High‐Shell Sulfur Doping Enhances Mn‐N4 Spin States and Boosts Oxygen Reduction Reaction Performance in both Acidic and Alkaline Media

The development of platinum group metal‐free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)‐based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activi...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 11; pp. e2411678 - n/a
Main Authors Li, Yuan, Wu, Hao‐Ran, Yu, Yue, Chen, Miao‐Ying, Zhao, Kuang‐Min, Li, Wei‐Dong, Rong, Si‐Yu, Xue, Dong‐ping, Zhang, Jia‐Nan, Lu, Bang‐An
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202411678

Cover

Loading…
Abstract The development of platinum group metal‐free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)‐based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activity compared to state‐of‐the‐art iron‐nitrogen‐carbon (Fe‐N‐C) catalysts. In this study, a highly efficient Mn‐N‐C‐S catalyst is presented, engineered through a sulfur‐mediated high‐shell coordinated doping strategy, that markedly enhances ORR activity and stability. The Mn‐N‐C‐S catalyst achieves a record‐high half‐wave potential of 0.94 V in alkaline media, among the highest values reported for Mn‐based catalysts. Additionally, in acidic media, it exhibits a half‐wave potential of 0.80 V, placing it among the top‐performing M‐N‐C catalysts. The catalyst also demonstrates a high peak power density of 0.82 W cm−2 in H2‐O2 fuel cells and 0.264 W cm−2 in Zn‐air batteries, outperforming previously reported Mn‐based catalysts. Both experimental findings and theoretical computations suggest that the high‐shell S‐doping can increase the spin density of Mn sites, strengthen Mn‐N bonds, and thereby improve the durability of Mn‐N4 sites. This work underscores the effectiveness of high‐shell sulfur doping and paving the way for their deployment in the cathodes of fuel cells and metal‐air batteries. The catalyst is synthesized by a sulfur‐mediated two‐step adsorption‐pyrolysis strategy, which significantly increases the density of MnN4 sites. The high‐shell coordinated S doping can increase the spin density of Mn‐N4, weaken the oxygen intermediate affinity, and strengthen the Mn‐N bonds. The Mn‐N‐C‐S catalyst delivers record‐high power density and extraordinary stability in H2‐O2 fuel cells and Zn‐air batteries.
AbstractList The development of platinum group metal‐free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)‐based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activity compared to state‐of‐the‐art iron‐nitrogen‐carbon (Fe‐N‐C) catalysts. In this study, a highly efficient Mn‐N‐C‐S catalyst is presented, engineered through a sulfur‐mediated high‐shell coordinated doping strategy, that markedly enhances ORR activity and stability. The Mn‐N‐C‐S catalyst achieves a record‐high half‐wave potential of 0.94 V in alkaline media, among the highest values reported for Mn‐based catalysts. Additionally, in acidic media, it exhibits a half‐wave potential of 0.80 V, placing it among the top‐performing M‐N‐C catalysts. The catalyst also demonstrates a high peak power density of 0.82 W cm−2 in H2‐O2 fuel cells and 0.264 W cm−2 in Zn‐air batteries, outperforming previously reported Mn‐based catalysts. Both experimental findings and theoretical computations suggest that the high‐shell S‐doping can increase the spin density of Mn sites, strengthen Mn‐N bonds, and thereby improve the durability of Mn‐N4 sites. This work underscores the effectiveness of high‐shell sulfur doping and paving the way for their deployment in the cathodes of fuel cells and metal‐air batteries.
The development of platinum group metal‐free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)‐based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activity compared to state‐of‐the‐art iron‐nitrogen‐carbon (Fe‐N‐C) catalysts. In this study, a highly efficient Mn‐N‐C‐S catalyst is presented, engineered through a sulfur‐mediated high‐shell coordinated doping strategy, that markedly enhances ORR activity and stability. The Mn‐N‐C‐S catalyst achieves a record‐high half‐wave potential of 0.94 V in alkaline media, among the highest values reported for Mn‐based catalysts. Additionally, in acidic media, it exhibits a half‐wave potential of 0.80 V, placing it among the top‐performing M‐N‐C catalysts. The catalyst also demonstrates a high peak power density of 0.82 W cm−2 in H2‐O2 fuel cells and 0.264 W cm−2 in Zn‐air batteries, outperforming previously reported Mn‐based catalysts. Both experimental findings and theoretical computations suggest that the high‐shell S‐doping can increase the spin density of Mn sites, strengthen Mn‐N bonds, and thereby improve the durability of Mn‐N4 sites. This work underscores the effectiveness of high‐shell sulfur doping and paving the way for their deployment in the cathodes of fuel cells and metal‐air batteries. The catalyst is synthesized by a sulfur‐mediated two‐step adsorption‐pyrolysis strategy, which significantly increases the density of MnN4 sites. The high‐shell coordinated S doping can increase the spin density of Mn‐N4, weaken the oxygen intermediate affinity, and strengthen the Mn‐N bonds. The Mn‐N‐C‐S catalyst delivers record‐high power density and extraordinary stability in H2‐O2 fuel cells and Zn‐air batteries.
The development of platinum group metal-free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)-based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activity compared to state-of-the-art iron-nitrogen-carbon (Fe-N-C) catalysts. In this study, a highly efficient Mn-N-C-S catalyst is presented, engineered through a sulfur-mediated high-shell coordinated doping strategy, that markedly enhances ORR activity and stability. The Mn-N-C-S catalyst achieves a record-high half-wave potential of 0.94 V in alkaline media, among the highest values reported for Mn-based catalysts. Additionally, in acidic media, it exhibits a half-wave potential of 0.80 V, placing it among the top-performing M-N-C catalysts. The catalyst also demonstrates a high peak power density of 0.82 W cm-2 in H2-O2 fuel cells and 0.264 W cm-2 in Zn-air batteries, outperforming previously reported Mn-based catalysts. Both experimental findings and theoretical computations suggest that the high-shell S-doping can increase the spin density of Mn sites, strengthen Mn-N bonds, and thereby improve the durability of Mn-N4 sites. This work underscores the effectiveness of high-shell sulfur doping and paving the way for their deployment in the cathodes of fuel cells and metal-air batteries.The development of platinum group metal-free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)-based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activity compared to state-of-the-art iron-nitrogen-carbon (Fe-N-C) catalysts. In this study, a highly efficient Mn-N-C-S catalyst is presented, engineered through a sulfur-mediated high-shell coordinated doping strategy, that markedly enhances ORR activity and stability. The Mn-N-C-S catalyst achieves a record-high half-wave potential of 0.94 V in alkaline media, among the highest values reported for Mn-based catalysts. Additionally, in acidic media, it exhibits a half-wave potential of 0.80 V, placing it among the top-performing M-N-C catalysts. The catalyst also demonstrates a high peak power density of 0.82 W cm-2 in H2-O2 fuel cells and 0.264 W cm-2 in Zn-air batteries, outperforming previously reported Mn-based catalysts. Both experimental findings and theoretical computations suggest that the high-shell S-doping can increase the spin density of Mn sites, strengthen Mn-N bonds, and thereby improve the durability of Mn-N4 sites. This work underscores the effectiveness of high-shell sulfur doping and paving the way for their deployment in the cathodes of fuel cells and metal-air batteries.
Author Li, Yuan
Chen, Miao‐Ying
Yu, Yue
Li, Wei‐Dong
Wu, Hao‐Ran
Xue, Dong‐ping
Rong, Si‐Yu
Lu, Bang‐An
Zhao, Kuang‐Min
Zhang, Jia‐Nan
Author_xml – sequence: 1
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: Zhengzhou University
– sequence: 2
  givenname: Hao‐Ran
  surname: Wu
  fullname: Wu, Hao‐Ran
  organization: Zhengzhou University
– sequence: 3
  givenname: Yue
  surname: Yu
  fullname: Yu, Yue
  organization: Zhengzhou University
– sequence: 4
  givenname: Miao‐Ying
  surname: Chen
  fullname: Chen, Miao‐Ying
  organization: Zhengzhou University
– sequence: 5
  givenname: Kuang‐Min
  surname: Zhao
  fullname: Zhao, Kuang‐Min
  organization: Xiamen University
– sequence: 6
  givenname: Wei‐Dong
  surname: Li
  fullname: Li, Wei‐Dong
  organization: Zhengzhou University
– sequence: 7
  givenname: Si‐Yu
  surname: Rong
  fullname: Rong, Si‐Yu
  organization: Zhengzhou University
– sequence: 8
  givenname: Dong‐ping
  surname: Xue
  fullname: Xue, Dong‐ping
  organization: Zhengzhou University
– sequence: 9
  givenname: Jia‐Nan
  surname: Zhang
  fullname: Zhang, Jia‐Nan
  email: zjn@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 10
  givenname: Bang‐An
  orcidid: 0000-0002-4532-598X
  surname: Lu
  fullname: Lu, Bang‐An
  email: balu@zzu.edu.cn
  organization: Zhengzhou University
BookMark eNpdkT1PAzEMhiMEEp8rcyQWlkKSO5LcWL6RWkAczCc3ybWBNCmXO0E3ZiZ-I7-ElKIOTH5tPbZsv9to3QdvENqn5IgSwo7j1LkjRlhOKRdyDW1RTrMel6xYX2lKNtF2jM-EZJTlYgt9Xtvx5Pvjq5wY53DZubpr8HmYWT_GF34CXpmIhz4RtzkuUxmXLbSpBl7j0xBiG_Hd-3xsPH4wulOtDQsFS3Fvmjo008UUnFpHoZ3gvrLaqt_-vnsBZ73BQ6Mt7KKNGlw0e39xBz1dXjyeXfcGd1c3Z_1Bb8a4lD3NKACtIdMCVEEEh7yQIGWdyRMiqAFhZKHrEecAWuS01pKwkSi4UqZgimY76HA5d9aE187EtpraqNL54E3oYpVRfkIkowVP6ME_9Dl0jU_bJUpIkb6dsUQVS-rNOjOvZo2dQjOvKKkWvlQLX6qVL1U5HAxWWfYD4oCIHQ
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202411678
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202411678
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22102156; 22372152
– fundername: China Postdoctoral Science Foundation
  funderid: 2021TQ0295; 2022M712865
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-p2688-d21aa1fa3d7ac9076a498a88f385071ea7e89dfb66aad741fd802b796cce92c13
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 19:08:53 EDT 2025
Sat Jul 12 03:13:14 EDT 2025
Thu Mar 20 09:30:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2688-d21aa1fa3d7ac9076a498a88f385071ea7e89dfb66aad741fd802b796cce92c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4532-598X
PQID 3178720232
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_3165082196
proquest_journals_3178720232
wiley_primary_10_1002_smll_202411678_SMLL202411678
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 1–2
2023; 33
2023; 34
2023; 5
2019; 58
2019; 325
2024; 146
2020; 10
2024; 38
2016; 37
2020; 8
2023; 62
2018; 9
2018; 8
2018; 5
2024; 6
2018; 1
2020; 132
2015; 44
2024; 350
2018; 30
2024; 553
2017; 362
2022; 126
2021; 2021
2021; 46
2021; 6
2023; 13
2011; 2
2015; 3
2023; 17
2019; 31
2015; 127
2019; 2
2008; 11
2019; 141
2022; 437
2016; 55
2021; 14
2021; 13
2021; 15
2016; 7
2021; 12
2021; 11
2022; 61
2005; 167
2023; 475
2022; 12
2022; 15
2022; 10
2019; 777
2021; 133
2019; 371
2018; 11
2018; 10
References_xml – volume: 15
  start-page: 6886
  year: 2021
  publication-title: ACS Nano
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8485
  year: 2020
  publication-title: ACS Catal.
– volume: 9
  start-page: 4378
  year: 2018
  publication-title: Nat. Commun.
– volume: 1–2
  start-page: 19
  year: 2015
  publication-title: SoftwareX
– volume: 6
  year: 2024
  publication-title: Carbon Energy
– volume: 61
  year: 2022
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 5930
  year: 2022
  publication-title: J. Mater. Chem. A.
– volume: 437
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 11
  start-page: 484
  year: 2021
  publication-title: ACS Catal.
– volume: 10
  start-page: 224
  year: 2022
  publication-title: ACS Sustain. Chem. Eng.
– volume: 475
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 44
  year: 2015
  publication-title: Dalton Trans.
– volume: 371
  start-page: 433
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  year: 2023
  publication-title: ACS Catal.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 14
  start-page: 122
  year: 2021
  publication-title: Nano Res.
– volume: 11
  start-page: 988
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3176
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 132
  start-page: 3261
  year: 2020
  publication-title: Angew. Chem.
– volume: 12
  start-page: 1734
  year: 2021
  publication-title: Nat. Commun.
– volume: 167
  start-page: 103
  year: 2005
  publication-title: Comput. Phys. Commun.
– volume: 2021
  start-page: 4452
  year: 2021
  publication-title: Eur. J. Inorg. Chem.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A.
– volume: 12
  start-page: 8976
  year: 2022
  publication-title: ACS Catal.
– volume: 12
  start-page: 7797
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 5
  start-page: 3946
  year: 2018
  publication-title: ChemElectroChem
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 13
  start-page: 4012
  year: 2023
  publication-title: ACS Catal.
– volume: 5
  year: 2023
  publication-title: Carbon Energy
– volume: 8
  start-page: 9367
  year: 2020
  publication-title: ACS Sustain. Chem. Eng.
– volume: 553
  year: 2024
  publication-title: Mol. Catal.
– volume: 1
  start-page: 3673
  year: 2018
  publication-title: ACS Appl. Nano Mater
– volume: 777
  start-page: 872
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 146
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 127
  year: 2015
  publication-title: Angew. Chem.
– volume: 31
  start-page: 8106
  year: 2019
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1705
  year: 2022
  publication-title: Processes
– volume: 38
  year: 2024
  publication-title: Energy Fuels
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 2
  start-page: 416
  year: 2011
  publication-title: Nat. Commun.
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 133
  year: 2021
  publication-title: Angew. Chem.
– volume: 126
  start-page: 4458
  year: 2022
  publication-title: J. Phys. Chem. C.
– volume: 362
  start-page: 1
  year: 2017
  publication-title: J. Power Sources
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 350
  year: 2024
  publication-title: Appl. Catal., B.
– volume: 11
  start-page: B105
  year: 2008
  publication-title: Electrochem. Solid‐State Lett.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A.
– volume: 325
  year: 2019
  publication-title: Electrochim. Acta.
– volume: 2
  start-page: 578
  year: 2019
  publication-title: Nat. Catal.
– volume: 6
  start-page: 475
  year: 2021
  publication-title: Nat. Energy
– volume: 37
  start-page: 1166
  year: 2016
  publication-title: Chin. J. Catal.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 8671
  year: 2018
  publication-title: ACS Catal.
– volume: 12
  start-page: 6335
  year: 2021
  publication-title: Nat. Commun.
– volume: 15
  year: 2022
  publication-title: ChemSusChem
SSID ssj0031247
Score 2.4707894
Snippet The development of platinum group metal‐free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion...
The development of platinum group metal-free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2411678
SubjectTerms Catalysts
Chemical reduction
Doping
Durability
electron‐withdrawing effects
Energy conversion
Fuel cells
Iron
Manganese
Metal air batteries
M‐N‐C catalysts
Nitrogen
oxygen reduction reaction
Oxygen reduction reactions
Platinum metals
Sulfur
sulfur‐anion coordination
Zinc-oxygen batteries
Title High‐Shell Sulfur Doping Enhances Mn‐N4 Spin States and Boosts Oxygen Reduction Reaction Performance in both Acidic and Alkaline Media
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202411678
https://www.proquest.com/docview/3178720232
https://www.proquest.com/docview/3165082196
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VnOihUGjVQIoWiavBXtvrzTHlIYQIrUiRuFmzL4EIDopjCXrquSd-I7-EGTsxoUe42fuQvJqZnW-9M98wthOl2OF1GLg4wwOKzWSAfscEEqxzPpbKe0pwHpzJ44vk5DK9XMjib_gh2h9uZBn1fk0GDrrceyENLW9HdHWAHijCDRc3YQrYIlR03vJHxei86uoq6LMCIt6aszaGYu_19Ff4chGl1m7maIXB_AOb6JKb3Wqqd82f_7gb37OCVfZphkF5v1Gaz-yDK9bYxwVmwnX2j-I_nv4-DilOlA-rka8m_KBOruKHxRWpSskHBY44S_gQm3mDWjkUlv8Yj8tpyX_eP6B28nMihyXx41OTRcF_vWQrcJyqUVt431zba1PP749ugFbH6RYJvrCLo8Pf-8fBrGxDcCck2p0VEUDkIbYZGDx7S0h6CpTysSLw6SBzqme9lhLAIqDxVoVCZz1pjOsJE8Vf2VIxLtw3xkODbUInKRETOimUdknqEiutDyGNTYd152LLZ7ZX5oiIVEZV4UWHbbfdaDV0FQKFG1c0hpAp7tayw0Qto_yuYffIGx5nkZN08lY6-XBwetq-bbxl0iZbFlQ8uA5g67Kl6aRy3xHRTPVWrbXP8jfzAg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619NByoE_U5VVX6jWQOInjPS4FtG13txULUm-RnypiySKykaCnnjnxG_klzCS7AXpsb0lsS7FmxvPZnvkG4FOUYoPXYeDiDDcoNhMB-h0TCGWd87GQ3lOC83Ak-sfJ15_pIpqQcmEafoj2wI0so16vycDpQHrnnjW0PJvQ3QG6oAhX3KfwjMp6UxGDvcOWQSpG91XXV0GvFRD11oK3MeQ7j8c_QpgPcWrtaA5egl78YhNfcrpdzfS2-f0Xe-N_zeEVrMxhKOs1evManrjiDSw_ICd8C9cUAnL752ZMoaJsXE18dcH26vwqtl_8Im0p2bDAHqOEjfEza4ArU4Vlu9NpOSvZ98srVFB2SPywpAH41CRSsB_3CQsMh2pUGNYzJ_bE1ON7k1NF02N0kaTewfHB_tHnfjCv3BCcc4GmZ3mkVORVbDNlcPstVNKVSkofS8KfTmVOdq3XQihlEdN4K0Ous64wxnW5ieJVWCqmhXsPLDT4jeskJW5CJ7jULkldYoX1oUpj04GNhdzyufmVOYIimVFheN6Bj20zGg7dhqjCTSvqQ-AUF2zRAV4LKT9vCD7yhsqZ5ySdvJVOPh4OBu3b2r8M-gDP-0fDQT74Mvq2Di841RKu49k2YGl2UblNBDgzvVWr8B0ZR_cc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61VKrKAehLhALdSr0a7LW93hzDI6JtkiJSJG7Weh8qIjgRjiXg1DMnfiO_hBk7MaHH9mbvQ_JqZna-9c58A_A1iLHDZb5nwwQPKCYRHvod7QllrHWhkM5RgnN_II5Oo-9n8dlCFn_ND9H8cCPLqPZrMvCJcbtPpKHF5YiuDtADBbjhvoRXkUCLIVh00hBIhei9qvIq6LQ8Yt6a0zb6fPf5_GcAcxGmVn6muwpq_oV1eMnFTjnNdvTtX-SN_7OENViZgVDWqbXmLbyw-TtYXqAmfA93FADy8Od-SIGibFiOXHnFDqrsKnaY_yZdKVg_xxGDiA2xmdWwlancsL3xuJgW7Of1DaonOyF2WJI_PtVpFOz4KV2B4dQM1YV19Lk519X8zuhC0eoYXSOpD3DaPfy1f-TN6jZ4Ey7Q8AwPlAqcCk2iNB6-hYraUknpQkno06rEyrZxmRBKGUQ0zkifZ0lbaG3bXAfhR1jKx7ldB-ZrbONZFBMzoRVcZjaKbWSEcb6KQ92CzbnY0pnxFSlCIplQWXjegi9NN5oN3YWo3I5LGkPQFLdr0QJeySid1PQeaU3kzFOSTtpIJx32e73mbeNfJn2G18cH3bT3bfDjE7zhVEi4CmbbhKXpVWm3EN1Ms-1KgR8BW-L11A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Shell+Sulfur+Doping+Enhances+Mn%E2%80%90N4+Spin+States+and+Boosts+Oxygen+Reduction+Reaction+Performance+in+both+Acidic+and+Alkaline+Media&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Yuan&rft.au=Wu%2C+Hao%E2%80%90Ran&rft.au=Yu%2C+Yue&rft.au=Chen%2C+Miao%E2%80%90Ying&rft.date=2025-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=11&rft_id=info:doi/10.1002%2Fsmll.202411678&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon