Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C
Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries serious...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 2; pp. e202409409 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
10.01.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability. |
---|---|
AbstractList | Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability. Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C. Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. |
Author | Song, Tinglu Zhang, Qiang Sun, Shuo Yan, Chong Xiao, Ye Yao, Yu‐Xing Jin, Cheng‐Bin Zheng, Mengting Xu, Lei Li, Zeheng Yue, Xin‐Yang Wu, Peng Yang, Yi |
Author_xml | – sequence: 1 givenname: Zeheng surname: Li fullname: Li, Zeheng organization: Zhejiang University – sequence: 2 givenname: Yu‐Xing surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 3 givenname: Mengting surname: Zheng fullname: Zheng, Mengting organization: Zhejiang University – sequence: 4 givenname: Shuo surname: Sun fullname: Sun, Shuo organization: Tsinghua University – sequence: 5 givenname: Yi surname: Yang fullname: Yang, Yi organization: Beijing Institute of Technology – sequence: 6 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 7 givenname: Lei surname: Xu fullname: Xu, Lei organization: Beijing Institute of Technology – sequence: 8 givenname: Cheng‐Bin surname: Jin fullname: Jin, Cheng‐Bin organization: Tsinghua University – sequence: 9 givenname: Xin‐Yang surname: Yue fullname: Yue, Xin‐Yang organization: Tsinghua University – sequence: 10 givenname: Tinglu surname: Song fullname: Song, Tinglu organization: Beijing Institute of Technology – sequence: 11 givenname: Peng surname: Wu fullname: Wu, Peng organization: Tsinghua University – sequence: 12 givenname: Chong surname: Yan fullname: Yan, Chong email: yanc@bit.edu.cn organization: Tsinghua University – sequence: 13 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNpdkMFOwkAQhjcGEwG9em7ixUthtttut0fEgiREjNHzZrudQklpcVtiuHnUq0_iM_goPIlLUA4mk8z_J18m8_8d0iqrEgm5pNCjAF5flTn2PPB8iOyckDYNPOqyMGQtq33G3FAE9Ix06nppeSGAt4mMC9SNqYptg84t1vm8dOJSJQXWziPqhTJz3Dtnmo_wYeb3x0atF7mFb1TToMktl5lq5ezePwXs3j6-v4ZOUzl_-pycZqqo8eJ3d8nzKH4a3rnT2XgyHEzdtcd55EaIKY9S5fOMZlHqa42AiU581BkIkTGWZCGgRlRMAQfGolDpKAhSCLmvBeuS68PdtaleNlg3cpXXGotClVhtasnAxmWCBWDRq3_ostqY0n4nGQ1Y4FMOnqWiA_WaF7iVa5OvlNlKCnJfttyXLY9ly8H9JD469gOtenpM |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2025 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202409409 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202409409 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300 – fundername: National Natural Science Foundation of China funderid: 22005172, 22379014, 52100342, and 52107227 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 53G 7X8 |
ID | FETCH-LOGICAL-p2669-9eed69da46f1f9d4cce0ebcb4ecf088f33bf70eceea3a0603397ac955d0764c83 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:50:05 EDT 2025 Fri Jul 25 12:02:29 EDT 2025 Wed Jan 22 17:11:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2669-9eed69da46f1f9d4cce0ebcb4ecf088f33bf70eceea3a0603397ac955d0764c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PQID | 3153541602 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3080638350 proquest_journals_3153541602 wiley_primary_10_1002_anie_202409409_ANIE202409409 |
PublicationCentury | 2000 |
PublicationDate | January 10, 2025 |
PublicationDateYYYYMMDD | 2025-01-10 |
PublicationDate_xml | – month: 01 year: 2025 text: January 10, 2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 431 2009; 44 2022; 134 2021; 27 2021; 6 2019; 2019 2023; 35 2019; 4 2013; 3 2003; 119 2023; 13 2017; 2 2004; 104 2023; 36 2023; 17 2023; 6 2015; 300 2015; 645 2020; 10 2011; 196 2006; 159 2017; 9 2023; 87 2023; 62 2020; 5 2021; 32 2022; 163 2021; 11 2022; 3 2022; 61 2022; 6 2007; 154 2022; 8 2010; 157 2022; 34 2022; 12 2020; 49 2022; 35 2022; 36 2022; 15 2002; 149 2019; 416 2022; 1 2023; 614 2022; 32 2022; 2 2021; 60 2012; 5 |
References_xml | – volume: 2 start-page: 435 year: 2022 end-page: 444 publication-title: SusMat – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 44 start-page: 2435 year: 2009 end-page: 2443 publication-title: J. Mater. Sci. – volume: 4 start-page: 882 year: 2019 end-page: 890 publication-title: Nat. Energy – volume: 32 start-page: 973 year: 2021 end-page: 982 publication-title: Chin. Chem. Lett. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 104 start-page: 4303 year: 2004 end-page: 4417 publication-title: Chem. Rev. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 157 start-page: A1361 year: 2010 end-page: A1374 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 1172 year: 2022 end-page: 1198 publication-title: Joule – volume: 300 start-page: 29 year: 2015 end-page: 40 publication-title: J. Power Sources – volume: 3 year: 2022 publication-title: Small Structures – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 159 start-page: 702 year: 2006 end-page: 707 publication-title: J. Power Sources – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 614 start-page: 694 year: 2023 end-page: 700 publication-title: Nature – volume: 6 start-page: 2016 year: 2021 end-page: 2023 publication-title: ACS Energy Lett. – volume: 2019 start-page: 1 year: 2019 end-page: 5 publication-title: Int. J. Electrochem. – volume: 15 start-page: 550 year: 2022 end-page: 578 publication-title: Energy Environ. Sci. – volume: 87 start-page: 473 year: 2023 end-page: 478 publication-title: J. Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: eTransportation – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 119 start-page: 349 year: 2003 end-page: 358 publication-title: J. Power Sources – volume: 416 start-page: 29 year: 2019 end-page: 36 publication-title: J. Power Sources – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 1232 year: 2022 end-page: 1251 publication-title: Energy Fuels – volume: 1 start-page: 72 year: 2022 end-page: 81 publication-title: iEnergy – volume: 35 start-page: 525 year: 2023 end-page: 538 publication-title: Sustain. Prod. Consump. – volume: 645 start-page: 301 year: 2015 end-page: 308 publication-title: J. Alloys Compd. – volume: 6 start-page: 176 year: 2021 end-page: 185 publication-title: Nat. Energy – volume: 5 start-page: 5163 year: 2012 end-page: 5185 publication-title: Energy Environ. Sci. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 17 start-page: 18103 year: 2023 end-page: 18113 publication-title: ACS Nano – volume: 60 start-page: 22683 year: 2021 end-page: 22687 publication-title: Angew. Chem. Int. Ed. – volume: 149 start-page: A361 year: 2002 end-page: A370 publication-title: J. Electrochem. Soc. – volume: 134 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 154 start-page: A162 year: 2007 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 2274 year: 2023 end-page: 2292 publication-title: Matter – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 start-page: 42761 year: 2017 end-page: 42768 publication-title: ACS Appl. Mater. Interfaces – volume: 196 start-page: 3623 year: 2011 end-page: 3632 publication-title: J. Power Sources – volume: 3 start-page: 1155 year: 2013 end-page: 1160 publication-title: Adv. Energy Mater. – volume: 163 year: 2022 publication-title: Renewable Sustainable Energy Rev. – volume: 5 start-page: 578 year: 2020 end-page: 586 publication-title: Nat. Energy – volume: 27 start-page: 15842 year: 2021 end-page: 15865 publication-title: Chem. Eur. J. – volume: 60 start-page: 4090 year: 2021 end-page: 4097 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 335 year: 2020 end-page: 338 publication-title: J. Energy Chem. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 49 start-page: 3806 year: 2020 end-page: 3833 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 1 year: 2017 end-page: 14 publication-title: Nat. Energy |
SSID | ssj0028806 |
Score | 2.617263 |
Snippet | Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202409409 |
SubjectTerms | Batteries Charging Electrolytes Electrolytic cells Energy storage extreme operating condition Graphite interfacial kinetics Ion currents Ion transport Iron phosphates Li0 plating Life span LiFePO4/graphite batteries Lithium Relaxation time Storage batteries wide-temperature electrolyte |
Title | Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202409409 https://www.proquest.com/docview/3153541602 https://www.proquest.com/docview/3080638350 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YL3rx34iiWROvhWV_Cj0SBNEoGiMJt2a73SZGU4iUg5486tUn8Rl8FJ7EmZZW8Ki3btpt2un8fLud-YaQE2MQNbjC4WDVjgxC62iDQ6-mo9A26lGaTXjVc7t9eTFQg7kq_owfothwQ8tI_TUauA7G1R_SUKzAhvUdxwVKWsGHCVuIim4L_igOypmVFwnhYBf6nLWR8eri9AV8OY9S0zDTWSc6f8Asu-ShMkmCinn5xd34nzfYIGszDEqbmdJskiUbb5GVVt76bZv47aw5zuNzYulpmuNB22mR1ZgCzkRyJYsjennfsTfXsnqGtNcAXmlG1wmrb4p1K3T69tFg09f3r88WTYY0P94h_U77rtV1Zp0YnBEEcM_xIJK6XqilG9UiL5TGWGYDE0hrInBTkRBBVGcWAq4WmrlMAMrRxlMqZHVXmobYJcvxMLZ7hCJ_vvVEoBQPwUkbXZNRKBXoEtzGNbJEyvmX8GfmNPYF-GUF0JHxEjkuToNQ8O-Gju1wAtcA9gVnIhQrEZ6K3R9lhB1-Rs3MfRS4Xwjcb_bO28Vo_y-TDsgqx37ADNMCy2Q5eZrYQwApSXCUKuI3aujjjg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQDGXhH1EoYCTWtK7tpM1Y9YcW2oJQkdisxHEkBEoRpANMjLDyJDwDj9In4S5pAmWELVbiKLncz2fn7jtCjrVG1OAIi4NVW9IPjOVpHLpVLwxMvRYm2YSDodO9kqfXdpZNiLUwKT9EvuGGlpH4azRw3JCufLOGYgk2LPA4rlCwhG8J23ojfX7rMmeQ4qCeaYGREBb2oc94GxmvzM-fQ5g_cWoSaDqrxM8eMc0vuS1PYr-sn3-xN_7rHdbIygyG0kaqN-tkwUQbpNDMur9tEtVO--PcPcWGtpI0D9pO6qweKUBN5FcyOKL9m465OJeVE2S-BvxKU8ZOWIBTLF2h09f3Opu-vH1-NGk8ptnxFrnqtEfNrjVrxmDdQwx3LReCqeMGnnTCaugGUmvDjK99aXQInioUwg9rzEDM9YTHHCYA6Hjate2A1Ryp62KbLEbjyOwQihT6xhW-bfMA_LT2qjIMpA3qBLdxtCySUvYp1MyiHpUA12wDemS8SI7y0yAU_MHhRWY8gWsA_oI_ETYrEp7IXd2nnB0qZWfmCgWucoGrxrDXzke7f5l0SArd0aCv-r3h2R5Z5tgemGGWYIksxg8Tsw-YJfYPEq38Aqc556o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSMCFHVFWI3ENdW0nbY6oCwVKQQgkbpbj2BICtRVND3DiCFe-hG_gU_gSZpImLEe4xUocJZNZnp2ZN4TsGYOoIRAeB6v2ZBRbTxschhXtYlurujSb8LQbtK_k8bV__a2KP-OHKDbc0DJSf40GPohd-Ys0FCuwYX3HcYGCFXxTMmAhNm9oXBQEUhy0M6svEsLDNvQ5bSPj5Z_zfwDM7zA1jTOteaLzJ8zSS273R0m0bx5_kTf-5xUWyNwYhNKDTGsWyYTtLZGZet77bZmoZtYd5-4hsbSRJnnQZlplNaQANJFdyeKIdm5a9vxMlg-R9xrQK834OmH5TbFwhX48v9bYx9PL-1udJn2aH6-Qq1bzst72xq0YvAFE8NALIZQGYaxl4CoujKUxltnIRNIaB37KCRG5KrMQcbXQLGACYI42oe_HrBpIUxOrZLLX79k1QpFA34Yi8n0eg5c2uiJdLH1QJrhNYGSJbOZfQo3taagEOGYfsCPjJbJbnAah4O8N3bP9EVwD4Be8ifBZifBU7GqQMXaojJuZKxS4KgSuDrpHzWK0_pdJO2T6vNFSnaPuyQaZ5dgbmGGK4CaZTO5HdgsASxJtpzr5CQwO5lk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrolyte+Design+Enables+Rechargeable+LiFePO4%2FGraphite+Batteries+from+%E2%88%9280%C2%B0C+to+80%C2%B0C&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zeheng&rft.au=Yu%E2%80%90Xing+Yao&rft.au=Zheng%2C+Mengting&rft.au=Sun%2C+Shuo&rft.date=2025-01-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202409409&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |