Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF
The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamenta...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 16; pp. e202500269 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
11.04.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4‐fold increase in CH4/CO selectivity and 12‐fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.
The integration of Au nanorods not only improves the selectivity and production rate of the photocatalytic CO2 reduction but also provides crucial insights into the pivotal role of protonation steps and reaction intermediates, particularly highlighting the rate‐determining *CO to *CHO conversion. |
---|---|
AbstractList | The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4‐fold increase in CH4/CO selectivity and 12‐fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.
The integration of Au nanorods not only improves the selectivity and production rate of the photocatalytic CO2 reduction but also provides crucial insights into the pivotal role of protonation steps and reaction intermediates, particularly highlighting the rate‐determining *CO to *CHO conversion. The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal-organic framework (MOF). Interestingly, 2.4-fold increase in CH4/CO selectivity and 12-fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au-O-Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal-organic framework (MOF). Interestingly, 2.4-fold increase in CH4/CO selectivity and 12-fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au-O-Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction. The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4‐fold increase in CH4/CO selectivity and 12‐fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction. |
Author | Huang, Tianyi Liu, Songqin Han, Jianyu Zhang, Yuanjian Li, Zhongqiu Hong, Yixin Gu, Xiaofei Wu, Yafeng |
Author_xml | – sequence: 1 givenname: Tianyi surname: Huang fullname: Huang, Tianyi organization: Southeast University – sequence: 2 givenname: Jianyu surname: Han fullname: Han, Jianyu email: hanjy@seu.edu.cn organization: Southeast University – sequence: 3 givenname: Zhongqiu surname: Li fullname: Li, Zhongqiu organization: Nanjing University – sequence: 4 givenname: Yixin surname: Hong fullname: Hong, Yixin organization: Southeast University – sequence: 5 givenname: Xiaofei surname: Gu fullname: Gu, Xiaofei organization: Southeast University – sequence: 6 givenname: Yafeng surname: Wu fullname: Wu, Yafeng organization: Southeast University – sequence: 7 givenname: Yuanjian orcidid: 0000-0003-2932-4159 surname: Zhang fullname: Zhang, Yuanjian email: liusq@seu.edu.cn organization: Southeast University – sequence: 8 givenname: Songqin surname: Liu fullname: Liu, Songqin email: Yuanjian.Zhang@seu.edu.cn organization: Southeast University |
BookMark | eNpdkb1PwzAQxS0EEqWwMltiYUnxR53YY1UVqFRoBXSOXOdCXQU7xE6rLvztpIA6MN290--envQu0KnzDhC6pmRACWF32lkYMMJEJ1J1gnpUMJrwLOOn3T7kPMmkoOfoIoRNh0hJ0h76WrpGb6Gy7h3HNeBJCOCi1RV-8RVgX-KxdwFMG-0W8KLx0TsdrXf4NUIdsHV4se6ORkdd7aM1eDxn-AWK1vxQuzU4vAwH-1GLn7XzjS9-3jR-mt9forNSVwGu_mYfLe8nb-PHZDZ_mI5Hs6RmqVQJLxlZAaXADCghSskFJ0RrwlVpMklWYqiLjJNUSSKKQmVkRUstC0ONUBlLeR_d_vrWjf9sIcT8wwYDVaUd-DbknKZDSQUlB_TmH7rxbeO6dB2liOAp5bSj1C-1sxXs87qxH7rZ55Tkhy7yQxf5sYt89DydHBX_BjkHgQg |
ContentType | Journal Article |
Copyright | 2025 Wiley-VCH GmbH 2025 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202500269 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202500269 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22209025 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20220799 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UMC UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF AEYWJ K9. 7X8 |
ID | FETCH-LOGICAL-p2689-3f20be11e2ce955f835300aa039fc780b54ad73069805dd970b1fa8dc1c597263 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:52:12 EDT 2025 Fri Jul 25 11:48:13 EDT 2025 Tue Apr 29 10:30:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2689-3f20be11e2ce955f835300aa039fc780b54ad73069805dd970b1fa8dc1c597263 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2932-4159 |
PQID | 3190536131 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3164815106 proquest_journals_3190536131 wiley_primary_10_1002_anie_202500269_ANIE202500269 |
PublicationCentury | 2000 |
PublicationDate | April 11, 2025 |
PublicationDateYYYYMMDD | 2025-04-11 |
PublicationDate_xml | – month: 04 year: 2025 text: April 11, 2025 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2019; 4 2023; 14 2021; 4 2023; 33 2021; 2 2020; 142 2023; 325 2021; 143 2020; 586 2020; 10 2020; 32 2024; 14 2022; 119 2018; 48 2022; 144 2021; 14 2020; 7 2018; 18 2018; 9 2023; 62 2021; 54 2020; 3 2021; 12 2015; 137 2022; 61 2022; 6 2018; 118 2022; 7 2022; 34 2022; 13 2024; 63 2019; 119 2018; 12 2021; 60 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 18 start-page: 2189 year: 2018 end-page: 2194 publication-title: Nano Lett. – volume: 60 start-page: 24849 year: 2021 end-page: 24853 publication-title: Angew. Chem. Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 9734 year: 2024 end-page: 9741 publication-title: ACS Catal. – volume: 14 start-page: 2429 year: 2021 end-page: 2440 publication-title: Energy Environ. Sci. – volume: 142 start-page: 12515 year: 2020 end-page: 12523 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 63 year: 2022 publication-title: Nat. Commun. – volume: 119 start-page: 7610 year: 2019 end-page: 7672 publication-title: Chem. Rev. – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 12 start-page: 2612 year: 2021 publication-title: Nat. Commun. – volume: 2 start-page: 114 year: 2021 publication-title: Commun. Mater. – volume: 143 start-page: 18131 year: 2021 end-page: 18138 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 3962 year: 2019 end-page: 4179 publication-title: Chem. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 719 year: 2021 end-page: 729 publication-title: Nat. Catal. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3152 year: 2018 end-page: 3158 publication-title: Chem. Sci. – volume: 142 start-page: 75 year: 2020 end-page: 79 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 3314 year: 2023 publication-title: Nat. Commun. – volume: 13 start-page: 2656 year: 2022 publication-title: Nat. Commun. – volume: 144 start-page: 23560 year: 2022 end-page: 23571 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3894 year: 2022 publication-title: Nat. Commun. – volume: 143 start-page: 6152 year: 2021 end-page: 6164 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 14548 year: 2020 end-page: 14556 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2457 year: 2021 end-page: 2466 publication-title: Acc. Chem. Res. – volume: 586 start-page: 549 year: 2020 end-page: 554 publication-title: Nature – volume: 6 start-page: 205 year: 2022 end-page: 220 publication-title: Joule – volume: 137 start-page: 13440 year: 2015 end-page: 13443 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 8330 year: 2018 end-page: 8340 publication-title: ACS Nano – volume: 118 start-page: 3121 year: 2018 end-page: 3207 publication-title: Chem. Rev. – volume: 4 start-page: 690 year: 2019 end-page: 699 publication-title: Nat. Energy. – volume: 3 start-page: 3512 year: 2020 end-page: 3520 publication-title: ACS App. Energy Mater. – volume: 32 start-page: 6137 year: 2020 end-page: 6149 publication-title: Chem. Mater. – volume: 7 start-page: 959 year: 2020 end-page: 966 publication-title: ACS Photonics – volume: 14 start-page: 4508 year: 2023 publication-title: Nat. Commun. – volume: 325 year: 2023 publication-title: Appl. Catal. B – volume: 48 start-page: 44 year: 2018 end-page: 52 publication-title: Nano Energy – volume: 144 start-page: 1069 year: 2022 end-page: 1081 publication-title: J. Am. Chem. Soc. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 3666 year: 2022 end-page: 3674 publication-title: ACS Energy Lett. |
SSID | ssj0028806 |
Score | 2.5058997 |
Snippet | The proton‐coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry.... The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202500269 |
SubjectTerms | Carbon dioxide Carbon dioxide fixation CO2 Photoreduction Electron transfer Gold In situ Raman Intermediates Metal-organic frameworks Methane Nanorods Photocatalysis Photosynthesis Plasmon Porphyrins Protonation Reaction mechanisms Zirconium |
Title | Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202500269 https://www.proquest.com/docview/3190536131 https://www.proquest.com/docview/3164815106 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwI8qmQeIasB0nTY5V1aogAVVFpd4iJ7YFAiWINkJw4NuZSdpAOcIti60ss_jZnnnD2LkSVqQCDckoFXtKcudplwrPuLbQRHhiHa1D3tyGg7G6ngSTH1n8NT9Es-BGllH5azJwnU4vv0lDKQMb53c4hOM0gjL4KGCLUNGo4Y-SqJx1epHve1SFfsHayOXlcvclfPkTpVbDTH-T6cUL1tElTxflLL3IPn5xN_7nC7bYxhyDQqdWmm22YvMdttZdlH7bZZ_jnKoSUaY6IECE3pRSlFBTYVQ8WygcUJ1Pm5XkK2H4WsyKelERKGhsCo85DB_wYrU29I5Pge6dhBGxxFat3h5sDlWwAnRKQAdfoBuvumm4uevvsXG_d98dePNCDd6LDKPY853kqRXCyszGQeAQ1fmca8392GXtiKeB0gZdSRhHPDAmbvNUOB2ZTGQ4n5Ghv89W8yK3Bwx8g_0RBPrcBcplJnYq0gixDI-s5plqseOFoJK5tU0TdCPoSxCYiBY7a27jP6PND53boqQ2IfHS4Ay4xWQlleSl5vNIauZmmZA8kkYeSef2qtecHf6l0xFbp2PafBLimK3OXkt7ghhmlp5WevoFKZnpiw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BeBgvfCMKAw6J12y246TJY1W16mDtpmqVeIuc2NYQKJnWRgge-Nu5c5rAeITHOD7lw-fz786-3wG819LJUtJEslrnkVbCR8aXMrJ-LA0TnjjPccjlKl1s9IdPSX-akHNhOn6IIeDGMyPYa57gHJA--c0ayinY5ODRGk5-RH4X7nFZ7-BVrQcGKUXq2SUYxXHEdeh73kahTm7L30KYf-LUsNDMH0LZv2J3vuTLcbsrj6sff7E3_tc3PIIHexiKk05vHsMdVz-Bw2lf_e0p_NzUXJiIk9WRMCLOtpylRMqK6-arw8Yjl_p0VcvmEi9uml3TxRWRz41t8XONF1fUGMJD3-kpOD1XuGai2NDr25WrMZxXwEmLZOMbsuRBzODyfP4MNvPZ5XQR7Ws1RNcqzfIo9kqUTkqnKpcniSdgFwthjIhzX40zUSbaWLImaZ6JxNp8LErpTWYrWZFLo9L4ORzUTe1eAMaW5AkHxsIn2lc29zozhLKsyJwRlR7BUT9SxX7CbQuyJGROCJvIEbwbbtM_4_0PU7um5T4pU9OQEzwCFYaluO4oPYqOvFkVPB7FMB7FZHU6G65e_ovQWzhcXC7PirPT1cdXcJ_beS9KyiM42N207jVBml35JijtL84I7aY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xJm287HuijLGbtNeA7Thp8liVVsBGqapV4i1yYltMm5KKNkLwsL99d0mbwR7HYxyf8uG78-9s3-8AvmjpZC7JkKzWaaCV8IHxuQys70vDhCfO8zrk-SQ-meuzy-jyXhZ_yw_RLbixZTT-mg18Yf3RX9JQzsCm-I6mcAoj0ifwVMciYb0-nnUEUoq0s80vCsOAy9BvaBuFOnoo_wBg3oepzTwzfglm84bt8ZKfh_UqPyzu_iFvfMwnvIIXaxCKg1ZrXsOWK9_A8-Gm9ttb-D0vuSwRp6ojIUQcLTlHiVQVZ9Uvh5VHLvTpipqdJU6vq1XVrioinxpb4o8Sp1fU2CwO3dJTcHihcMY0sU2vmytXYnNaAQc1koevyI83YgbPL8bvYD4efR-eBOtKDcFCxUkahF6J3EnpVOHSKPIE60IhjBFh6ot-IvJIG0u-JE4TEVmb9kUuvUlsIQsKaFQcvoftsirdLmBoSZ5QYCh8pH1hU68TQxjLisQZUege7G8GKlub2zIjP0LOhJCJ7MHn7jb9M979MKWrau4TMzENhcA9UM2oZIuW0CNrqZtVxuORdeORDSano-5q73-EPsGz6fE4-3Y6-foBdriZN6Kk3Ift1XXtPhKeWeUHjcr-ASkE7F4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Essential+Role+of+Consecutive+Protonation+Steps+in+Photocatalytic+CO2+Reduction+when+Using+Au+Nanorods+in+a+MOF&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Tianyi&rft.au=Han%2C+Jianyu&rft.au=Li%2C+Zhongqiu&rft.au=Hong%2C+Yixin&rft.date=2025-04-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=16&rft_id=info:doi/10.1002%2Fanie.202500269&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |