Interface Engineering Boosting High Power Density and Conversion Efficiency in Mg2Sn0.75Ge0.25‐Based Thermoelectric Devices
Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strat...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 32 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
25.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials.
Cu2MgFe thermoelectric interface material (TEiM) is designed, following a general strategy, i.e., considering high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The Mg2Sn0.75Ge0.25 TE device exhibits a high‐power density of 2.6 W cm−2 and a conversion efficiency of 8% under a temperature difference of 370 °C. The TEiM design strategy bridges high‐performance TE materials and devices. |
---|---|
AbstractList | Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials. Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials. Cu2MgFe thermoelectric interface material (TEiM) is designed, following a general strategy, i.e., considering high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The Mg2Sn0.75Ge0.25 TE device exhibits a high‐power density of 2.6 W cm−2 and a conversion efficiency of 8% under a temperature difference of 370 °C. The TEiM design strategy bridges high‐performance TE materials and devices. |
Author | Jiang, Feng Zhu, Kang Han, Zhijia Li, Huan Wang, Yupeng Ge, Binghui Wu, Xinzhi Liu, Chengyan Liu, Weishu Lin, Yangjian |
Author_xml | – sequence: 1 givenname: Xinzhi orcidid: 0000-0002-5545-8460 surname: Wu fullname: Wu, Xinzhi organization: Southern University of Science and Technology – sequence: 2 givenname: Yangjian surname: Lin fullname: Lin, Yangjian organization: Anhui University – sequence: 3 givenname: Chengyan surname: Liu fullname: Liu, Chengyan organization: Southern University of Science and Technology – sequence: 4 givenname: Zhijia surname: Han fullname: Han, Zhijia organization: Southern University of Science and Technology – sequence: 5 givenname: Huan surname: Li fullname: Li, Huan organization: Southern University of Science and Technology – sequence: 6 givenname: Yupeng surname: Wang fullname: Wang, Yupeng organization: Southern University of Science and Technology – sequence: 7 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: Southern University of Science and Technology – sequence: 8 givenname: Kang surname: Zhu fullname: Zhu, Kang organization: Southern University of Science and Technology – sequence: 9 givenname: Binghui surname: Ge fullname: Ge, Binghui email: Bhge@ahu.edu.cn organization: Anhui University – sequence: 10 givenname: Weishu orcidid: 0000-0001-8643-822X surname: Liu fullname: Liu, Weishu email: liuws@sustech.edu.cn organization: Southern University of Science and Technology |
BookMark | eNo9kE1LAzEQhoNU8PPqOeC5dSbZrxxtrVqwKqjnJZudbSNtUpNV6UHwJ_gb_SVuqXQu8wy8vAPPEes574ixM4QBAogLTW45ECAkoExhjx1ihkk_KxLo7ViKA3Ya4yt0kygEKQ_Z18S1FBptiI_dzDqiYN2MD72P7QZu7WzOH_0nBX5FLtp2zbWr-ci7DwrResfHTWONJWfW3Do-nYknB4M8vSEYiPT3-2eoI9X8eU5h6WlBpg3WdF0f1lA8YfuNXkQ6_d_H7OV6_Dy67d893ExGl3f9lcgl9DONRqWYJqqSoLEmNICmElAVqJvKJNTkHSUoFNSpIlXoWmAlUpQ5YF7JY3a-7V0F__ZOsS1f_Xtw3ctSFGmWKSWTokupberTLmhdroJd6rAuEcqN4nKjuNwpLi_H99PdJf8AeOBztg |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202301350 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202301350 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Key Projects of Long‐Term Support Plan funderid: 20200925164021002 – fundername: Shenzhen Fund for Distinguished Young Scholars funderid: RCJC20210706091949018 – fundername: Tencent Foundation XPLORER PRIZE funderid: XPLORER‐2019‐1031 – fundername: Guangdong Provincial Key Laboratory Program of the Department of Science and Technology of Guangdong Province funderid: 2021B1212040001 – fundername: NSFC funderid: 52202250 – fundername: University Synergy Innovation Program of Anhui Province funderid: GXXT‐2020‐003 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-p2730-6a1c951549b30a1de1c01cb20b81afbc4ef781a41290d59e98ad21b25137017b3 |
ISSN | 1614-6832 |
IngestDate | Sun Jul 13 04:44:03 EDT 2025 Wed Jan 22 16:17:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p2730-6a1c951549b30a1de1c01cb20b81afbc4ef781a41290d59e98ad21b25137017b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5545-8460 0000-0001-8643-822X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aenm.202301350 |
PQID | 2856699348 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2856699348 wiley_primary_10_1002_aenm_202301350_AENM202301350 |
PublicationCentury | 2000 |
PublicationDate | August 25, 2023 |
PublicationDateYYYYMMDD | 2023-08-25 |
PublicationDate_xml | – month: 08 year: 2023 text: August 25, 2023 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 208 2017; 7 2006; 74 2013; 3 2021; 21 2013; 1 2019; 11 2017; 46 1951; 22 2020; 12 2016; 103 2021; 242 2020; 846 2019; 365 2022; 28 2018; 47 2022; 377 2023; 25 2019; 20 2015; 87 2016; 111 2020; 217 2021; 272 2022; 926 2017; 124 2021; 9 2021; 7 2019; 3 2019; 5 2015; 3 2020; 185 2022; 51 2019; 34 2006 2005 2002 2020; 32 2018; 65 2022; 236 2012; 108 2014; 43 2016; 4 2021; 14 2021; 13 2010; 43 2017; 704 2023 2015; 632 2022; 5 2021; 136 2020; 198 2015; 112 2019; 48 2022; 12 2022; 13 2021; 371 2022; 15 2021; 373 2017; 141 2020; 276 1929; 9 2018; 54 2014; 185 2022; 226 2012; 41 2022; 102 |
References_xml | – volume: 43 start-page: 2023 year: 2014 publication-title: J. Electron. Mater. – volume: 9 start-page: 49 year: 1929 publication-title: J. Appl. Math. Mech. – volume: 13 start-page: 237 year: 2022 publication-title: Nat. Commun. – volume: 111 start-page: 3 year: 2016 publication-title: Scr. Mater. – volume: 124 start-page: 528 year: 2017 publication-title: Acta Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2015 publication-title: J. Mater. Chem. C – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – start-page: 242 year: 2005 – volume: 7 start-page: 952 year: 2017 publication-title: Appl. Sci. – volume: 15 start-page: 2557 year: 2022 publication-title: Environ. Sci. – volume: 141 start-page: 154 year: 2017 publication-title: Acta Mater. – volume: 21 year: 2021 publication-title: Mater. Today Phys. – volume: 46 start-page: 3983 year: 2017 publication-title: Rare Metal Mat. Eng. – volume: 373 start-page: 556 year: 2021 publication-title: Science – volume: 276 year: 2020 publication-title: Mater. Lett. – volume: 371 start-page: 830 year: 2021 publication-title: Science – volume: 3 start-page: 1538 year: 2019 publication-title: Joule – volume: 43 year: 2010 publication-title: J. Phys. D: Appl. Phys. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 54 start-page: 461 year: 2018 publication-title: Nano Energy – volume: 5 start-page: 321 year: 2019 publication-title: J. Materiomics – volume: 185 start-page: 80 year: 2020 publication-title: Acta Mater. – volume: 13 start-page: 7738 year: 2022 publication-title: Nat. Commun. – volume: 25 year: 2023 publication-title: Adv. Eng. Mater. – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 20 start-page: 160 year: 2019 publication-title: Sci. Technol. Adv. Mater. – volume: 136 year: 2021 publication-title: Mater. Res. Bull. – volume: 11 start-page: 97 year: 2019 publication-title: Mater. Today Energy – volume: 102 year: 2022 publication-title: Nano Energy – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 272 year: 2021 publication-title: Mater. Sci. Eng., B – volume: 236 year: 2022 publication-title: Acta Mater. – volume: 65 start-page: 5180 year: 2018 publication-title: IEEE Trans. Electron Devices – volume: 28 year: 2022 publication-title: Mater. Today Energy – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 365 start-page: 495 year: 2019 publication-title: Science – volume: 112 start-page: 3269 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 6774 year: 2021 publication-title: Materials – volume: 632 start-page: 348 year: 2015 publication-title: J. Alloys Compd. – volume: 704 start-page: 545 year: 2017 publication-title: J. Alloys Compd. – volume: 103 start-page: 633 year: 2016 publication-title: Acta Mater. – volume: 846 year: 2020 publication-title: J. Alloys Compd. – volume: 41 start-page: 1805 year: 2012 publication-title: J. Electron. Mater. – volume: 3 start-page: 1238 year: 2013 publication-title: Adv. Energy Mater. – volume: 226 year: 2022 publication-title: Acta Mater. – volume: 47 start-page: 2591 year: 2018 publication-title: J. Electron. Mater. – volume: 13 start-page: 7317 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 242 year: 2021 publication-title: Energy Convers. Manage. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 185 start-page: 45 year: 2014 publication-title: Mater. Sci. Eng., B – volume: 377 start-page: 208 year: 2022 publication-title: Science – volume: 217 year: 2020 publication-title: Phys. Status Solidi A – volume: 198 start-page: 25 year: 2020 publication-title: Acta Mater. – year: 2002 – year: 2006 – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 41 start-page: 1771 year: 2012 publication-title: J. Electron. Mater. – volume: 51 start-page: 2256 year: 2022 publication-title: J. Electron. Mater. – year: 2023 – volume: 34 start-page: 1179 year: 2019 publication-title: J. Mater. Res. – volume: 14 start-page: 995 year: 2021 publication-title: Environ. Sci. – volume: 48 start-page: 1754 year: 2019 publication-title: J. Electron. Mater. – year: 2023 publication-title: Nat. Energy – volume: 22 start-page: 1089 year: 1951 publication-title: J. Appl. Phys. – volume: 28 year: 2022 publication-title: Mater. Today Phys. – volume: 371 start-page: 722 year: 2021 publication-title: Science – volume: 208 year: 2021 publication-title: Acta Mater. – volume: 926 year: 2022 publication-title: J. Alloys Compd. – volume: 87 start-page: 357 year: 2015 publication-title: Acta Mater. |
SSID | ssj0000491033 |
Score | 2.462769 |
Snippet | Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Bonding strength Chemical potential Cutting equipment Devices Diffusion barriers electrode contact interfaces Germanium high‐performance thermoelectric devices interface design strategy Interface stability Interfaces Mg2Sn0.75Ge0.25 Potential gradient Silicon Stability analysis Thermal expansion Thermoelectricity Tin |
Title | Interface Engineering Boosting High Power Density and Conversion Efficiency in Mg2Sn0.75Ge0.25‐Based Thermoelectric Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202301350 https://www.proquest.com/docview/2856699348 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK9wIHxKdYWJAP3FBK7DitcyxLlwq1BWlbqXCJ4sTuZiW8q932wEpI_ARO_EB-CWM7cV1AaOESpVaVRp7n8cz0zTNCz7NMypjwMlKmxsQoqyJelTxSEI1APkGUkJblO-uPF-ztMl12Ot8D1tJmLXrl1R_7Sv7HqjAGdjVdsv9gWf9QGIB7sC9cwcJwvZaNbTlPFbA0A1lB075wacnMhsPx4r05Bg3cirbkC1MmPzREc1slM-cq13Zx2-6_6Yoe67g3SN_IuEdTz4N4BTtdZbgZF5_O3LE5dWnYRsbHhMHtsOUTSNdQCMGwmwXv-TfGostaX53UngnkRAw-FHp1GkB1Um8cG0Dq1eft8NjVaz-e1Kd1EVYsaGJKsK67-Zp-MfDHED1Efd6UQGU45lSevBNPArC6r_-2OTix2UJqo0AAqRdJnObtrgr37F1-tJhM8vloOb-B9iikH7SL9oavp5NjX72DvIrEie3eaN-wVQSN6cvdn9jJXcIMyIYw8zvodpN74KED0l3UkfoeuhVA5z764iGFg3HcQgobSGELKdxACgOk8BZSeAspXGv8C6R-fP1mwYR3wYQbMD1Ai6PR_HAcNSd0ROcQ9sZRvyAlhOgpy0QSF6SSpIxJKWgsOCmUKJlUA7hjpthZpZnMeFFRIiCmTgawFYjkIerqMy0fIcwEr3jCUsorwgaKmL-nK2HS51Iliql9dNDOYt4swcuccshGIMJmfB9RO7P5uRNpyZ0cN82NLXJvi3w4mk39p8d_f-YTdHML3wPUXV9s5FMIQdfiWYOHnzxXhoE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+Engineering+Boosting+High+Power+Density+and+Conversion+Efficiency+in+Mg2Sn0.75Ge0.25%E2%80%90Based+Thermoelectric+Devices&rft.jtitle=Advanced+energy+materials&rft.au=Wu%2C+Xinzhi&rft.au=Lin%2C+Yangjian&rft.au=Liu%2C+Chengyan&rft.au=Han%2C+Zhijia&rft.date=2023-08-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=32&rft_id=info:doi/10.1002%2Faenm.202301350&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |