Topologically Tunable Conjugated Metal–Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH3 Sensing
Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 16; pp. e202401679 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
15.04.2024
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron‐donating fused thiophen rings in the frameworks and extending their π‐conjugated systems through ring‐closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10−3 to 102 S m−1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Highly conductive metal–organic frameworks (cMOFs) are formed by incorporating electron‐donating fused thiophene rings into their frameworks and extending their π‐conjugated systems. The conductivity can be modulated by adjusting the solvent system, thus regulating the dimensions and topologies of the cMOFs. 1D Cu‐MOF‐1 can be easily processed into thin membranes. The 2D kgm‐Cu‐MOF‐3 has an excellent response toward NH3 at room temperature. |
---|---|
AbstractList | Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties. Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron‐donating fused thiophen rings in the frameworks and extending their π‐conjugated systems through ring‐closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10−3 to 102 S m−1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties. Highly conductive metal–organic frameworks (cMOFs) are formed by incorporating electron‐donating fused thiophene rings into their frameworks and extending their π‐conjugated systems. The conductivity can be modulated by adjusting the solvent system, thus regulating the dimensions and topologies of the cMOFs. 1D Cu‐MOF‐1 can be easily processed into thin membranes. The 2D kgm‐Cu‐MOF‐3 has an excellent response toward NH3 at room temperature. Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron‐donating fused thiophen rings in the frameworks and extending their π‐conjugated systems through ring‐closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10−3 to 102 S m−1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties. Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their pi-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10(-3) to 10(2) Sm-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties. |
Author | Shan, Zhen Su, Jian Xiao, Jian‐Ze Wu, Miaomiao Yao, Ming‐Shui Lu, Ming Zhang, Gen Wang, Jinjian Wang, Rui |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0003-0399-5552 surname: Shan fullname: Shan, Zhen organization: Nanjing University of Science and Technology – sequence: 2 givenname: Jian‐Ze orcidid: 0009-0002-2001-0268 surname: Xiao fullname: Xiao, Jian‐Ze organization: Chinese Academy of Sciences – sequence: 3 givenname: Miaomiao orcidid: 0000-0002-6424-2936 surname: Wu fullname: Wu, Miaomiao organization: Nanjing University of Science and Technology – sequence: 4 givenname: Jinjian orcidid: 0000-0002-8571-8120 surname: Wang fullname: Wang, Jinjian organization: Nanjing University of Science and Technology – sequence: 5 givenname: Jian orcidid: 0000-0002-1200-4709 surname: Su fullname: Su, Jian organization: Nanjing University of Science and Technology – sequence: 6 givenname: Ming‐Shui orcidid: 0000-0003-1604-2611 surname: Yao fullname: Yao, Ming‐Shui email: msyao@ipe.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Ming surname: Lu fullname: Lu, Ming organization: Nanjing University of Science and Technology – sequence: 8 givenname: Rui orcidid: 0000-0002-4719-9921 surname: Wang fullname: Wang, Rui email: wangrui@lzu.edu.cn organization: Institute of Materia Medica – sequence: 9 givenname: Gen orcidid: 0000-0001-5948-8635 surname: Zhang fullname: Zhang, Gen email: zhanggen@njust.edu.cn organization: Lanzhou University |
BookMark | eNqNkstu1DAUhi1URC-wZW2JDRJK8bETx1lWUUsr9YLEsI4c58zgwWMHO2k1OzY8AW_Ik-DRVLNghTe-6PvOsY7-U3Lkg0dC3gI7B8b4R-0tnnPGSwaybl6QE6g4FKKuxVE-l0IUtargmJymtM68Uky-IsdCCdWAZCfk1yKMwYWVNdq5LV3MXvcOaRv8el7pCQd6h5N2f37-foir3MzQq6g3-BTi90SXIdK7MMxOT9avdtIwm8k-2mlLtR9o-w03NmKyKT8i_RzDiHGyuDfvrwX9gj5l9TV5udQu4Zvn_Yx8vbpctNfF7cOnm_bithi5lE2hpJGD1r0GoYeqkVCCNkLKZdP0XA19z5gBhr0WsjTccOizJQQHgQwHtRRn5P2-7hjDjxnT1G1sMuic9hjm1PGmKuu6rgAy-u4fdB3m6PPvOsFEKfMAVZWpD3vqCfuwTMaiN9iN0W503HaMASgQTDYsr11N9f90a6c81uDbMPspq82zah1uDw6wbheDbheD7hCD7uL-5vJwE38BysKpbw |
Cites_doi | 10.1021/jacs.9b08601 10.1021/acscentsci.2c00509 10.1021/ic802117q 10.1021/jacs.2c10717 10.1038/s41467-019-12857-4 10.1002/aenm.202204177 10.1038/s41560-017-0044-5 10.1002/anie.201707568 10.1021/jacs.0c02225 10.1021/acscentsci.9b01006 10.1002/anie.201909096 10.1002/anie.202303903 10.1002/anie.202302645 10.1021/jacs.2c03793 10.1021/jacs.8b11257 10.1016/j.trechm.2023.03.002 10.1039/d0nr06396g 10.1021/nl034220x 10.1016/j.ccr.2021.214119 10.1007/s12274-020-2823-8 10.1021/jacs.9b09956 10.1039/d3cs00302g 10.1038/s41467-018-05141-4 10.1021/jacs.3c02378 10.1016/j.ccr.2022.214627 10.1038/s41467-023-38918-3 10.1039/d0cs01160f 10.1021/jacs.2c00614 10.1021/acsami.7b03487 10.1002/anie.201911543 10.1021/jacs.1c06986 10.1021/ja5116937 10.1021/ja300420t 10.1002/advs.202104374 10.1002/anie.202102670 10.1021/jacs.2c13835 10.1021/acs.analchem.8b04347 10.1002/anie.202217958 10.1039/c1cs15092h 10.1021/jacs.6b09889 10.1021/acsnano.9b01137 10.1002/anie.202300186 10.1002/anie.202305978 10.1002/adma.202200999 10.1021/ja507619d 10.1039/d1ta01970h 10.1002/advs.202301914 10.1021/jacs.6b08511 10.1039/c9ta02169h 10.1002/anie.201910395 10.1002/adfm.202002664 10.1038/s41467-022-35315-0 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 17B 1KM BLEPL DTL EGQ 7TM K9. 7X8 |
DOI | 10.1002/anie.202401679 |
DatabaseName | Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Web of Science |
Database_xml | – sequence: 1 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 001181306900001 ANIE202401679 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: the Natural Science Foundation of Jiangsu Province funderid: BK20220928, BK20220079 – fundername: the National Natural Science Foundation of China funderid: 22171136 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: BK20220928; BK20220079 – fundername: Medical Innovation and Development Project of Lanzhou University grantid: 2019-I2M-5-074; 2021-I2M-1-026; 2021-I2M-3-001; 2022-I2M-2-002 – fundername: CAMS Innovation Fund for Medical Sciences (CIFMS) grantid: 22171136 – fundername: the National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: lzuyxcx-2022-156 – fundername: Natural Science Foundation of Jiangsu Province |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 17B 1KM BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
ID | FETCH-LOGICAL-p2669-86c6daaba13ad596141ac366f99b28dbb00c10eba364c2c21b66933213e0ed8f3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 21 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001181306900001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:02:52 EDT 2025 Thu Aug 07 07:15:18 EDT 2025 Fri Aug 29 15:47:31 EDT 2025 Wed Jul 09 18:35:35 EDT 2025 Wed Jun 11 08:25:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Electronic Conductivity Conjugated Metal-organic Frameworks NH3 Sensing CHEMISTRY Modulating Conductivity MOFS Topologically Tunable |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-p2669-86c6daaba13ad596141ac366f99b28dbb00c10eba364c2c21b66933213e0ed8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4719-9921 0009-0002-2001-0268 0000-0002-1200-4709 0000-0001-5948-8635 0000-0003-0399-5552 0000-0003-1604-2611 0000-0002-6424-2936 0000-0002-8571-8120 |
PMID | 38389160 |
PQID | 3034638985 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | webofscience_primary_001181306900001 proquest_miscellaneous_2954777511 webofscience_primary_001181306900001CitationCount wiley_primary_10_1002_anie_202401679_ANIE202401679 proquest_journals_3034638985 |
PublicationCentury | 2000 |
PublicationDate | April 15, 2024 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: April 15, 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationYear | 2024 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2023; 10 2019; 91 2023; 52 2023; 35 2023; 13 2023; 14 2023; 33 2019; 5 2023; 5 2020; 142 2019; 10 2019; 13 2021; 446 2023; 145 2019; 58 2020; 59 2021; 143 2021; 50 2019; 141 2014; 136 2017; 9 2009; 48 2017; 139 2021; 14 2022; 144 2021; 13 2023; 62 2018; 9 2018; 3 2012; 134 2015; 137 2020; 30 2022; 8 2022; 9 2022; 34 2022; 13 2003; 3 2021; 60 2022; 468 2012; 41 2018; 57 Yu, JF (WOS:000495334100001) 2019; 58 He, YQ (WOS:000963411600001) 2023; 13 Chen, TY (WOS:000799109400046) 2022; 144 Lv, JN (WOS:000928429100001) 2023; 62 Wu, AQ (WOS:000531780700004) 2021; 14 Ahn, DY (WOS:000399965700005) 2017; 9 Nam, KW (WOS:000493275600022) 2019; 10 Li, C (WOS:000610368100004) 2021; 13 Yao, MS (WOS:001004541700001) 2023; 62 Meng, Z (WOS:000458348300035) 2019; 141 Sporrer, L (WOS:000985073400001) 2023; 62 Wang, ST (WOS:000703999100007) 2021; 143 Hao, Q (WOS:000503917800042) 2019; 141 Qi, ML (WOS:000897726000001) 2022 Li, J (WOS:000184107300012) 2003; 3 Song, XY (WOS:000499289000001) 2020; 59 Liu, YM (WOS:001032309800001) 2023; 62 Yao, MS (WOS:001053141300001) 2023; 5 Givaja, G (WOS:000297654700010) 2012; 41 Daniel, M (WOS:000807994900004) 2022; 468 Zhou, Y (WOS:000460709200021) 2019; 91 Li, JW (WOS:000643895900001) 2021; 9 Su, X (WOS:000973979300001) 2023; 62 Li, DH (WOS:000535173500009) 2020; 142 Chang, Z. (001181306900001.47) 2023; 33 Lee, J (WOS:001058355400001) 2023; 52 Clough, AJ (WOS:000348483500030) 2015; 137 Li, WH (WOS:000472183200029) 2019; 7 Niu, L (WOS:000825264400001) 2022; 34 Volpi, M (WOS:001024532100001) 2023; 10 Jiang, Y (WOS:000492800500043) 2019; 141 Yao, MS (WOS:000497858600001) 2020; 59 Kambe, T (WOS:000343276900008) 2014; 136 Yuan, HY (WOS:000733311200001) 2022; 9 Feng, DW (WOS:000419976100011) 2018; 3 Wang, MC (WOS:000539576000001) 2020; 30 Xing, GL (WOS:000974381900001) 2023; 145 Li, J.-M. (001181306900001.32) 2023; 33 Huang, X (WOS:000418798600010) 2018; 57 Mariano, RG (WOS:000826305200001) 2022; 8 Mähringer, A (WOS:000473248300055) 2019; 13 Shang, SC (WOS:000953198700002) 2022; 13 Lim, H (WOS:001058998300034) 2023; 14 Day, RW (WOS:000504673000009) 2019; 5 Wang, MC (WOS:000624298500016) 2021; 50 Fan, K (WOS:001008310000001) 2023; 145 Lahiri, N (WOS:000392036900003) 2017; 139 Dong, RH (WOS:000437677800014) 2018; 9 Wu, GD (WOS:000393355600003) 2017; 139 Zhu, BJ (WOS:000686400300018) 2021; 446 Zhang, Q. (001181306900001.20) 2023; 35 Ammu, S (WOS:000301990600026) 2012; 134 Mähringer, A (WOS:000668596500001) 2021; 60 Takaishi, S (WOS:000270091000003) 2009; 48 Pham, HTB (WOS:000812429100001) 2022; 144 |
References_xml | – volume: 48 start-page: 9048 year: 2009 end-page: 9050 publication-title: Inorg. Chem. – volume: 50 start-page: 2764 year: 2021 end-page: 2793 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 19831 year: 2019 end-page: 19838 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 6379 year: 2023 end-page: 6416 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 4553 year: 2012 end-page: 4556 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 588 year: 2023 end-page: 604 publication-title: Trends Chem. – volume: 41 start-page: 115 year: 2012 end-page: 147 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 1118 year: 2020 end-page: 1123 publication-title: Angew. Chem. Int. Ed. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 3 start-page: 30 year: 2018 end-page: 36 publication-title: Nat. Energy – volume: 141 start-page: 16884 year: 2019 end-page: 16893 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 929 year: 2003 end-page: 933 publication-title: Nano Lett. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 1360 year: 2017 end-page: 1363 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 19 year: 2017 end-page: 22 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 975 year: 2022 end-page: 982 publication-title: ACS Cent. Sci. – volume: 9 start-page: 2637 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 446 year: 2021 publication-title: Coord. Chem. Rev. – volume: 137 start-page: 118 year: 2015 end-page: 121 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 12930 year: 2017 end-page: 12935 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 7599 year: 2022 publication-title: Nat. Commun. – volume: 145 start-page: 2739 year: 2023 end-page: 2744 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 485 year: 2021 end-page: 509 publication-title: Nanoscale – volume: 143 start-page: 15562 year: 2021 end-page: 15566 publication-title: J. Am. Chem. Soc. – volume: 468 year: 2022 publication-title: Coord. Chem. Rev. – volume: 58 start-page: 18141 year: 2019 end-page: 18145 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 3114 year: 2023 publication-title: Nat. Commun. – volume: 13 start-page: 6711 year: 2019 end-page: 6719 publication-title: ACS Nano – volume: 145 start-page: 12682 year: 2023 end-page: 12690 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 57 start-page: 146 year: 2018 end-page: 150 publication-title: Angew. Chem. Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 14 start-page: 438 year: 2021 end-page: 443 publication-title: Nano Res. – volume: 10 start-page: 4948 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 1959 year: 2019 end-page: 1964 publication-title: ACS Cent. Sci. – volume: 136 start-page: 14357 year: 2014 end-page: 14360 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 11248 year: 2021 end-page: 11254 publication-title: J. Mater. Chem. A – volume: 60 start-page: 18065 year: 2021 end-page: 18072 publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 8104 year: 2020 end-page: 8108 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 5583 year: 2022 end-page: 5593 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 10615 year: 2022 end-page: 10621 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 8979 year: 2023 end-page: 8987 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 10431 year: 2019 end-page: 10438 publication-title: J. Mater. Chem. A – volume: 141 start-page: 2046 year: 2019 end-page: 2053 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 3311 year: 2019 end-page: 3318 publication-title: Anal. Chem. – volume: 59 start-page: 172 year: 2020 end-page: 176 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 16884 year: 2019 ident: WOS:000492800500043 article-title: Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b08601 – volume: 8 start-page: 975 year: 2022 ident: WOS:000826305200001 article-title: Thousand-fold increase in O2 electroreduction rates with conductive MOFs publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.2c00509 – volume: 48 start-page: 9048 year: 2009 ident: WOS:000270091000003 article-title: Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic802117q – year: 2022 ident: WOS:000897726000001 article-title: Direct Construction of 2D Conductive Metal-Organic Frameworks from a Nonplanar Ligand: In Situ Scholl Reaction and Topological Modulation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c10717 – volume: 10 start-page: ARTN 4948 year: 2019 ident: WOS:000493275600022 article-title: Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-12857-4 – volume: 13 year: 2023 ident: WOS:000963411600001 article-title: Creating Dual Active Sites in Conductive Metal-Organic Frameworks for Efficient Water Splitting publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202204177 – volume: 3 start-page: 30 year: 2018 ident: WOS:000419976100011 article-title: Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance publication-title: NATURE ENERGY doi: 10.1038/s41560-017-0044-5 – volume: 57 start-page: 146 year: 2018 ident: WOS:000418798600010 article-title: Superconductivity in a Copper(II)-Based Coordination Polymer with Perfect Kagome Structure publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201707568 – volume: 142 start-page: 8104 year: 2020 ident: WOS:000535173500009 article-title: Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c02225 – volume: 5 start-page: 1959 year: 2019 ident: WOS:000504673000009 article-title: Single Crystals of Electrically Conductive Two-Dimensional Metal-Organic Frameworks: Structural and Electrical Transport Properties publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.9b01006 – volume: 59 start-page: 172 year: 2020 ident: WOS:000497858600001 article-title: A Dual-Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201909096 – volume: 62 year: 2023 ident: WOS:001004541700001 article-title: Integrated Soft Porosity and Electrical Properties of Conductive-on-Insulating Metal-Organic Framework Nanocrystals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202303903 – volume: 62 start-page: ARTN e202302645 year: 2023 ident: WOS:000973979300001 article-title: Facile Synthesis of Metallosalphen-Based 2D Conductive Metal-Organic Frameworks for NO2 Sensing: Metal Coordination Induced Planarization publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202302645 – volume: 144 start-page: 10615 year: 2022 ident: WOS:000812429100001 article-title: Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macrocyclic Linker publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c03793 – volume: 141 start-page: 2046 year: 2019 ident: WOS:000458348300035 article-title: Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b11257 – volume: 5 start-page: 588 year: 2023 ident: WOS:001053141300001 article-title: Interface chemistry of conductive crystalline porous thin films publication-title: TRENDS IN CHEMISTRY doi: 10.1016/j.trechm.2023.03.002 – volume: 13 start-page: 485 year: 2021 ident: WOS:000610368100004 article-title: Recent development and applications of electrical conductive MOFs publication-title: NANOSCALE doi: 10.1039/d0nr06396g – volume: 3 start-page: 929 year: 2003 ident: WOS:000184107300012 article-title: Carbon nanotube sensors for gas and organic vapor detection publication-title: NANO LETTERS doi: 10.1021/nl034220x – volume: 446 start-page: ARTN 214119 year: 2021 ident: WOS:000686400300018 article-title: Conductive metal-organic frameworks for electrochemical energy conversion and storage publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2021.214119 – volume: 14 start-page: 438 year: 2021 ident: WOS:000531780700004 article-title: Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity publication-title: NANO RESEARCH doi: 10.1007/s12274-020-2823-8 – volume: 33 year: 2023 ident: 001181306900001.32 publication-title: Adv. Funct. Mater – volume: 141 start-page: 19831 year: 2019 ident: WOS:000503917800042 article-title: Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b09956 – volume: 52 start-page: 6379 year: 2023 ident: WOS:001058355400001 article-title: Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d3cs00302g – volume: 9 start-page: ARTN 2637 year: 2018 ident: WOS:000437677800014 article-title: A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-05141-4 – volume: 145 start-page: 12682 year: 2023 ident: WOS:001008310000001 article-title: Single Crystals of a Highly Conductive Three-Dimensional Conjugated Coordination Polymer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.3c02378 – volume: 468 start-page: ARTN 214627 year: 2022 ident: WOS:000807994900004 article-title: MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2022.214627 – volume: 14 start-page: ARTN 3114 year: 2023 ident: WOS:001058998300034 article-title: Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-023-38918-3 – volume: 50 start-page: 2764 year: 2021 ident: WOS:000624298500016 article-title: Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): chemistry and function for MOFtronics publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs01160f – volume: 144 start-page: 5583 year: 2022 ident: WOS:000799109400046 article-title: Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c00614 – volume: 9 start-page: 12930 year: 2017 ident: WOS:000399965700005 article-title: Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1% publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.7b03487 – volume: 59 start-page: 1118 year: 2020 ident: WOS:000499289000001 article-title: 2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911543 – volume: 143 start-page: 15562 year: 2021 ident: WOS:000703999100007 article-title: A Three-Dimensional sp2 Carbon-Conjugated Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c06986 – volume: 137 start-page: 118 year: 2015 ident: WOS:000348483500030 article-title: Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5116937 – volume: 134 start-page: 4553 year: 2012 ident: WOS:000301990600026 article-title: Flexible, All-Organic Chemiresistor for Detecting Chemically Aggressive Vapors publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja300420t – volume: 9 start-page: ARTN 2104374 year: 2022 ident: WOS:000733311200001 article-title: Metal-Organic Framework Based Gas Sensors publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202104374 – volume: 60 start-page: 18065 year: 2021 ident: WOS:000668596500001 article-title: An Electrically Conducting Three-Dimensional Iron-Catecholate Porous Framework publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102670 – volume: 145 start-page: 8979 year: 2023 ident: WOS:000974381900001 article-title: Conjugated Nonplanar Copper-Catecholate Conductive Metal-Organic Frameworks via Contorted Hexabenzocoronene Ligands for Electrical Conduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c13835 – volume: 33 year: 2023 ident: 001181306900001.47 publication-title: Adv. Funct. Mater – volume: 91 start-page: 3311 year: 2019 ident: WOS:000460709200021 article-title: UV Illumination-Enhanced Molecular Ammonia Detection Based On a Ternary-Reduced Graphene Oxide-Titanium Dioxide-Au Composite Film at Room Temperature publication-title: ANALYTICAL CHEMISTRY doi: 10.1021/acs.analchem.8b04347 – volume: 62 year: 2023 ident: WOS:000928429100001 article-title: A Triptycene-Based 2D MOF with Vertically Extended Structure for Improving the Electrocatalytic Performance of CO2 to Methane publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202217958 – volume: 41 start-page: 115 year: 2012 ident: WOS:000297654700010 article-title: Electrical conductive coordination polymers publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15092h – volume: 139 start-page: 19 year: 2017 ident: WOS:000392036900003 article-title: Hexaaminobenzene as a building block for a Family of 2D Coordination Polymers publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b09889 – volume: 13 start-page: 6711 year: 2019 ident: WOS:000473248300055 article-title: Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal-Organic Frameworks publication-title: ACS NANO doi: 10.1021/acsnano.9b01137 – volume: 35 year: 2023 ident: 001181306900001.20 publication-title: Adv. Mater – volume: 62 year: 2023 ident: WOS:000985073400001 article-title: Near IR Bandgap Semiconducting 2D Conjugated Metal-Organic Framework with Rhombic Lattice and High Mobility publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202300186 – volume: 62 year: 2023 ident: WOS:001032309800001 article-title: A Thiophene Backbone Enables Two-Dimensional Poly(arylene vinylene)s with High Charge Carrier Mobility publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202305978 – volume: 34 start-page: ARTN 2200999 year: 2022 ident: WOS:000825264400001 article-title: Conductive Metal-Organic Frameworks for Supercapacitors publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202200999 – volume: 136 start-page: 14357 year: 2014 ident: WOS:000343276900008 article-title: Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja507619d – volume: 9 start-page: 11248 year: 2021 ident: WOS:000643895900001 article-title: Structural and electronic modulation of conductive MOFs for efficient oxygen evolution reaction electrocatalysis publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d1ta01970h – volume: 10 start-page: ARTN 2301914 year: 2023 ident: WOS:001024532100001 article-title: Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202301914 – volume: 139 start-page: 1360 year: 2017 ident: WOS:000393355600003 article-title: Porous Field-Effect Transistors Based on a Semiconductive Metal-Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b08511 – volume: 7 start-page: 10431 year: 2019 ident: WOS:000472183200029 article-title: Conductive metal-organic framework nanowire arrays for electrocatalytic oxygen evolution Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ta02169h publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c9ta02169h – volume: 58 start-page: 18141 year: 2019 ident: WOS:000495334100001 article-title: Cu-Mediated Amination of (Hetero)Aryl C-H bonds with NH Azaheterocycles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201910395 – volume: 30 start-page: ARTN 2002664 year: 2020 ident: WOS:000539576000001 article-title: Phthalocyanine-Based 2D Conjugated Metal-Organic Framework Nanosheets for High-Performance Micro-Supercapacitors publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202002664 – volume: 13 start-page: ARTN 7599 year: 2022 ident: WOS:000953198700002 article-title: A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-022-35315-0 |
SSID | ssj0028806 |
Score | 2.545274 |
Snippet | Electrically conductive metal–organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern... Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern... |
Source | Web of Science |
SourceID | proquest webofscience wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202401679 |
SubjectTerms | Ammonia Chemistry Chemistry, Multidisciplinary Conductivity Conjugated Metal–organic Frameworks Electrical properties Electronic Conductivity Gas sensors Materials science Metal-organic frameworks Modulating Conductivity NH3 Sensing Physical Sciences Room temperature Science & Technology Topologically Tunable Topology |
Title | Topologically Tunable Conjugated Metal–Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH3 Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401679 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001181306900001 https://www.proquest.com/docview/3034638985 https://www.proquest.com/docview/2954777511 |
Volume | 63 |
WOS | 001181306900001 |
WOSCitedRecordID | wos001181306900001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i_XFCl6j3UdeRymWKrSIVvAW9lVBJS22EfTkxV_gP_SXOLNpovUkektIhjxmZ-fbnZlvCDlkYWxgJNkAB0ggAVAHSQj2KIw2TmjGB56JqduLOtfy_Ca8-VbFX_JD1BtuaBl-vkYDV3p8_EUaihXYsL4Dj4SRBJiEMWELUdFlzR_FYXCW5UVCBNiFvmJtbPLjWfEZfDnjgWZBq_c67WWiqvctk03uj4qJPjIvP6gc__NBK2RpCknpSTmGVsmcy9fIQqvqBLdO3vplJwXU58Mz7Re-3oq2hvldgbtwlnYdYPiP1_eystPQdpXyNaYAiml3aH2XsPwWhZBh1resoCq31D8H1vw41zw5eoHBgUdkefWSvY6gV5hjn99ukOv2ab_VCabtG4IReP00SCITWaW0YkLZMAUcwJQRUTRIU80Tq8HgDWs6rUQkDTecaZASgjPhms4mA7FJ5vNh7rYINQZWkVzrKI25jKXUiTSxlQMQNinMSA2yW6kvm9rgOAPnLBGPJXD5oL4Mvw5DIip3w2KcYZQzjmNAnQ1y-F3t2agk-_A5fwk4-ij1gZAGYb-5rTUlWEdigUmDcK_3-uaSKppnqPGs1nh20js7rc-2_yK0QxbxGKNdLNwl85PHwu0BaJrofW8Yn0aOETY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JThtBEC0ROJALayKcsHQkrgPuZbYjsrDMYguBkXIbTS9GStAYYQ9SOHHJF_CHfAlVPZ4JzikKx1lKs1RX1-uuqlcA-zyMDY4kG9AACRQC6iAJ0R6l0cZJzcXIMzH1B1HvWp1-D-tsQqqFqfghmg03sgw_X5OB04b04R_WUCrBxgUeuiQKJXyAJWrr7VdVlw2DlMDhWRUYSRlQH_qat7EtDufl5xDmnA-ah63e73RXQddvXKWb_Dwop_rAPP5F5viuT1qDlRkqZUfVMFqHBVdswHKnbga3Cb-HVTMFUuntLzYsfckV64yLHyVtxFnWdwjjX56eq-JOw7p11teEIS5m_bH1jcKKGxIiklnftYLlhWX-Objsp-nmwbELig_cE9Grlxz0JLuiNPvi5hNcd4-HnV4w6-AQ3KHjT4MkMpHNc51zmdswRSjAcyOjaJSmWiRWo80b3nY6l5EywgiuUUpKwaVrO5uM5GdYLMaF2wJmDC4khdZRGgsVK6UTZWKrRihsUpyUWrBd6y-bmeEkQ_-sCJIlePlbcxl_HUVF8sKNy0lGgc44jhF4tmD_rd6zu4rvw6f9Jejro9THQlrA_-W2zoxjnbgFpi0QXvHNzRVbtMhI41mj8exocHLcHH35H6E9WO4N--fZ-cng7Ct8pPMU_OLhNixO70u3gxhqqne9lbwCSIMVUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkYALb0SgwCL16jb78No-VmmjFEhUQSr1Zu3LlQA5URMjwYkLv4B_yC9hZh2bhhOCox8jP2Zm59udnW8A9niaObQkn5CBJAoBdZKn6I_SWRek5aKKTEzTmZ6cqdfn6fmVKv6WH6JfcCPPiOM1OfjSVwe_SUOpAhvndxiRKJNwHW4oPczJro_e9QRSAq2zrS-SMqE29B1t41AcbMtvAcytELSNWmPYGd8F071wu9vk436ztvvu6x9cjv_zRffgzgaTssPWiO7DtVA_gFujrhXcQ_g-b1spkEI_fWHzJhZcsdGi_tDQMpxn04Ag_ue3H21pp2Pjbs_XiiEqZtOFj23C6gsSIorZ2LOCmdqz-Byc9NNg8zmwU8oOXBLNa5ScTSR7T5vs64tHcDY-no8myaZ_Q7LEsF8kuXbaG2MNl8anBQIBbpzUuioKK3Jv0eMdHwZrpFZOOMEtSkkpuAzD4PNKPoadelGHJ8Ccw2mksFYXmVCZUjZXLvOqQmFX4JA0gN1OfeXGCVclRmdFgCzHy6_6y_jrKCdi6rBoViWlObMsQ9g5gL2rai-XLdtH3PSXY6TXRcyEDID_zW2jDcM6MQusByCi3vubW65oUZLGy17j5eHs5Lg_evovQi_h5unRuHx7MnvzDG7Tacp88XQXdtaXTXiOAGptX0Qf-QUXMRQJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topologically+Tunable+Conjugated+Metal%E2%80%93Organic+Frameworks+for+Modulating+Conductivity+and+Chemiresistive+Properties+for+NH3+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shan%2C+Zhen&rft.au=Xiao%2C+Jian%E2%80%90Ze&rft.au=Wu%2C+Miaomiao&rft.au=Wang%2C+Jinjian&rft.date=2024-04-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202401679&rft.externalDBID=10.1002%252Fanie.202401679&rft.externalDocID=ANIE202401679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |