence: 7 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: Lee Maltings, Dyke Parade – sequence: 8 givenname: Niall orcidid: 0000-0001-5950-8755 surname: McEvoy fullname: McEvoy, Niall organization: Trinity College Dublin – sequence: 9 givenname: Antonio orcidid: 0000-0002-3629-726X surname: Di Bartolomeo fullname: Di Bartolomeo, Antonio email: adibartolomeo@unisa.it organization: University of Salerno |
BookMark | eNo9kMtKAzEYhYNUsFa3rgOup-Yyl8yy1I4KVQtWcBcyuWhKm9RJap2dj-Az-iROrXT1n3M4nB--U9Bz3mkALjAaYoTIlVBmNSSIYJQVhByBPs5xnlBEWO-g8csJOA1hgRAuCpr2gRl7_WlD1E5q6A180K8i2g8NhVNw5oP9M7M3H730Tm1k521soXWw0tufr--paHUDZ_FJE1hZvVRdNjFGywjnjXCh2_ZNOAPHRiyDPv-_A_BcTebj22T6eHM3Hk2TNSkoSXDKJCJpkaKsLIuyzqXCpdilGRNGsRpJQ-taI5ZhpHKmMpUryVheUmTSWtIBuNzvrhv_vtEh8oXfNK57yUnGaEpzSkjXKvetrV3qlq8buxJNyzHiO5B8B5IfQPLRdXV_cPQXeettlg |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202105722 |
DatabaseName | Wiley Online Library Open Access (WRLC) Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202105722 |
Genre | article |
GrantInformation_xml | – fundername: Italian Ministry of University and Research MUR funderid: RINASCIMENTO ARS01_01088 – fundername: University of Salerno, Salerno, Italy funderid: ORSA200207; ORSA195727 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2732-148c02474059979b6cd19a148c58afd8b0cf3bbe08510d68d5d6dc886930f4bc3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 07:21:50 EDT 2025 Wed Jan 22 16:27:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2732-148c02474059979b6cd19a148c58afd8b0cf3bbe08510d68d5d6dc886930f4bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9284-2832 0000-0001-5950-8755 0000-0002-8909-9865 0000-0003-3128-1426 0000-0002-5782-6685 0000-0002-3831-0210 0000-0003-2233-3810 0000-0002-3629-726X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202105722 |
PQID | 2583436322 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2583436322 wiley_primary_10_1002_adfm_202105722_ADFM202105722 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 2 2013; 25 2017; 4 2019; 52 2016; 109 2019; 98 2019; 14 2021; 129 2019; 125 2020; 13 2020; 12 2013; 7 2012; 12 2020; 8 2020; 7 2020; 6 2018; 9 2018; 2 2020; 2 2013; 117 2018; 30 1992; 46 2017; 122 2014; 8 2019; 7 2021; 7 2015; 15 2019; 9 2019; 3 2021; 3 2019; 6 2019; 30 2018; 226 2017; 27 2016; 10 2007 1986; 19 2017; 29 2020; 32 2016; 18 2011; 6 2016; 11 1976; 13 2004; 92 2017; 12 2020; 116 2020; 117 2016; 28 2016; 26 2018; 14 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 28 start-page: 3481 year: 2016 publication-title: Adv. Mater. – volume: 13 start-page: 3439 year: 2020 publication-title: Nano Res. – volume: 14 start-page: 674 year: 2019 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 358 year: 2020 publication-title: Nano Res. – volume: 12 start-page: 174 year: 2020 publication-title: Nano‐Micro Lett. – volume: 14 year: 2018 publication-title: Small – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 25 year: 2013 publication-title: J. Phys.: Condens. Matter – volume: 7 year: 2019 publication-title: Adv. Optical Mater. – volume: 8 start-page: 254 year: 2017 publication-title: Beilstein J. Nanotechnol. – volume: 12 start-page: 2773 year: 2012 publication-title: Nano Lett. – volume: 2 start-page: 111 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 12 start-page: 1124 year: 2017 publication-title: Nat. Nanotech. – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 3 start-page: 133 year: 2021 publication-title: InfoMat – volume: 92 year: 2004 publication-title: Phys. Rev. Lett. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 26 start-page: 1938 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotech. – volume: 19 start-page: 995 year: 1986 publication-title: J. Phys. C: Solid State Phys. – volume: 15 start-page: 4013 year: 2015 publication-title: Nano Lett. – volume: 26 start-page: 4306 year: 2016 publication-title: Adv. Funct. Mater. – volume: 98 start-page: 106 year: 2019 publication-title: Mater. Sci. Semicond. Process. – volume: 7 year: 2020 publication-title: Mater. Today Adv. – volume: 14 start-page: 144 year: 2019 publication-title: Nanoscale Res. Lett. – volume: 32 year: 2020 publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 5270 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 4879 year: 2013 publication-title: ACS Nano – volume: 122 year: 2017 publication-title: J. Appl. Phys. – volume: 125 start-page: 765 year: 2019 publication-title: Appl. Phys. A – volume: 2 start-page: 5 year: 2018 publication-title: npj 2D Mater Appl. – volume: 52 year: 2019 publication-title: J. Phys. D: Appl. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 1185 year: 2018 publication-title: J. Phys. Chem. Lett. – year: 2007 – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 4851 year: 2020 publication-title: J. Mater. Chem. C – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 124 year: 2016 publication-title: Nanoscale Res. Lett. – volume: 46 year: 1992 publication-title: Phys. Rev. B – volume: 6 year: 2019 publication-title: 2D Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 33 year: 2019 publication-title: npj 2D Mater. Appl. – volume: 10 start-page: 9550 year: 2016 publication-title: ACS Nano – volume: 18 start-page: 818 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 129 year: 2021 publication-title: J. Appl. Phys. – volume: 226 start-page: 39 year: 2018 publication-title: Comput. Phys. Commun. |
SSID | ssj0017734 |
Score | 2.5945764 |
Snippet | Platinum diselenide (PtSe2) field‐effect transistors with ultrathin channel regions exhibit p‐type electrical conductivity that is sensitive to temperature and... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carrier density Charge transfer Density functional theory Electrical resistivity field‐effect transistors High vacuum Light irradiation Light sources Materials science negative photoconductivity Optical properties Oxygen oxygen adsorption Photoconductivity pressure PtSe 2 Semiconductor devices Transistors White light |
Title | Coexistence of Negative and Positive Photoconductivity in Few‐Layer PtSe2 Field‐Effect Transistors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202105722 https://www.proquest.com/docview/2583436322 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT4MwGMcbnRc9-G58mUsPXlFoS4HjskmMcQvxJdmNtKVVYwKLw5h48iP4Gf0k9inbnB71RkkaoPTl_8C_vwehk8RnYJ4KPGoDahugcOGJxDBPCx1qGVKWKOfyHfKLO3Y5CkcLu_gbPsT8gxuMDDdfwwAXcnL2DQ0VhYGd5AQS1RKYhOGaoIqu5_yoIIqa38o8AINXMJpRG31y9rP6D325qFLdMpNuIDG7wcZd8nT6UstT9faL3fifJ9hE61MNirtNp9lCS7rcRmsLZMIdZHoVMDKdoMaVwUN97wjhWJQFzpzRyxayh6qubEANzFiXhAI_ljjVr5_vH1fCanmc1Tea4BRccvZcQ0rGbnl0dJLJLrpLz297F940JYM3tjqHeDZ4UnZVjxhgXaJEclUEiYCzYSxMEUtfGSqlBiHnFzwuwoIXKo4h4aJhUtE91CqrUu8jbAISKKtQFLE9IlZCKk4pUVTy0DBF_QPUnr2SfDquJjkJY8oot7PQASKubfNxQ-XIG_4yyaFV83mr5t1-OpiXDv9S6QitwnHj4GujVv38oo-tEqllBy0TlnXQSrc_uLrpuL73BSXR2gY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1BT9swFMefoBzGDhsbm2Bj4MM4pk3sxE0OOyC6qKWlqoBKvWW2Y28TUoLWoGo78RH4Kvsq-wj7JPNz2g44IvXA0ZYSJXnP9nvO378H8DHxQxRPBR6zCbVNULjwRGJCTwsdaRmxMFFO5Tvk3XF4Mokma_B7cRam5kMsN9xwZLj5Ggc4bki3_lNDRW7wKDnFSrWUznWVff1zZrO26adex5r4kNL088Vx15sXFvCu7GpNPZsCKLs2tUOEk7QTyVUeJAJ7o1iYPJa-MkxKjeGIn_M4j3KeqzjGsoEmlIrZ-67DBpYRR1x_52xJrAra7fpHNg9QUhZMFpxIn7buP--9iPZuXOwWtvQl_Fl8klrPctm8rmRT_XpAi3xS32wLXszDbHJUj4tXsKaL1_D8DnxxG8xxiRhQlzOQ0pCh_uog6EQUORk5LZttjL6VVanKArG4rs4G-V6QVM_-3twOhE1XyKg615SkKAS0fTUMmrgIwAFYpm9gvJIXfQuNoiz0DhAT0EDZIExR6_SxElJxxqhikkcmVMzfhb2FD2TzqWOa0ShmIeN2ot0F6oyZXdXgkaxGTNMMrZgtrZgdddLTZevdYy46gGfdi9NBNugN--9hE_trweIeNKof1_qDDbwque9cncCXVfvJP1LuNKU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuQwEC2xSAgOaNg0LDP4AMeIxHbcyYEDoolYW5EAqW_BK8wladGNEDc-YT5lvokvweV098AViaMtxYoqVa5X8fMrgL085kieSiLmC2pfoAgZydzxyEqbWpUynuvA8u2J01t-3k_7M_Bvchem1YeY_nDDyAj7NQb4wLiD_6Kh0ji8SU6xUS2lY1rlhX159kXb8PCs67_wPqXFyc3xaTTuKxANfLKmka8AtE9NHY7aJJ1cCW2SXOJsmklnMhVrx5SyiEZiIzKTGmF0lmHXQMeVZn7dWZjHE0YkkVFeTs8tOp32HFskyChL-hOZyJgefH7fT4D2IywOea34ActjQEqOWg9agRlbr8LSB5nCNXDHDQpmBnRNGkd69j7IhRNZG1IG1pcflA_NqPHVNQrIho4U5E9NCvv89vr3UnpgT8rRtaWkQMqcn2tlk0nIlUGqZLgOt99ixw2Yq5va_gTiEppoD1c09e6Raam0YIxqpkTquGbxJuxMzFWNg2xY0TRjnAm_JW0CDSasBq1ER9WKMdMKjV5NjV4ddYur6WjrKw_twkLZLarLs97FNizidMvs24G50eOT_eURykj9Dk5B4O67vfAd6NHyPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coexistence+of+Negative+and+Positive+Photoconductivity+in+Few%E2%80%90Layer+PtSe2+Field%E2%80%90Effect+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Grillo%2C+Alessandro&rft.au=Faella%2C+Enver&rft.au=Pelella%2C+Aniello&rft.au=Giubileo%2C+Filippo&rft.date=2021-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202105722&rft.externalDBID=10.1002%252Fadfm.202105722&rft.externalDocID=ADFM202105722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |