Interface Engineering Boosting High Power Density and Conversion Efficiency in Mg2Sn0.75Ge0.25‐Based Thermoelectric Devices

Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 32
Main Authors Wu, Xinzhi, Lin, Yangjian, Liu, Chengyan, Han, Zhijia, Li, Huan, Wang, Yupeng, Jiang, Feng, Zhu, Kang, Ge, Binghui, Liu, Weishu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 25.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials. Cu2MgFe thermoelectric interface material (TEiM) is designed, following a general strategy, i.e., considering high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The Mg2Sn0.75Ge0.25 TE device exhibits a high‐power density of 2.6 W cm−2 and a conversion efficiency of 8% under a temperature difference of 370 °C. The TEiM design strategy bridges high‐performance TE materials and devices.
AbstractList Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials.
Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials. Cu2MgFe thermoelectric interface material (TEiM) is designed, following a general strategy, i.e., considering high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The Mg2Sn0.75Ge0.25 TE device exhibits a high‐power density of 2.6 W cm−2 and a conversion efficiency of 8% under a temperature difference of 370 °C. The TEiM design strategy bridges high‐performance TE materials and devices.
Author Jiang, Feng
Zhu, Kang
Han, Zhijia
Li, Huan
Wang, Yupeng
Ge, Binghui
Wu, Xinzhi
Liu, Chengyan
Liu, Weishu
Lin, Yangjian
Author_xml – sequence: 1
  givenname: Xinzhi
  orcidid: 0000-0002-5545-8460
  surname: Wu
  fullname: Wu, Xinzhi
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Yangjian
  surname: Lin
  fullname: Lin, Yangjian
  organization: Anhui University
– sequence: 3
  givenname: Chengyan
  surname: Liu
  fullname: Liu, Chengyan
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Zhijia
  surname: Han
  fullname: Han, Zhijia
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Huan
  surname: Li
  fullname: Li, Huan
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Yupeng
  surname: Wang
  fullname: Wang, Yupeng
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Kang
  surname: Zhu
  fullname: Zhu, Kang
  organization: Southern University of Science and Technology
– sequence: 9
  givenname: Binghui
  surname: Ge
  fullname: Ge, Binghui
  email: Bhge@ahu.edu.cn
  organization: Anhui University
– sequence: 10
  givenname: Weishu
  orcidid: 0000-0001-8643-822X
  surname: Liu
  fullname: Liu, Weishu
  email: liuws@sustech.edu.cn
  organization: Southern University of Science and Technology
BookMark eNo9kE1LAzEQhoNU8PPqOeC5dSbZrxxtrVqwKqjnJZudbSNtUpNV6UHwJ_gb_SVuqXQu8wy8vAPPEes574ixM4QBAogLTW45ECAkoExhjx1ihkk_KxLo7ViKA3Ya4yt0kygEKQ_Z18S1FBptiI_dzDqiYN2MD72P7QZu7WzOH_0nBX5FLtp2zbWr-ci7DwrResfHTWONJWfW3Do-nYknB4M8vSEYiPT3-2eoI9X8eU5h6WlBpg3WdF0f1lA8YfuNXkQ6_d_H7OV6_Dy67d893ExGl3f9lcgl9DONRqWYJqqSoLEmNICmElAVqJvKJNTkHSUoFNSpIlXoWmAlUpQ5YF7JY3a-7V0F__ZOsS1f_Xtw3ctSFGmWKSWTokupberTLmhdroJd6rAuEcqN4nKjuNwpLi_H99PdJf8AeOBztg
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202301350
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202301350
Genre article
GrantInformation_xml – fundername: Shenzhen Key Projects of Long‐Term Support Plan
  funderid: 20200925164021002
– fundername: Shenzhen Fund for Distinguished Young Scholars
  funderid: RCJC20210706091949018
– fundername: Tencent Foundation XPLORER PRIZE
  funderid: XPLORER‐2019‐1031
– fundername: Guangdong Provincial Key Laboratory Program of the Department of Science and Technology of Guangdong Province
  funderid: 2021B1212040001
– fundername: NSFC
  funderid: 52202250
– fundername: University Synergy Innovation Program of Anhui Province
  funderid: GXXT‐2020‐003
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-p2730-6a1c951549b30a1de1c01cb20b81afbc4ef781a41290d59e98ad21b25137017b3
ISSN 1614-6832
IngestDate Sun Jul 13 04:44:03 EDT 2025
Wed Jan 22 16:17:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2730-6a1c951549b30a1de1c01cb20b81afbc4ef781a41290d59e98ad21b25137017b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5545-8460
0000-0001-8643-822X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aenm.202301350
PQID 2856699348
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2856699348
wiley_primary_10_1002_aenm_202301350_AENM202301350
PublicationCentury 2000
PublicationDate August 25, 2023
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 08
  year: 2023
  text: August 25, 2023
  day: 25
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 208
2017; 7
2006; 74
2013; 3
2021; 21
2013; 1
2019; 11
2017; 46
1951; 22
2020; 12
2016; 103
2021; 242
2020; 846
2019; 365
2022; 28
2018; 47
2022; 377
2023; 25
2019; 20
2015; 87
2016; 111
2020; 217
2021; 272
2022; 926
2017; 124
2021; 9
2021; 7
2019; 3
2019; 5
2015; 3
2020; 185
2022; 51
2019; 34
2006
2005
2002
2020; 32
2018; 65
2022; 236
2012; 108
2014; 43
2016; 4
2021; 14
2021; 13
2010; 43
2017; 704
2023
2015; 632
2022; 5
2021; 136
2020; 198
2015; 112
2019; 48
2022; 12
2022; 13
2021; 371
2022; 15
2021; 373
2017; 141
2020; 276
1929; 9
2018; 54
2014; 185
2022; 226
2012; 41
2022; 102
References_xml – volume: 43
  start-page: 2023
  year: 2014
  publication-title: J. Electron. Mater.
– volume: 9
  start-page: 49
  year: 1929
  publication-title: J. Appl. Math. Mech.
– volume: 13
  start-page: 237
  year: 2022
  publication-title: Nat. Commun.
– volume: 111
  start-page: 3
  year: 2016
  publication-title: Scr. Mater.
– volume: 124
  start-page: 528
  year: 2017
  publication-title: Acta Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 242
  year: 2005
– volume: 7
  start-page: 952
  year: 2017
  publication-title: Appl. Sci.
– volume: 15
  start-page: 2557
  year: 2022
  publication-title: Environ. Sci.
– volume: 141
  start-page: 154
  year: 2017
  publication-title: Acta Mater.
– volume: 21
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 46
  start-page: 3983
  year: 2017
  publication-title: Rare Metal Mat. Eng.
– volume: 373
  start-page: 556
  year: 2021
  publication-title: Science
– volume: 276
  year: 2020
  publication-title: Mater. Lett.
– volume: 371
  start-page: 830
  year: 2021
  publication-title: Science
– volume: 3
  start-page: 1538
  year: 2019
  publication-title: Joule
– volume: 43
  year: 2010
  publication-title: J. Phys. D: Appl. Phys.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 461
  year: 2018
  publication-title: Nano Energy
– volume: 5
  start-page: 321
  year: 2019
  publication-title: J. Materiomics
– volume: 185
  start-page: 80
  year: 2020
  publication-title: Acta Mater.
– volume: 13
  start-page: 7738
  year: 2022
  publication-title: Nat. Commun.
– volume: 25
  year: 2023
  publication-title: Adv. Eng. Mater.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 160
  year: 2019
  publication-title: Sci. Technol. Adv. Mater.
– volume: 136
  year: 2021
  publication-title: Mater. Res. Bull.
– volume: 11
  start-page: 97
  year: 2019
  publication-title: Mater. Today Energy
– volume: 102
  year: 2022
  publication-title: Nano Energy
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 272
  year: 2021
  publication-title: Mater. Sci. Eng., B
– volume: 236
  year: 2022
  publication-title: Acta Mater.
– volume: 65
  start-page: 5180
  year: 2018
  publication-title: IEEE Trans. Electron Devices
– volume: 28
  year: 2022
  publication-title: Mater. Today Energy
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 365
  start-page: 495
  year: 2019
  publication-title: Science
– volume: 112
  start-page: 3269
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 6774
  year: 2021
  publication-title: Materials
– volume: 632
  start-page: 348
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 704
  start-page: 545
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 103
  start-page: 633
  year: 2016
  publication-title: Acta Mater.
– volume: 846
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 41
  start-page: 1805
  year: 2012
  publication-title: J. Electron. Mater.
– volume: 3
  start-page: 1238
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 226
  year: 2022
  publication-title: Acta Mater.
– volume: 47
  start-page: 2591
  year: 2018
  publication-title: J. Electron. Mater.
– volume: 13
  start-page: 7317
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 242
  year: 2021
  publication-title: Energy Convers. Manage.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 185
  start-page: 45
  year: 2014
  publication-title: Mater. Sci. Eng., B
– volume: 377
  start-page: 208
  year: 2022
  publication-title: Science
– volume: 217
  year: 2020
  publication-title: Phys. Status Solidi A
– volume: 198
  start-page: 25
  year: 2020
  publication-title: Acta Mater.
– year: 2002
– year: 2006
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 41
  start-page: 1771
  year: 2012
  publication-title: J. Electron. Mater.
– volume: 51
  start-page: 2256
  year: 2022
  publication-title: J. Electron. Mater.
– year: 2023
– volume: 34
  start-page: 1179
  year: 2019
  publication-title: J. Mater. Res.
– volume: 14
  start-page: 995
  year: 2021
  publication-title: Environ. Sci.
– volume: 48
  start-page: 1754
  year: 2019
  publication-title: J. Electron. Mater.
– year: 2023
  publication-title: Nat. Energy
– volume: 22
  start-page: 1089
  year: 1951
  publication-title: J. Appl. Phys.
– volume: 28
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 371
  start-page: 722
  year: 2021
  publication-title: Science
– volume: 208
  year: 2021
  publication-title: Acta Mater.
– volume: 926
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 87
  start-page: 357
  year: 2015
  publication-title: Acta Mater.
SSID ssj0000491033
Score 2.462769
Snippet Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Bonding strength
Chemical potential
Cutting equipment
Devices
Diffusion barriers
electrode contact interfaces
Germanium
high‐performance thermoelectric devices
interface design strategy
Interface stability
Interfaces
Mg2Sn0.75Ge0.25
Potential gradient
Silicon
Stability analysis
Thermal expansion
Thermoelectricity
Tin
Title Interface Engineering Boosting High Power Density and Conversion Efficiency in Mg2Sn0.75Ge0.25‐Based Thermoelectric Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202301350
https://www.proquest.com/docview/2856699348
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK9wIHxKdYWJAP3FBK7DitcyxLlwq1BWlbqXCJ4sTuZiW8q932wEpI_ARO_EB-CWM7cV1AaOESpVaVRp7n8cz0zTNCz7NMypjwMlKmxsQoqyJelTxSEI1APkGUkJblO-uPF-ztMl12Ot8D1tJmLXrl1R_7Sv7HqjAGdjVdsv9gWf9QGIB7sC9cwcJwvZaNbTlPFbA0A1lB075wacnMhsPx4r05Bg3cirbkC1MmPzREc1slM-cq13Zx2-6_6Yoe67g3SN_IuEdTz4N4BTtdZbgZF5_O3LE5dWnYRsbHhMHtsOUTSNdQCMGwmwXv-TfGostaX53UngnkRAw-FHp1GkB1Um8cG0Dq1eft8NjVaz-e1Kd1EVYsaGJKsK67-Zp-MfDHED1Efd6UQGU45lSevBNPArC6r_-2OTix2UJqo0AAqRdJnObtrgr37F1-tJhM8vloOb-B9iikH7SL9oavp5NjX72DvIrEie3eaN-wVQSN6cvdn9jJXcIMyIYw8zvodpN74KED0l3UkfoeuhVA5z764iGFg3HcQgobSGELKdxACgOk8BZSeAspXGv8C6R-fP1mwYR3wYQbMD1Ai6PR_HAcNSd0ROcQ9sZRvyAlhOgpy0QSF6SSpIxJKWgsOCmUKJlUA7hjpthZpZnMeFFRIiCmTgawFYjkIerqMy0fIcwEr3jCUsorwgaKmL-nK2HS51Iliql9dNDOYt4swcuccshGIMJmfB9RO7P5uRNpyZ0cN82NLXJvi3w4mk39p8d_f-YTdHML3wPUXV9s5FMIQdfiWYOHnzxXhoE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+Engineering+Boosting+High+Power+Density+and+Conversion+Efficiency+in+Mg2Sn0.75Ge0.25%E2%80%90Based+Thermoelectric+Devices&rft.jtitle=Advanced+energy+materials&rft.au=Wu%2C+Xinzhi&rft.au=Lin%2C+Yangjian&rft.au=Liu%2C+Chengyan&rft.au=Han%2C+Zhijia&rft.date=2023-08-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=32&rft_id=info:doi/10.1002%2Faenm.202301350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon