Topologically Tunable Conjugated Metal–Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH3 Sensing

Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 16; pp. e202401679 - n/a
Main Authors Shan, Zhen, Xiao, Jian‐Ze, Wu, Miaomiao, Wang, Jinjian, Su, Jian, Yao, Ming‐Shui, Lu, Ming, Wang, Rui, Zhang, Gen
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 15.04.2024
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron‐donating fused thiophen rings in the frameworks and extending their π‐conjugated systems through ring‐closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10−3 to 102 S m−1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties. Highly conductive metal–organic frameworks (cMOFs) are formed by incorporating electron‐donating fused thiophene rings into their frameworks and extending their π‐conjugated systems. The conductivity can be modulated by adjusting the solvent system, thus regulating the dimensions and topologies of the cMOFs. 1D Cu‐MOF‐1 can be easily processed into thin membranes. The 2D kgm‐Cu‐MOF‐3 has an excellent response toward NH3 at room temperature.
AbstractList Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron‐donating fused thiophen rings in the frameworks and extending their π‐conjugated systems through ring‐closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10−3 to 102 S m−1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties. Highly conductive metal–organic frameworks (cMOFs) are formed by incorporating electron‐donating fused thiophene rings into their frameworks and extending their π‐conjugated systems. The conductivity can be modulated by adjusting the solvent system, thus regulating the dimensions and topologies of the cMOFs. 1D Cu‐MOF‐1 can be easily processed into thin membranes. The 2D kgm‐Cu‐MOF‐3 has an excellent response toward NH3 at room temperature.
Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron‐donating fused thiophen rings in the frameworks and extending their π‐conjugated systems through ring‐closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10−3 to 102 S m−1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their pi-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10(-3) to 10(2) Sm-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Author Shan, Zhen
Su, Jian
Xiao, Jian‐Ze
Wu, Miaomiao
Yao, Ming‐Shui
Lu, Ming
Zhang, Gen
Wang, Jinjian
Wang, Rui
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0003-0399-5552
  surname: Shan
  fullname: Shan, Zhen
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Jian‐Ze
  orcidid: 0009-0002-2001-0268
  surname: Xiao
  fullname: Xiao, Jian‐Ze
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Miaomiao
  orcidid: 0000-0002-6424-2936
  surname: Wu
  fullname: Wu, Miaomiao
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Jinjian
  orcidid: 0000-0002-8571-8120
  surname: Wang
  fullname: Wang, Jinjian
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Jian
  orcidid: 0000-0002-1200-4709
  surname: Su
  fullname: Su, Jian
  organization: Nanjing University of Science and Technology
– sequence: 6
  givenname: Ming‐Shui
  orcidid: 0000-0003-1604-2611
  surname: Yao
  fullname: Yao, Ming‐Shui
  email: msyao@ipe.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Ming
  surname: Lu
  fullname: Lu, Ming
  organization: Nanjing University of Science and Technology
– sequence: 8
  givenname: Rui
  orcidid: 0000-0002-4719-9921
  surname: Wang
  fullname: Wang, Rui
  email: wangrui@lzu.edu.cn
  organization: Institute of Materia Medica
– sequence: 9
  givenname: Gen
  orcidid: 0000-0001-5948-8635
  surname: Zhang
  fullname: Zhang, Gen
  email: zhanggen@njust.edu.cn
  organization: Lanzhou University
BookMark eNqNkstu1DAUhi1URC-wZW2JDRJK8bETx1lWUUsr9YLEsI4c58zgwWMHO2k1OzY8AW_Ik-DRVLNghTe-6PvOsY7-U3Lkg0dC3gI7B8b4R-0tnnPGSwaybl6QE6g4FKKuxVE-l0IUtargmJymtM68Uky-IsdCCdWAZCfk1yKMwYWVNdq5LV3MXvcOaRv8el7pCQd6h5N2f37-foir3MzQq6g3-BTi90SXIdK7MMxOT9avdtIwm8k-2mlLtR9o-w03NmKyKT8i_RzDiHGyuDfvrwX9gj5l9TV5udQu4Zvn_Yx8vbpctNfF7cOnm_bithi5lE2hpJGD1r0GoYeqkVCCNkLKZdP0XA19z5gBhr0WsjTccOizJQQHgQwHtRRn5P2-7hjDjxnT1G1sMuic9hjm1PGmKuu6rgAy-u4fdB3m6PPvOsFEKfMAVZWpD3vqCfuwTMaiN9iN0W503HaMASgQTDYsr11N9f90a6c81uDbMPspq82zah1uDw6wbheDbheD7hCD7uL-5vJwE38BysKpbw
Cites_doi 10.1021/jacs.9b08601
10.1021/acscentsci.2c00509
10.1021/ic802117q
10.1021/jacs.2c10717
10.1038/s41467-019-12857-4
10.1002/aenm.202204177
10.1038/s41560-017-0044-5
10.1002/anie.201707568
10.1021/jacs.0c02225
10.1021/acscentsci.9b01006
10.1002/anie.201909096
10.1002/anie.202303903
10.1002/anie.202302645
10.1021/jacs.2c03793
10.1021/jacs.8b11257
10.1016/j.trechm.2023.03.002
10.1039/d0nr06396g
10.1021/nl034220x
10.1016/j.ccr.2021.214119
10.1007/s12274-020-2823-8
10.1021/jacs.9b09956
10.1039/d3cs00302g
10.1038/s41467-018-05141-4
10.1021/jacs.3c02378
10.1016/j.ccr.2022.214627
10.1038/s41467-023-38918-3
10.1039/d0cs01160f
10.1021/jacs.2c00614
10.1021/acsami.7b03487
10.1002/anie.201911543
10.1021/jacs.1c06986
10.1021/ja5116937
10.1021/ja300420t
10.1002/advs.202104374
10.1002/anie.202102670
10.1021/jacs.2c13835
10.1021/acs.analchem.8b04347
10.1002/anie.202217958
10.1039/c1cs15092h
10.1021/jacs.6b09889
10.1021/acsnano.9b01137
10.1002/anie.202300186
10.1002/anie.202305978
10.1002/adma.202200999
10.1021/ja507619d
10.1039/d1ta01970h
10.1002/advs.202301914
10.1021/jacs.6b08511
10.1039/c9ta02169h
10.1002/anie.201910395
10.1002/adfm.202002664
10.1038/s41467-022-35315-0
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 17B
1KM
BLEPL
DTL
EGQ
7TM
K9.
7X8
DOI 10.1002/anie.202401679
DatabaseName Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Web of Science
Database_xml – sequence: 1
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 001181306900001
ANIE202401679
Genre shortCommunication
GrantInformation_xml – fundername: the Natural Science Foundation of Jiangsu Province
  funderid: BK20220928, BK20220079
– fundername: the National Natural Science Foundation of China
  funderid: 22171136
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: BK20220928; BK20220079
– fundername: Medical Innovation and Development Project of Lanzhou University
  grantid: 2019-I2M-5-074; 2021-I2M-1-026; 2021-I2M-3-001; 2022-I2M-2-002
– fundername: CAMS Innovation Fund for Medical Sciences (CIFMS)
  grantid: 22171136
– fundername: the National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: lzuyxcx-2022-156
– fundername: Natural Science Foundation of Jiangsu Province
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
17B
1KM
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-p2669-86c6daaba13ad596141ac366f99b28dbb00c10eba364c2c21b66933213e0ed8f3
IEDL.DBID DR2
ISICitedReferencesCount 21
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001181306900001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:02:52 EDT 2025
Thu Aug 07 07:15:18 EDT 2025
Fri Aug 29 15:47:31 EDT 2025
Wed Jul 09 18:35:35 EDT 2025
Wed Jun 11 08:25:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Electronic Conductivity
Conjugated Metal-organic Frameworks
NH3 Sensing
CHEMISTRY
Modulating Conductivity
MOFS
Topologically Tunable
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-p2669-86c6daaba13ad596141ac366f99b28dbb00c10eba364c2c21b66933213e0ed8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4719-9921
0009-0002-2001-0268
0000-0002-1200-4709
0000-0001-5948-8635
0000-0003-0399-5552
0000-0003-1604-2611
0000-0002-6424-2936
0000-0002-8571-8120
PMID 38389160
PQID 3034638985
PQPubID 946352
PageCount 8
ParticipantIDs webofscience_primary_001181306900001
proquest_miscellaneous_2954777511
webofscience_primary_001181306900001CitationCount
wiley_primary_10_1002_anie_202401679_ANIE202401679
proquest_journals_3034638985
PublicationCentury 2000
PublicationDate April 15, 2024
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: April 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2024
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2023; 10
2019; 91
2023; 52
2023; 35
2023; 13
2023; 14
2023; 33
2019; 5
2023; 5
2020; 142
2019; 10
2019; 13
2021; 446
2023; 145
2019; 58
2020; 59
2021; 143
2021; 50
2019; 141
2014; 136
2017; 9
2009; 48
2017; 139
2021; 14
2022; 144
2021; 13
2023; 62
2018; 9
2018; 3
2012; 134
2015; 137
2020; 30
2022; 8
2022; 9
2022; 34
2022; 13
2003; 3
2021; 60
2022; 468
2012; 41
2018; 57
Yu, JF (WOS:000495334100001) 2019; 58
He, YQ (WOS:000963411600001) 2023; 13
Chen, TY (WOS:000799109400046) 2022; 144
Lv, JN (WOS:000928429100001) 2023; 62
Wu, AQ (WOS:000531780700004) 2021; 14
Ahn, DY (WOS:000399965700005) 2017; 9
Nam, KW (WOS:000493275600022) 2019; 10
Li, C (WOS:000610368100004) 2021; 13
Yao, MS (WOS:001004541700001) 2023; 62
Meng, Z (WOS:000458348300035) 2019; 141
Sporrer, L (WOS:000985073400001) 2023; 62
Wang, ST (WOS:000703999100007) 2021; 143
Hao, Q (WOS:000503917800042) 2019; 141
Qi, ML (WOS:000897726000001) 2022
Li, J (WOS:000184107300012) 2003; 3
Song, XY (WOS:000499289000001) 2020; 59
Liu, YM (WOS:001032309800001) 2023; 62
Yao, MS (WOS:001053141300001) 2023; 5
Givaja, G (WOS:000297654700010) 2012; 41
Daniel, M (WOS:000807994900004) 2022; 468
Zhou, Y (WOS:000460709200021) 2019; 91
Li, JW (WOS:000643895900001) 2021; 9
Su, X (WOS:000973979300001) 2023; 62
Li, DH (WOS:000535173500009) 2020; 142
Chang, Z. (001181306900001.47) 2023; 33
Lee, J (WOS:001058355400001) 2023; 52
Clough, AJ (WOS:000348483500030) 2015; 137
Li, WH (WOS:000472183200029) 2019; 7
Niu, L (WOS:000825264400001) 2022; 34
Volpi, M (WOS:001024532100001) 2023; 10
Jiang, Y (WOS:000492800500043) 2019; 141
Yao, MS (WOS:000497858600001) 2020; 59
Kambe, T (WOS:000343276900008) 2014; 136
Yuan, HY (WOS:000733311200001) 2022; 9
Feng, DW (WOS:000419976100011) 2018; 3
Wang, MC (WOS:000539576000001) 2020; 30
Xing, GL (WOS:000974381900001) 2023; 145
Li, J.-M. (001181306900001.32) 2023; 33
Huang, X (WOS:000418798600010) 2018; 57
Mariano, RG (WOS:000826305200001) 2022; 8
Mähringer, A (WOS:000473248300055) 2019; 13
Shang, SC (WOS:000953198700002) 2022; 13
Lim, H (WOS:001058998300034) 2023; 14
Day, RW (WOS:000504673000009) 2019; 5
Wang, MC (WOS:000624298500016) 2021; 50
Fan, K (WOS:001008310000001) 2023; 145
Lahiri, N (WOS:000392036900003) 2017; 139
Dong, RH (WOS:000437677800014) 2018; 9
Wu, GD (WOS:000393355600003) 2017; 139
Zhu, BJ (WOS:000686400300018) 2021; 446
Zhang, Q. (001181306900001.20) 2023; 35
Ammu, S (WOS:000301990600026) 2012; 134
Mähringer, A (WOS:000668596500001) 2021; 60
Takaishi, S (WOS:000270091000003) 2009; 48
Pham, HTB (WOS:000812429100001) 2022; 144
References_xml – volume: 48
  start-page: 9048
  year: 2009
  end-page: 9050
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 2764
  year: 2021
  end-page: 2793
  publication-title: Chem. Soc. Rev.
– volume: 141
  start-page: 19831
  year: 2019
  end-page: 19838
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 6379
  year: 2023
  end-page: 6416
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 4553
  year: 2012
  end-page: 4556
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 588
  year: 2023
  end-page: 604
  publication-title: Trends Chem.
– volume: 41
  start-page: 115
  year: 2012
  end-page: 147
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 1118
  year: 2020
  end-page: 1123
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 3
  start-page: 30
  year: 2018
  end-page: 36
  publication-title: Nat. Energy
– volume: 141
  start-page: 16884
  year: 2019
  end-page: 16893
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 929
  year: 2003
  end-page: 933
  publication-title: Nano Lett.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 1360
  year: 2017
  end-page: 1363
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 19
  year: 2017
  end-page: 22
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 975
  year: 2022
  end-page: 982
  publication-title: ACS Cent. Sci.
– volume: 9
  start-page: 2637
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 446
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 137
  start-page: 118
  year: 2015
  end-page: 121
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 12930
  year: 2017
  end-page: 12935
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 7599
  year: 2022
  publication-title: Nat. Commun.
– volume: 145
  start-page: 2739
  year: 2023
  end-page: 2744
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 485
  year: 2021
  end-page: 509
  publication-title: Nanoscale
– volume: 143
  start-page: 15562
  year: 2021
  end-page: 15566
  publication-title: J. Am. Chem. Soc.
– volume: 468
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 58
  start-page: 18141
  year: 2019
  end-page: 18145
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 3114
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  start-page: 6711
  year: 2019
  end-page: 6719
  publication-title: ACS Nano
– volume: 145
  start-page: 12682
  year: 2023
  end-page: 12690
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 57
  start-page: 146
  year: 2018
  end-page: 150
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 438
  year: 2021
  end-page: 443
  publication-title: Nano Res.
– volume: 10
  start-page: 4948
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1959
  year: 2019
  end-page: 1964
  publication-title: ACS Cent. Sci.
– volume: 136
  start-page: 14357
  year: 2014
  end-page: 14360
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 11248
  year: 2021
  end-page: 11254
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 18065
  year: 2021
  end-page: 18072
  publication-title: Angew. Chem. Int. Ed.
– volume: 142
  start-page: 8104
  year: 2020
  end-page: 8108
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 5583
  year: 2022
  end-page: 5593
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 10615
  year: 2022
  end-page: 10621
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 8979
  year: 2023
  end-page: 8987
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 10431
  year: 2019
  end-page: 10438
  publication-title: J. Mater. Chem. A
– volume: 141
  start-page: 2046
  year: 2019
  end-page: 2053
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 3311
  year: 2019
  end-page: 3318
  publication-title: Anal. Chem.
– volume: 59
  start-page: 172
  year: 2020
  end-page: 176
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 16884
  year: 2019
  ident: WOS:000492800500043
  article-title: Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b08601
– volume: 8
  start-page: 975
  year: 2022
  ident: WOS:000826305200001
  article-title: Thousand-fold increase in O2 electroreduction rates with conductive MOFs
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.2c00509
– volume: 48
  start-page: 9048
  year: 2009
  ident: WOS:000270091000003
  article-title: Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic802117q
– year: 2022
  ident: WOS:000897726000001
  article-title: Direct Construction of 2D Conductive Metal-Organic Frameworks from a Nonplanar Ligand: In Situ Scholl Reaction and Topological Modulation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c10717
– volume: 10
  start-page: ARTN 4948
  year: 2019
  ident: WOS:000493275600022
  article-title: Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-12857-4
– volume: 13
  year: 2023
  ident: WOS:000963411600001
  article-title: Creating Dual Active Sites in Conductive Metal-Organic Frameworks for Efficient Water Splitting
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202204177
– volume: 3
  start-page: 30
  year: 2018
  ident: WOS:000419976100011
  article-title: Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance
  publication-title: NATURE ENERGY
  doi: 10.1038/s41560-017-0044-5
– volume: 57
  start-page: 146
  year: 2018
  ident: WOS:000418798600010
  article-title: Superconductivity in a Copper(II)-Based Coordination Polymer with Perfect Kagome Structure
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201707568
– volume: 142
  start-page: 8104
  year: 2020
  ident: WOS:000535173500009
  article-title: Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c02225
– volume: 5
  start-page: 1959
  year: 2019
  ident: WOS:000504673000009
  article-title: Single Crystals of Electrically Conductive Two-Dimensional Metal-Organic Frameworks: Structural and Electrical Transport Properties
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.9b01006
– volume: 59
  start-page: 172
  year: 2020
  ident: WOS:000497858600001
  article-title: A Dual-Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201909096
– volume: 62
  year: 2023
  ident: WOS:001004541700001
  article-title: Integrated Soft Porosity and Electrical Properties of Conductive-on-Insulating Metal-Organic Framework Nanocrystals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202303903
– volume: 62
  start-page: ARTN e202302645
  year: 2023
  ident: WOS:000973979300001
  article-title: Facile Synthesis of Metallosalphen-Based 2D Conductive Metal-Organic Frameworks for NO2 Sensing: Metal Coordination Induced Planarization
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202302645
– volume: 144
  start-page: 10615
  year: 2022
  ident: WOS:000812429100001
  article-title: Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macrocyclic Linker
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c03793
– volume: 141
  start-page: 2046
  year: 2019
  ident: WOS:000458348300035
  article-title: Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b11257
– volume: 5
  start-page: 588
  year: 2023
  ident: WOS:001053141300001
  article-title: Interface chemistry of conductive crystalline porous thin films
  publication-title: TRENDS IN CHEMISTRY
  doi: 10.1016/j.trechm.2023.03.002
– volume: 13
  start-page: 485
  year: 2021
  ident: WOS:000610368100004
  article-title: Recent development and applications of electrical conductive MOFs
  publication-title: NANOSCALE
  doi: 10.1039/d0nr06396g
– volume: 3
  start-page: 929
  year: 2003
  ident: WOS:000184107300012
  article-title: Carbon nanotube sensors for gas and organic vapor detection
  publication-title: NANO LETTERS
  doi: 10.1021/nl034220x
– volume: 446
  start-page: ARTN 214119
  year: 2021
  ident: WOS:000686400300018
  article-title: Conductive metal-organic frameworks for electrochemical energy conversion and storage
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2021.214119
– volume: 14
  start-page: 438
  year: 2021
  ident: WOS:000531780700004
  article-title: Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity
  publication-title: NANO RESEARCH
  doi: 10.1007/s12274-020-2823-8
– volume: 33
  year: 2023
  ident: 001181306900001.32
  publication-title: Adv. Funct. Mater
– volume: 141
  start-page: 19831
  year: 2019
  ident: WOS:000503917800042
  article-title: Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b09956
– volume: 52
  start-page: 6379
  year: 2023
  ident: WOS:001058355400001
  article-title: Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d3cs00302g
– volume: 9
  start-page: ARTN 2637
  year: 2018
  ident: WOS:000437677800014
  article-title: A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-018-05141-4
– volume: 145
  start-page: 12682
  year: 2023
  ident: WOS:001008310000001
  article-title: Single Crystals of a Highly Conductive Three-Dimensional Conjugated Coordination Polymer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.3c02378
– volume: 468
  start-page: ARTN 214627
  year: 2022
  ident: WOS:000807994900004
  article-title: MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2022.214627
– volume: 14
  start-page: ARTN 3114
  year: 2023
  ident: WOS:001058998300034
  article-title: Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-023-38918-3
– volume: 50
  start-page: 2764
  year: 2021
  ident: WOS:000624298500016
  article-title: Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): chemistry and function for MOFtronics
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs01160f
– volume: 144
  start-page: 5583
  year: 2022
  ident: WOS:000799109400046
  article-title: Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c00614
– volume: 9
  start-page: 12930
  year: 2017
  ident: WOS:000399965700005
  article-title: Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1%
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.7b03487
– volume: 59
  start-page: 1118
  year: 2020
  ident: WOS:000499289000001
  article-title: 2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911543
– volume: 143
  start-page: 15562
  year: 2021
  ident: WOS:000703999100007
  article-title: A Three-Dimensional sp2 Carbon-Conjugated Covalent Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c06986
– volume: 137
  start-page: 118
  year: 2015
  ident: WOS:000348483500030
  article-title: Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5116937
– volume: 134
  start-page: 4553
  year: 2012
  ident: WOS:000301990600026
  article-title: Flexible, All-Organic Chemiresistor for Detecting Chemically Aggressive Vapors
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja300420t
– volume: 9
  start-page: ARTN 2104374
  year: 2022
  ident: WOS:000733311200001
  article-title: Metal-Organic Framework Based Gas Sensors
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202104374
– volume: 60
  start-page: 18065
  year: 2021
  ident: WOS:000668596500001
  article-title: An Electrically Conducting Three-Dimensional Iron-Catecholate Porous Framework
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102670
– volume: 145
  start-page: 8979
  year: 2023
  ident: WOS:000974381900001
  article-title: Conjugated Nonplanar Copper-Catecholate Conductive Metal-Organic Frameworks via Contorted Hexabenzocoronene Ligands for Electrical Conduction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c13835
– volume: 33
  year: 2023
  ident: 001181306900001.47
  publication-title: Adv. Funct. Mater
– volume: 91
  start-page: 3311
  year: 2019
  ident: WOS:000460709200021
  article-title: UV Illumination-Enhanced Molecular Ammonia Detection Based On a Ternary-Reduced Graphene Oxide-Titanium Dioxide-Au Composite Film at Room Temperature
  publication-title: ANALYTICAL CHEMISTRY
  doi: 10.1021/acs.analchem.8b04347
– volume: 62
  year: 2023
  ident: WOS:000928429100001
  article-title: A Triptycene-Based 2D MOF with Vertically Extended Structure for Improving the Electrocatalytic Performance of CO2 to Methane
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202217958
– volume: 41
  start-page: 115
  year: 2012
  ident: WOS:000297654700010
  article-title: Electrical conductive coordination polymers
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c1cs15092h
– volume: 139
  start-page: 19
  year: 2017
  ident: WOS:000392036900003
  article-title: Hexaaminobenzene as a building block for a Family of 2D Coordination Polymers
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b09889
– volume: 13
  start-page: 6711
  year: 2019
  ident: WOS:000473248300055
  article-title: Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal-Organic Frameworks
  publication-title: ACS NANO
  doi: 10.1021/acsnano.9b01137
– volume: 35
  year: 2023
  ident: 001181306900001.20
  publication-title: Adv. Mater
– volume: 62
  year: 2023
  ident: WOS:000985073400001
  article-title: Near IR Bandgap Semiconducting 2D Conjugated Metal-Organic Framework with Rhombic Lattice and High Mobility
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202300186
– volume: 62
  year: 2023
  ident: WOS:001032309800001
  article-title: A Thiophene Backbone Enables Two-Dimensional Poly(arylene vinylene)s with High Charge Carrier Mobility
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202305978
– volume: 34
  start-page: ARTN 2200999
  year: 2022
  ident: WOS:000825264400001
  article-title: Conductive Metal-Organic Frameworks for Supercapacitors
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202200999
– volume: 136
  start-page: 14357
  year: 2014
  ident: WOS:000343276900008
  article-title: Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja507619d
– volume: 9
  start-page: 11248
  year: 2021
  ident: WOS:000643895900001
  article-title: Structural and electronic modulation of conductive MOFs for efficient oxygen evolution reaction electrocatalysis
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d1ta01970h
– volume: 10
  start-page: ARTN 2301914
  year: 2023
  ident: WOS:001024532100001
  article-title: Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202301914
– volume: 139
  start-page: 1360
  year: 2017
  ident: WOS:000393355600003
  article-title: Porous Field-Effect Transistors Based on a Semiconductive Metal-Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b08511
– volume: 7
  start-page: 10431
  year: 2019
  ident: WOS:000472183200029
  article-title: Conductive metal-organic framework nanowire arrays for electrocatalytic oxygen evolution Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ta02169h
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c9ta02169h
– volume: 58
  start-page: 18141
  year: 2019
  ident: WOS:000495334100001
  article-title: Cu-Mediated Amination of (Hetero)Aryl C-H bonds with NH Azaheterocycles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201910395
– volume: 30
  start-page: ARTN 2002664
  year: 2020
  ident: WOS:000539576000001
  article-title: Phthalocyanine-Based 2D Conjugated Metal-Organic Framework Nanosheets for High-Performance Micro-Supercapacitors
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202002664
– volume: 13
  start-page: ARTN 7599
  year: 2022
  ident: WOS:000953198700002
  article-title: A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-022-35315-0
SSID ssj0028806
Score 2.545274
Snippet Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern...
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern...
Source Web of Science
SourceID proquest
webofscience
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202401679
SubjectTerms Ammonia
Chemistry
Chemistry, Multidisciplinary
Conductivity
Conjugated Metal–organic Frameworks
Electrical properties
Electronic Conductivity
Gas sensors
Materials science
Metal-organic frameworks
Modulating Conductivity
NH3 Sensing
Physical Sciences
Room temperature
Science & Technology
Topologically Tunable
Topology
Title Topologically Tunable Conjugated Metal–Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH3 Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401679
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001181306900001
https://www.proquest.com/docview/3034638985
https://www.proquest.com/docview/2954777511
Volume 63
WOS 001181306900001
WOSCitedRecordID wos001181306900001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i_XFCl6j3UdeRymWKrSIVvAW9lVBJS22EfTkxV_gP_SXOLNpovUkektIhjxmZ-fbnZlvCDlkYWxgJNkAB0ggAVAHSQj2KIw2TmjGB56JqduLOtfy_Ca8-VbFX_JD1BtuaBl-vkYDV3p8_EUaihXYsL4Dj4SRBJiEMWELUdFlzR_FYXCW5UVCBNiFvmJtbPLjWfEZfDnjgWZBq_c67WWiqvctk03uj4qJPjIvP6gc__NBK2RpCknpSTmGVsmcy9fIQqvqBLdO3vplJwXU58Mz7Re-3oq2hvldgbtwlnYdYPiP1_eystPQdpXyNaYAiml3aH2XsPwWhZBh1resoCq31D8H1vw41zw5eoHBgUdkefWSvY6gV5hjn99ukOv2ab_VCabtG4IReP00SCITWaW0YkLZMAUcwJQRUTRIU80Tq8HgDWs6rUQkDTecaZASgjPhms4mA7FJ5vNh7rYINQZWkVzrKI25jKXUiTSxlQMQNinMSA2yW6kvm9rgOAPnLBGPJXD5oL4Mvw5DIip3w2KcYZQzjmNAnQ1y-F3t2agk-_A5fwk4-ij1gZAGYb-5rTUlWEdigUmDcK_3-uaSKppnqPGs1nh20js7rc-2_yK0QxbxGKNdLNwl85PHwu0BaJrofW8Yn0aOETY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JThtBEC0ROJALayKcsHQkrgPuZbYjsrDMYguBkXIbTS9GStAYYQ9SOHHJF_CHfAlVPZ4JzikKx1lKs1RX1-uuqlcA-zyMDY4kG9AACRQC6iAJ0R6l0cZJzcXIMzH1B1HvWp1-D-tsQqqFqfghmg03sgw_X5OB04b04R_WUCrBxgUeuiQKJXyAJWrr7VdVlw2DlMDhWRUYSRlQH_qat7EtDufl5xDmnA-ah63e73RXQddvXKWb_Dwop_rAPP5F5viuT1qDlRkqZUfVMFqHBVdswHKnbga3Cb-HVTMFUuntLzYsfckV64yLHyVtxFnWdwjjX56eq-JOw7p11teEIS5m_bH1jcKKGxIiklnftYLlhWX-Objsp-nmwbELig_cE9Grlxz0JLuiNPvi5hNcd4-HnV4w6-AQ3KHjT4MkMpHNc51zmdswRSjAcyOjaJSmWiRWo80b3nY6l5EywgiuUUpKwaVrO5uM5GdYLMaF2wJmDC4khdZRGgsVK6UTZWKrRihsUpyUWrBd6y-bmeEkQ_-sCJIlePlbcxl_HUVF8sKNy0lGgc44jhF4tmD_rd6zu4rvw6f9Jejro9THQlrA_-W2zoxjnbgFpi0QXvHNzRVbtMhI41mj8exocHLcHH35H6E9WO4N--fZ-cng7Ct8pPMU_OLhNixO70u3gxhqqne9lbwCSIMVUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkYALb0SgwCL16jb78No-VmmjFEhUQSr1Zu3LlQA5URMjwYkLv4B_yC9hZh2bhhOCox8jP2Zm59udnW8A9niaObQkn5CBJAoBdZKn6I_SWRek5aKKTEzTmZ6cqdfn6fmVKv6WH6JfcCPPiOM1OfjSVwe_SUOpAhvndxiRKJNwHW4oPczJro_e9QRSAq2zrS-SMqE29B1t41AcbMtvAcytELSNWmPYGd8F071wu9vk436ztvvu6x9cjv_zRffgzgaTssPWiO7DtVA_gFujrhXcQ_g-b1spkEI_fWHzJhZcsdGi_tDQMpxn04Ag_ue3H21pp2Pjbs_XiiEqZtOFj23C6gsSIorZ2LOCmdqz-Byc9NNg8zmwU8oOXBLNa5ScTSR7T5vs64tHcDY-no8myaZ_Q7LEsF8kuXbaG2MNl8anBQIBbpzUuioKK3Jv0eMdHwZrpFZOOMEtSkkpuAzD4PNKPoadelGHJ8Ccw2mksFYXmVCZUjZXLvOqQmFX4JA0gN1OfeXGCVclRmdFgCzHy6_6y_jrKCdi6rBoViWlObMsQ9g5gL2rai-XLdtH3PSXY6TXRcyEDID_zW2jDcM6MQusByCi3vubW65oUZLGy17j5eHs5Lg_evovQi_h5unRuHx7MnvzDG7Tacp88XQXdtaXTXiOAGptX0Qf-QUXMRQJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topologically+Tunable+Conjugated+Metal%E2%80%93Organic+Frameworks+for+Modulating+Conductivity+and+Chemiresistive+Properties+for+NH3+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shan%2C+Zhen&rft.au=Xiao%2C+Jian%E2%80%90Ze&rft.au=Wu%2C+Miaomiao&rft.au=Wang%2C+Jinjian&rft.date=2024-04-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202401679&rft.externalDBID=10.1002%252Fanie.202401679&rft.externalDocID=ANIE202401679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon