Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF

The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamenta...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 16; pp. e202500269 - n/a
Main Authors Huang, Tianyi, Han, Jianyu, Li, Zhongqiu, Hong, Yixin, Gu, Xiaofei, Wu, Yafeng, Zhang, Yuanjian, Liu, Songqin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 11.04.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4‐fold increase in CH4/CO selectivity and 12‐fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction. The integration of Au nanorods not only improves the selectivity and production rate of the photocatalytic CO2 reduction but also provides crucial insights into the pivotal role of protonation steps and reaction intermediates, particularly highlighting the rate‐determining *CO to *CHO conversion.
AbstractList The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4‐fold increase in CH4/CO selectivity and 12‐fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction. The integration of Au nanorods not only improves the selectivity and production rate of the photocatalytic CO2 reduction but also provides crucial insights into the pivotal role of protonation steps and reaction intermediates, particularly highlighting the rate‐determining *CO to *CHO conversion.
The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal-organic framework (MOF). Interestingly, 2.4-fold increase in CH4/CO selectivity and 12-fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au-O-Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal-organic framework (MOF). Interestingly, 2.4-fold increase in CH4/CO selectivity and 12-fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au-O-Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.
The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4‐fold increase in CH4/CO selectivity and 12‐fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.
Author Huang, Tianyi
Liu, Songqin
Han, Jianyu
Zhang, Yuanjian
Li, Zhongqiu
Hong, Yixin
Gu, Xiaofei
Wu, Yafeng
Author_xml – sequence: 1
  givenname: Tianyi
  surname: Huang
  fullname: Huang, Tianyi
  organization: Southeast University
– sequence: 2
  givenname: Jianyu
  surname: Han
  fullname: Han, Jianyu
  email: hanjy@seu.edu.cn
  organization: Southeast University
– sequence: 3
  givenname: Zhongqiu
  surname: Li
  fullname: Li, Zhongqiu
  organization: Nanjing University
– sequence: 4
  givenname: Yixin
  surname: Hong
  fullname: Hong, Yixin
  organization: Southeast University
– sequence: 5
  givenname: Xiaofei
  surname: Gu
  fullname: Gu, Xiaofei
  organization: Southeast University
– sequence: 6
  givenname: Yafeng
  surname: Wu
  fullname: Wu, Yafeng
  organization: Southeast University
– sequence: 7
  givenname: Yuanjian
  orcidid: 0000-0003-2932-4159
  surname: Zhang
  fullname: Zhang, Yuanjian
  email: liusq@seu.edu.cn
  organization: Southeast University
– sequence: 8
  givenname: Songqin
  surname: Liu
  fullname: Liu, Songqin
  email: Yuanjian.Zhang@seu.edu.cn
  organization: Southeast University
BookMark eNpdkb1PwzAQxS0EEqWwMltiYUnxR53YY1UVqFRoBXSOXOdCXQU7xE6rLvztpIA6MN290--envQu0KnzDhC6pmRACWF32lkYMMJEJ1J1gnpUMJrwLOOn3T7kPMmkoOfoIoRNh0hJ0h76WrpGb6Gy7h3HNeBJCOCi1RV-8RVgX-KxdwFMG-0W8KLx0TsdrXf4NUIdsHV4se6ORkdd7aM1eDxn-AWK1vxQuzU4vAwH-1GLn7XzjS9-3jR-mt9forNSVwGu_mYfLe8nb-PHZDZ_mI5Hs6RmqVQJLxlZAaXADCghSskFJ0RrwlVpMklWYqiLjJNUSSKKQmVkRUstC0ONUBlLeR_d_vrWjf9sIcT8wwYDVaUd-DbknKZDSQUlB_TmH7rxbeO6dB2liOAp5bSj1C-1sxXs87qxH7rZ55Tkhy7yQxf5sYt89DydHBX_BjkHgQg
ContentType Journal Article
Copyright 2025 Wiley-VCH GmbH
2025 Wiley-VCH GmbH.
Copyright_xml – notice: 2025 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202500269
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202500269
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22209025
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220799
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UMC
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
AEYWJ
K9.
7X8
ID FETCH-LOGICAL-p2689-3f20be11e2ce955f835300aa039fc780b54ad73069805dd970b1fa8dc1c597263
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 18:52:12 EDT 2025
Fri Jul 25 11:48:13 EDT 2025
Tue Apr 29 10:30:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2689-3f20be11e2ce955f835300aa039fc780b54ad73069805dd970b1fa8dc1c597263
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2932-4159
PQID 3190536131
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3164815106
proquest_journals_3190536131
wiley_primary_10_1002_anie_202500269_ANIE202500269
PublicationCentury 2000
PublicationDate April 11, 2025
PublicationDateYYYYMMDD 2025-04-11
PublicationDate_xml – month: 04
  year: 2025
  text: April 11, 2025
  day: 11
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2019; 4
2023; 14
2021; 4
2023; 33
2021; 2
2020; 142
2023; 325
2021; 143
2020; 586
2020; 10
2020; 32
2024; 14
2022; 119
2018; 48
2022; 144
2021; 14
2020; 7
2018; 18
2018; 9
2023; 62
2021; 54
2020; 3
2021; 12
2015; 137
2022; 61
2022; 6
2018; 118
2022; 7
2022; 34
2022; 13
2024; 63
2019; 119
2018; 12
2021; 60
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 2189
  year: 2018
  end-page: 2194
  publication-title: Nano Lett.
– volume: 60
  start-page: 24849
  year: 2021
  end-page: 24853
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 9734
  year: 2024
  end-page: 9741
  publication-title: ACS Catal.
– volume: 14
  start-page: 2429
  year: 2021
  end-page: 2440
  publication-title: Energy Environ. Sci.
– volume: 142
  start-page: 12515
  year: 2020
  end-page: 12523
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 63
  year: 2022
  publication-title: Nat. Commun.
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  publication-title: Chem. Rev.
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 12
  start-page: 2612
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  start-page: 114
  year: 2021
  publication-title: Commun. Mater.
– volume: 143
  start-page: 18131
  year: 2021
  end-page: 18138
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 3962
  year: 2019
  end-page: 4179
  publication-title: Chem. Rev.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 719
  year: 2021
  end-page: 729
  publication-title: Nat. Catal.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3152
  year: 2018
  end-page: 3158
  publication-title: Chem. Sci.
– volume: 142
  start-page: 75
  year: 2020
  end-page: 79
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3314
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2656
  year: 2022
  publication-title: Nat. Commun.
– volume: 144
  start-page: 23560
  year: 2022
  end-page: 23571
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3894
  year: 2022
  publication-title: Nat. Commun.
– volume: 143
  start-page: 6152
  year: 2021
  end-page: 6164
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 14548
  year: 2020
  end-page: 14556
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2457
  year: 2021
  end-page: 2466
  publication-title: Acc. Chem. Res.
– volume: 586
  start-page: 549
  year: 2020
  end-page: 554
  publication-title: Nature
– volume: 6
  start-page: 205
  year: 2022
  end-page: 220
  publication-title: Joule
– volume: 137
  start-page: 13440
  year: 2015
  end-page: 13443
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 8330
  year: 2018
  end-page: 8340
  publication-title: ACS Nano
– volume: 118
  start-page: 3121
  year: 2018
  end-page: 3207
  publication-title: Chem. Rev.
– volume: 4
  start-page: 690
  year: 2019
  end-page: 699
  publication-title: Nat. Energy.
– volume: 3
  start-page: 3512
  year: 2020
  end-page: 3520
  publication-title: ACS App. Energy Mater.
– volume: 32
  start-page: 6137
  year: 2020
  end-page: 6149
  publication-title: Chem. Mater.
– volume: 7
  start-page: 959
  year: 2020
  end-page: 966
  publication-title: ACS Photonics
– volume: 14
  start-page: 4508
  year: 2023
  publication-title: Nat. Commun.
– volume: 325
  year: 2023
  publication-title: Appl. Catal. B
– volume: 48
  start-page: 44
  year: 2018
  end-page: 52
  publication-title: Nano Energy
– volume: 144
  start-page: 1069
  year: 2022
  end-page: 1081
  publication-title: J. Am. Chem. Soc.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 3666
  year: 2022
  end-page: 3674
  publication-title: ACS Energy Lett.
SSID ssj0028806
Score 2.5058997
Snippet The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry....
The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202500269
SubjectTerms Carbon dioxide
Carbon dioxide fixation
CO2 Photoreduction
Electron transfer
Gold
In situ Raman
Intermediates
Metal-organic frameworks
Methane
Nanorods
Photocatalysis
Photosynthesis
Plasmon
Porphyrins
Protonation
Reaction mechanisms
Zirconium
Title Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500269
https://www.proquest.com/docview/3190536131
https://www.proquest.com/docview/3164815106
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwI8qmQeIasB0nTY5V1aogAVVFpd4iJ7YFAiWINkJw4NuZSdpAOcIti60ss_jZnnnD2LkSVqQCDckoFXtKcudplwrPuLbQRHhiHa1D3tyGg7G6ngSTH1n8NT9Es-BGllH5azJwnU4vv0lDKQMb53c4hOM0gjL4KGCLUNGo4Y-SqJx1epHve1SFfsHayOXlcvclfPkTpVbDTH-T6cUL1tElTxflLL3IPn5xN_7nC7bYxhyDQqdWmm22YvMdttZdlH7bZZ_jnKoSUaY6IECE3pRSlFBTYVQ8WygcUJ1Pm5XkK2H4WsyKelERKGhsCo85DB_wYrU29I5Pge6dhBGxxFat3h5sDlWwAnRKQAdfoBuvumm4uevvsXG_d98dePNCDd6LDKPY853kqRXCyszGQeAQ1fmca8392GXtiKeB0gZdSRhHPDAmbvNUOB2ZTGQ4n5Ghv89W8yK3Bwx8g_0RBPrcBcplJnYq0gixDI-s5plqseOFoJK5tU0TdCPoSxCYiBY7a27jP6PND53boqQ2IfHS4Ay4xWQlleSl5vNIauZmmZA8kkYeSef2qtecHf6l0xFbp2PafBLimK3OXkt7ghhmlp5WevoFKZnpiw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BeBgvfCMKAw6J12y246TJY1W16mDtpmqVeIuc2NYQKJnWRgge-Nu5c5rAeITHOD7lw-fz786-3wG819LJUtJEslrnkVbCR8aXMrJ-LA0TnjjPccjlKl1s9IdPSX-akHNhOn6IIeDGMyPYa57gHJA--c0ayinY5ODRGk5-RH4X7nFZ7-BVrQcGKUXq2SUYxXHEdeh73kahTm7L30KYf-LUsNDMH0LZv2J3vuTLcbsrj6sff7E3_tc3PIIHexiKk05vHsMdVz-Bw2lf_e0p_NzUXJiIk9WRMCLOtpylRMqK6-arw8Yjl_p0VcvmEi9uml3TxRWRz41t8XONF1fUGMJD3-kpOD1XuGai2NDr25WrMZxXwEmLZOMbsuRBzODyfP4MNvPZ5XQR7Ws1RNcqzfIo9kqUTkqnKpcniSdgFwthjIhzX40zUSbaWLImaZ6JxNp8LErpTWYrWZFLo9L4ORzUTe1eAMaW5AkHxsIn2lc29zozhLKsyJwRlR7BUT9SxX7CbQuyJGROCJvIEbwbbtM_4_0PU7um5T4pU9OQEzwCFYaluO4oPYqOvFkVPB7FMB7FZHU6G65e_ovQWzhcXC7PirPT1cdXcJ_beS9KyiM42N207jVBml35JijtL84I7aY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xJm287HuijLGbtNeA7Thp8liVVsBGqapV4i1yYltMm5KKNkLwsL99d0mbwR7HYxyf8uG78-9s3-8AvmjpZC7JkKzWaaCV8IHxuQys70vDhCfO8zrk-SQ-meuzy-jyXhZ_yw_RLbixZTT-mg18Yf3RX9JQzsCm-I6mcAoj0ifwVMciYb0-nnUEUoq0s80vCsOAy9BvaBuFOnoo_wBg3oepzTwzfglm84bt8ZKfh_UqPyzu_iFvfMwnvIIXaxCKg1ZrXsOWK9_A8-Gm9ttb-D0vuSwRp6ojIUQcLTlHiVQVZ9Uvh5VHLvTpipqdJU6vq1XVrioinxpb4o8Sp1fU2CwO3dJTcHihcMY0sU2vmytXYnNaAQc1koevyI83YgbPL8bvYD4efR-eBOtKDcFCxUkahF6J3EnpVOHSKPIE60IhjBFh6ot-IvJIG0u-JE4TEVmb9kUuvUlsIQsKaFQcvoftsirdLmBoSZ5QYCh8pH1hU68TQxjLisQZUege7G8GKlub2zIjP0LOhJCJ7MHn7jb9M979MKWrau4TMzENhcA9UM2oZIuW0CNrqZtVxuORdeORDSano-5q73-EPsGz6fE4-3Y6-foBdriZN6Kk3Ift1XXtPhKeWeUHjcr-ASkE7F4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Essential+Role+of+Consecutive+Protonation+Steps+in+Photocatalytic+CO2+Reduction+when+Using+Au+Nanorods+in+a+MOF&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Tianyi&rft.au=Han%2C+Jianyu&rft.au=Li%2C+Zhongqiu&rft.au=Hong%2C+Yixin&rft.date=2025-04-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=16&rft_id=info:doi/10.1002%2Fanie.202500269&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon