c-Cbl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation

Regulation of transcriptionally active nuclear β-catenin during the Wnt-on phase is crucial to ensure controlled induction of Wnt target genes. Several ubiquitin E3 ligases are known to regulate cytosolic β-catenin during the Wnt-off phase, but little is known about the fate of active nuclear β-cate...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 288; no. 32; pp. 23505 - 23517
Main Authors Chitalia, Vipul, Shivanna, Sowmya, Martorell, Jordi, Meyer, Rosana, Edelman, Elazer, Rahimi, Nader
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 09.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regulation of transcriptionally active nuclear β-catenin during the Wnt-on phase is crucial to ensure controlled induction of Wnt target genes. Several ubiquitin E3 ligases are known to regulate cytosolic β-catenin during the Wnt-off phase, but little is known about the fate of active nuclear β-catenin in the Wnt-on phase. We now describe ubiquitination of active β-catenin in the Wnt-on phase by a RING finger ubiquitin E3 ligase, Casitas B-lineage lymphoma (c-Cbl) in endothelial cells. c-Cbl binds preferentially to nuclearly active β-catenin in the Wnt-on phase via the armadillo repeat region. Wild-type c-Cbl suppresses and E3 ligase-deficient c-Cbl-70Z increases Wnt signaling. Wnt induces nuclear translocation of c-Cbl where it ubiquitinates nuclear β-catenin. Deletion of the c-Cbl UBA domain abrogates its dimerization, binding to β-catenin, Wnt-induced c-Cbl nuclear translocation, and ubiquitination of nuclear β-catenin. c-Cbl activity inhibits pro-angiogenic Wnt targets IL-8 and VEGF levels and angiogenesis in a β-catenin-dependent manner. This study defines for the first time c-Cbl as a ubiquitin E3 ligase that targets nuclearly active β-catenin in the Wnt-on phase and uncovers a novel layer of regulation of Wnt signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.473801