Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C

Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries serious...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 2; pp. e202409409 - n/a
Main Authors Li, Zeheng, Yao, Yu‐Xing, Zheng, Mengting, Sun, Shuo, Yang, Yi, Xiao, Ye, Xu, Lei, Jin, Cheng‐Bin, Yue, Xin‐Yang, Song, Tinglu, Wu, Peng, Yan, Chong, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 10.01.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.
AbstractList Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.
Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.
Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
Author Song, Tinglu
Zhang, Qiang
Sun, Shuo
Yan, Chong
Xiao, Ye
Yao, Yu‐Xing
Jin, Cheng‐Bin
Zheng, Mengting
Xu, Lei
Li, Zeheng
Yue, Xin‐Yang
Wu, Peng
Yang, Yi
Author_xml – sequence: 1
  givenname: Zeheng
  surname: Li
  fullname: Li, Zeheng
  organization: Zhejiang University
– sequence: 2
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 3
  givenname: Mengting
  surname: Zheng
  fullname: Zheng, Mengting
  organization: Zhejiang University
– sequence: 4
  givenname: Shuo
  surname: Sun
  fullname: Sun, Shuo
  organization: Tsinghua University
– sequence: 5
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Cheng‐Bin
  surname: Jin
  fullname: Jin, Cheng‐Bin
  organization: Tsinghua University
– sequence: 9
  givenname: Xin‐Yang
  surname: Yue
  fullname: Yue, Xin‐Yang
  organization: Tsinghua University
– sequence: 10
  givenname: Tinglu
  surname: Song
  fullname: Song, Tinglu
  organization: Beijing Institute of Technology
– sequence: 11
  givenname: Peng
  surname: Wu
  fullname: Wu, Peng
  organization: Tsinghua University
– sequence: 12
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  email: yanc@bit.edu.cn
  organization: Tsinghua University
– sequence: 13
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNpdkMFOwkAQhjcGEwG9em7ixUthtttut0fEgiREjNHzZrudQklpcVtiuHnUq0_iM_goPIlLUA4mk8z_J18m8_8d0iqrEgm5pNCjAF5flTn2PPB8iOyckDYNPOqyMGQtq33G3FAE9Ix06nppeSGAt4mMC9SNqYptg84t1vm8dOJSJQXWziPqhTJz3Dtnmo_wYeb3x0atF7mFb1TToMktl5lq5ezePwXs3j6-v4ZOUzl_-pycZqqo8eJ3d8nzKH4a3rnT2XgyHEzdtcd55EaIKY9S5fOMZlHqa42AiU581BkIkTGWZCGgRlRMAQfGolDpKAhSCLmvBeuS68PdtaleNlg3cpXXGotClVhtasnAxmWCBWDRq3_ostqY0n4nGQ1Y4FMOnqWiA_WaF7iVa5OvlNlKCnJfttyXLY9ly8H9JD469gOtenpM
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2025 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202409409
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202409409
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300
– fundername: National Natural Science Foundation of China
  funderid: 22005172, 22379014, 52100342, and 52107227
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
53G
7X8
ID FETCH-LOGICAL-p2669-9eed69da46f1f9d4cce0ebcb4ecf088f33bf70eceea3a0603397ac955d0764c83
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:50:05 EDT 2025
Fri Jul 25 12:02:29 EDT 2025
Wed Jan 22 17:11:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2669-9eed69da46f1f9d4cce0ebcb4ecf088f33bf70eceea3a0603397ac955d0764c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PQID 3153541602
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_3080638350
proquest_journals_3153541602
wiley_primary_10_1002_anie_202409409_ANIE202409409
PublicationCentury 2000
PublicationDate January 10, 2025
PublicationDateYYYYMMDD 2025-01-10
PublicationDate_xml – month: 01
  year: 2025
  text: January 10, 2025
  day: 10
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 431
2009; 44
2022; 134
2021; 27
2021; 6
2019; 2019
2023; 35
2019; 4
2013; 3
2003; 119
2023; 13
2017; 2
2004; 104
2023; 36
2023; 17
2023; 6
2015; 300
2015; 645
2020; 10
2011; 196
2006; 159
2017; 9
2023; 87
2023; 62
2020; 5
2021; 32
2022; 163
2021; 11
2022; 3
2022; 61
2022; 6
2007; 154
2022; 8
2010; 157
2022; 34
2022; 12
2020; 49
2022; 35
2022; 36
2022; 15
2002; 149
2019; 416
2022; 1
2023; 614
2022; 32
2022; 2
2021; 60
2012; 5
References_xml – volume: 2
  start-page: 435
  year: 2022
  end-page: 444
  publication-title: SusMat
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 44
  start-page: 2435
  year: 2009
  end-page: 2443
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 882
  year: 2019
  end-page: 890
  publication-title: Nat. Energy
– volume: 32
  start-page: 973
  year: 2021
  end-page: 982
  publication-title: Chin. Chem. Lett.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 157
  start-page: A1361
  year: 2010
  end-page: A1374
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 1172
  year: 2022
  end-page: 1198
  publication-title: Joule
– volume: 300
  start-page: 29
  year: 2015
  end-page: 40
  publication-title: J. Power Sources
– volume: 3
  year: 2022
  publication-title: Small Structures
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 159
  start-page: 702
  year: 2006
  end-page: 707
  publication-title: J. Power Sources
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 614
  start-page: 694
  year: 2023
  end-page: 700
  publication-title: Nature
– volume: 6
  start-page: 2016
  year: 2021
  end-page: 2023
  publication-title: ACS Energy Lett.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 5
  publication-title: Int. J. Electrochem.
– volume: 15
  start-page: 550
  year: 2022
  end-page: 578
  publication-title: Energy Environ. Sci.
– volume: 87
  start-page: 473
  year: 2023
  end-page: 478
  publication-title: J. Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: eTransportation
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 119
  start-page: 349
  year: 2003
  end-page: 358
  publication-title: J. Power Sources
– volume: 416
  start-page: 29
  year: 2019
  end-page: 36
  publication-title: J. Power Sources
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 1232
  year: 2022
  end-page: 1251
  publication-title: Energy Fuels
– volume: 1
  start-page: 72
  year: 2022
  end-page: 81
  publication-title: iEnergy
– volume: 35
  start-page: 525
  year: 2023
  end-page: 538
  publication-title: Sustain. Prod. Consump.
– volume: 645
  start-page: 301
  year: 2015
  end-page: 308
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 176
  year: 2021
  end-page: 185
  publication-title: Nat. Energy
– volume: 5
  start-page: 5163
  year: 2012
  end-page: 5185
  publication-title: Energy Environ. Sci.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 17
  start-page: 18103
  year: 2023
  end-page: 18113
  publication-title: ACS Nano
– volume: 60
  start-page: 22683
  year: 2021
  end-page: 22687
  publication-title: Angew. Chem. Int. Ed.
– volume: 149
  start-page: A361
  year: 2002
  end-page: A370
  publication-title: J. Electrochem. Soc.
– volume: 134
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 154
  start-page: A162
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 2274
  year: 2023
  end-page: 2292
  publication-title: Matter
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 42761
  year: 2017
  end-page: 42768
  publication-title: ACS Appl. Mater. Interfaces
– volume: 196
  start-page: 3623
  year: 2011
  end-page: 3632
  publication-title: J. Power Sources
– volume: 3
  start-page: 1155
  year: 2013
  end-page: 1160
  publication-title: Adv. Energy Mater.
– volume: 163
  year: 2022
  publication-title: Renewable Sustainable Energy Rev.
– volume: 5
  start-page: 578
  year: 2020
  end-page: 586
  publication-title: Nat. Energy
– volume: 27
  start-page: 15842
  year: 2021
  end-page: 15865
  publication-title: Chem. Eur. J.
– volume: 60
  start-page: 4090
  year: 2021
  end-page: 4097
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 335
  year: 2020
  end-page: 338
  publication-title: J. Energy Chem.
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 49
  start-page: 3806
  year: 2020
  end-page: 3833
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 14
  publication-title: Nat. Energy
SSID ssj0028806
Score 2.617263
Snippet Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202409409
SubjectTerms Batteries
Charging
Electrolytes
Electrolytic cells
Energy storage
extreme operating condition
Graphite
interfacial kinetics
Ion currents
Ion transport
Iron phosphates
Li0 plating
Life span
LiFePO4/graphite batteries
Lithium
Relaxation time
Storage batteries
wide-temperature electrolyte
Title Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202409409
https://www.proquest.com/docview/3153541602
https://www.proquest.com/docview/3080638350
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YL3rx34iiWROvhWV_Cj0SBNEoGiMJt2a73SZGU4iUg5486tUn8Rl8FJ7EmZZW8Ki3btpt2un8fLud-YaQE2MQNbjC4WDVjgxC62iDQ6-mo9A26lGaTXjVc7t9eTFQg7kq_owfothwQ8tI_TUauA7G1R_SUKzAhvUdxwVKWsGHCVuIim4L_igOypmVFwnhYBf6nLWR8eri9AV8OY9S0zDTWSc6f8Asu-ShMkmCinn5xd34nzfYIGszDEqbmdJskiUbb5GVVt76bZv47aw5zuNzYulpmuNB22mR1ZgCzkRyJYsjennfsTfXsnqGtNcAXmlG1wmrb4p1K3T69tFg09f3r88WTYY0P94h_U77rtV1Zp0YnBEEcM_xIJK6XqilG9UiL5TGWGYDE0hrInBTkRBBVGcWAq4WmrlMAMrRxlMqZHVXmobYJcvxMLZ7hCJ_vvVEoBQPwUkbXZNRKBXoEtzGNbJEyvmX8GfmNPYF-GUF0JHxEjkuToNQ8O-Gju1wAtcA9gVnIhQrEZ6K3R9lhB1-Rs3MfRS4Xwjcb_bO28Vo_y-TDsgqx37ADNMCy2Q5eZrYQwApSXCUKuI3aujjjg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQDGXhH1EoYCTWtK7tpM1Y9YcW2oJQkdisxHEkBEoRpANMjLDyJDwDj9In4S5pAmWELVbiKLncz2fn7jtCjrVG1OAIi4NVW9IPjOVpHLpVLwxMvRYm2YSDodO9kqfXdpZNiLUwKT9EvuGGlpH4azRw3JCufLOGYgk2LPA4rlCwhG8J23ojfX7rMmeQ4qCeaYGREBb2oc94GxmvzM-fQ5g_cWoSaDqrxM8eMc0vuS1PYr-sn3-xN_7rHdbIygyG0kaqN-tkwUQbpNDMur9tEtVO--PcPcWGtpI0D9pO6qweKUBN5FcyOKL9m465OJeVE2S-BvxKU8ZOWIBTLF2h09f3Opu-vH1-NGk8ptnxFrnqtEfNrjVrxmDdQwx3LReCqeMGnnTCaugGUmvDjK99aXQInioUwg9rzEDM9YTHHCYA6Hjate2A1Ryp62KbLEbjyOwQihT6xhW-bfMA_LT2qjIMpA3qBLdxtCySUvYp1MyiHpUA12wDemS8SI7y0yAU_MHhRWY8gWsA_oI_ETYrEp7IXd2nnB0qZWfmCgWucoGrxrDXzke7f5l0SArd0aCv-r3h2R5Z5tgemGGWYIksxg8Tsw-YJfYPEq38Aqc556o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSMCFHVFWI3ENdW0nbY6oCwVKQQgkbpbj2BICtRVND3DiCFe-hG_gU_gSZpImLEe4xUocJZNZnp2ZN4TsGYOoIRAeB6v2ZBRbTxschhXtYlurujSb8LQbtK_k8bV__a2KP-OHKDbc0DJSf40GPohd-Ys0FCuwYX3HcYGCFXxTMmAhNm9oXBQEUhy0M6svEsLDNvQ5bSPj5Z_zfwDM7zA1jTOteaLzJ8zSS273R0m0bx5_kTf-5xUWyNwYhNKDTGsWyYTtLZGZet77bZmoZtYd5-4hsbSRJnnQZlplNaQANJFdyeKIdm5a9vxMlg-R9xrQK834OmH5TbFwhX48v9bYx9PL-1udJn2aH6-Qq1bzst72xq0YvAFE8NALIZQGYaxl4CoujKUxltnIRNIaB37KCRG5KrMQcbXQLGACYI42oe_HrBpIUxOrZLLX79k1QpFA34Yi8n0eg5c2uiJdLH1QJrhNYGSJbOZfQo3taagEOGYfsCPjJbJbnAah4O8N3bP9EVwD4Be8ifBZifBU7GqQMXaojJuZKxS4KgSuDrpHzWK0_pdJO2T6vNFSnaPuyQaZ5dgbmGGK4CaZTO5HdgsASxJtpzr5CQwO5lk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrolyte+Design+Enables+Rechargeable+LiFePO4%2FGraphite+Batteries+from+%E2%88%9280%C2%B0C+to+80%C2%B0C&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zeheng&rft.au=Yu%E2%80%90Xing+Yao&rft.au=Zheng%2C+Mengting&rft.au=Sun%2C+Shuo&rft.date=2025-01-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202409409&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon