A Planar‐Structured Dinuclear Cobalt(II) Complex with Indirect Synergy for Photocatalytic CO2‐to‐CO Conversion

Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenv...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 45; pp. e202411639 - n/a
Main Authors Gong, Yun‐Nan, Zhao, Si‐Qi, Wang, Hong‐Juan, Ge, Zhao‐Ming, Liao, Chen, Tao, Ke‐Ying, Zhong, Di‐Chang, Sakai, Ken, Lu, Tong‐Bu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 04.11.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2‐to‐CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s−1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two‐electron transfer process by Co2I,I intermediate to afford Co2II,II(CO22−) intermediate and fast mass transfer closely related with the planar structure. A planar‐structured dinuclear cobalt(II) complex exhibits an indirect synergistic catalysis effect between two Co(II) sites for photocatalytic CO2‐to‐CO conversion, with TON and TOF values of 14457 and 0.40 s−1 respectively, which is 8.6‐fold improvement than that of the corresponding mononuclear counterpart.
AbstractList Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2‐to‐CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s−1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two‐electron transfer process by Co2I,I intermediate to afford Co2II,II(CO22−) intermediate and fast mass transfer closely related with the planar structure. A planar‐structured dinuclear cobalt(II) complex exhibits an indirect synergistic catalysis effect between two Co(II) sites for photocatalytic CO2‐to‐CO conversion, with TON and TOF values of 14457 and 0.40 s−1 respectively, which is 8.6‐fold improvement than that of the corresponding mononuclear counterpart.
Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2-to-CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s-1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two-electron transfer process by Co2 I,I intermediate to afford Co2 II,II(CO2 2-) intermediate and fast mass transfer closely related with the planar structure.Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2-to-CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s-1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two-electron transfer process by Co2 I,I intermediate to afford Co2 II,II(CO2 2-) intermediate and fast mass transfer closely related with the planar structure.
Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2‐to‐CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s−1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two‐electron transfer process by Co2I,I intermediate to afford Co2II,II(CO22−) intermediate and fast mass transfer closely related with the planar structure.
Author Liao, Chen
Tao, Ke‐Ying
Gong, Yun‐Nan
Wang, Hong‐Juan
Zhao, Si‐Qi
Ge, Zhao‐Ming
Zhong, Di‐Chang
Sakai, Ken
Lu, Tong‐Bu
Author_xml – sequence: 1
  givenname: Yun‐Nan
  surname: Gong
  fullname: Gong, Yun‐Nan
  organization: Tianjin University of Technology
– sequence: 2
  givenname: Si‐Qi
  surname: Zhao
  fullname: Zhao, Si‐Qi
  organization: Tianjin University of Technology
– sequence: 3
  givenname: Hong‐Juan
  surname: Wang
  fullname: Wang, Hong‐Juan
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Zhao‐Ming
  surname: Ge
  fullname: Ge, Zhao‐Ming
  organization: Tianjin University of Technology
– sequence: 5
  givenname: Chen
  surname: Liao
  fullname: Liao, Chen
  organization: Kyushu University
– sequence: 6
  givenname: Ke‐Ying
  surname: Tao
  fullname: Tao, Ke‐Ying
  organization: Tianjin University of Technology
– sequence: 7
  givenname: Di‐Chang
  orcidid: 0000-0002-5504-249X
  surname: Zhong
  fullname: Zhong, Di‐Chang
  email: dczhong@email.tjut.edu.cn
  organization: Tianjin University of Technology
– sequence: 8
  givenname: Ken
  surname: Sakai
  fullname: Sakai, Ken
  email: ksakai@chem.kyushu-univ.jp
  organization: Kyushu University
– sequence: 9
  givenname: Tong‐Bu
  surname: Lu
  fullname: Lu, Tong‐Bu
  email: lutongbu@tjut.edu.cn
  organization: Tianjin University of Technology
BookMark eNpdkclOwzAQhi0EEuuVsyUucEjxksbOsQpbJEQrFc6Wm0yoUWoXxwFy4xF4Rp4EV0UcuMymb0bz6z9Eu9ZZQOiUkhElhF1qa2DECEspzXi-gw7omNGEC8F3Y51yngg5pvvosOteIi8lyQ5QmOBZq632359f8-D7KvQeanxlbF-1oD0u3EK34bwsL2K5Wrfwgd9NWOLS1sZDFfB8sOCfB9w4j2dLF1ylg26HYCpcTFk8G1wMxTSu2zfwnXH2GO01uu3g5Dcfoaeb68fiLrmf3pbF5D5ZsyzLE5nlC0gbximkudAgmCBAqhqipgXwlOSyjjqEYFrWbEGbOmNxzmXGecMqzY_Q-fbu2rvXHrqgVqaroI2CwfWd4kQIKsaEsoie_UNfXO9t_E5xygiXTOYiUvmWejctDGrtzUr7QVGiNg6ojQPqzwE1eSiv_zr-A5JXgI4
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202411639
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202411639
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22271218
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
7X8
ID FETCH-LOGICAL-p2669-869be4f231e497ae7270e0cde377be34098d028772a8d2b1fd62be338633f2ca3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:53:05 EDT 2025
Fri Jul 25 11:58:31 EDT 2025
Wed Aug 20 07:24:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2669-869be4f231e497ae7270e0cde377be34098d028772a8d2b1fd62be338633f2ca3
Notes These authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5504-249X
PQID 3120382897
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_3077175012
proquest_journals_3120382897
wiley_primary_10_1002_anie_202411639_ANIE202411639
PublicationCentury 2000
PublicationDate November 4, 2024
PublicationDateYYYYMMDD 2024-11-04
PublicationDate_xml – month: 11
  year: 2024
  text: November 4, 2024
  day: 04
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2012; 484
2019; 4
2020; 142
2019; 2
2010; 39
2019; 10
2023; 145
2017; 46
2020 2020; 59 132
2020; 59
2021; 285
2011; 13
2020; 11
2024; 146
2020; 586
2021; 143
2022; 119
2021; 50
2019; 141
2018; 20
2018; 27
2014; 67
2014; 136
1981; 20
2014; 43
2022; 122
2022; 144
2022 2022; 61 134
2018; 2
2020; 3
2021; 11
2018; 1
2021
1969; 41
2017; 32
2019; 48
2017; 56
2020; 49
2020; 412
2020; 26
2019; 378
2013; 135
2018; 30
2016; 138
2022; 55
2019; 573
2018; 57
References_xml – volume: 43
  start-page: 7995
  year: 2014
  end-page: 8048
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 11263
  year: 2019
  end-page: 11273
  publication-title: ACS Catal.
– volume: 143
  start-page: 3764
  year: 2021
  end-page: 3778
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 323
  year: 2018
  end-page: 331
  publication-title: ChemPhotoChem
– volume: 285
  year: 2021
  publication-title: Appl. Catal. B
– volume: 32
  start-page: 359
  year: 2017
  end-page: 366
  publication-title: Nano Energy
– volume: 56
  start-page: 738
  year: 2017
  end-page: 743
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 980
  year: 1969
  publication-title: Anal. Chem.
– volume: 412
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 142
  start-page: 16723
  year: 2020
  end-page: 16731
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2216
  year: 2019
  end-page: 2264
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 502
  year: 2018
  end-page: 506
  publication-title: J. Energy Chem.
– volume: 13
  start-page: 2206
  year: 2011
  end-page: 2213
  publication-title: Phys. Chem. Chem. Phys.
– volume: 59 132
  start-page: 22451 22637
  year: 2020 2020
  end-page: 22455 22641
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 586
  start-page: 549
  year: 2020
  end-page: 554
  publication-title: Nature
– volume: 119
  year: 2022
  publication-title: PNAS
– volume: 2
  start-page: 801
  year: 2019
  end-page: 808
  publication-title: Nat. Catal.
– volume: 144
  start-page: 8676
  year: 2022
  end-page: 8682
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 6579
  year: 2020
  end-page: 6591
  publication-title: Chem. Soc. Rev.
– volume: 145
  start-page: 18141
  year: 2023
  end-page: 18147
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 3751
  year: 2010
  end-page: 3758
  publication-title: Dalton Trans.
– volume: 122
  start-page: 16051
  year: 2022
  end-page: 16109
  publication-title: Chem. Rev.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 12213
  year: 2014
  end-page: 12216
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 966
  year: 2022
  end-page: 977
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 19150
  year: 2020
  end-page: 19160
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 16811
  year: 2018
  end-page: 16815
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 4867
  year: 2019
  end-page: 4874
  publication-title: ACS Catal.
– volume: 56
  start-page: 6809
  year: 2017
  end-page: 6819
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 690
  year: 2019
  end-page: 699
  publication-title: Nat. Energy
– year: 2021
  publication-title: Adv. Mater.
– volume: 484
  start-page: 49
  year: 2012
  end-page: 54
  publication-title: Nature
– volume: 1
  start-page: 2452
  year: 2018
  end-page: 2459
  publication-title: ACS Appl. Energ. Mater.
– volume: 3
  start-page: 478
  year: 2020
  end-page: 487
  publication-title: Nat. Catal.
– volume: 20
  start-page: 798
  year: 2018
  end-page: 803
  publication-title: Green Chem.
– volume: 26
  start-page: 12560
  year: 2020
  end-page: 12569
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 5208
  year: 2019
  publication-title: Nat. Commun.
– volume: 573
  start-page: 408
  year: 2019
  end-page: 411
  publication-title: Nature
– volume: 67
  start-page: 1279
  year: 2014
  end-page: 1289
  publication-title: J. Coord. Chem.
– volume: 141
  start-page: 20309
  year: 2019
  end-page: 20317
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 10436
  year: 2021
  end-page: 10449
  publication-title: ACS Catal.
– volume: 20
  start-page: 1285
  year: 1981
  end-page: 1287
  publication-title: Inorg. Chem.
– volume: 146
  start-page: 2275
  year: 2024
  end-page: 2285
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 892
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3499
  year: 2020
  publication-title: Nat. Commun.
– volume: 50
  start-page: 15983
  year: 2021
  end-page: 15995
  publication-title: Dalton Trans.
– volume: 138
  start-page: 9413
  year: 2016
  end-page: 9416
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 8414
  year: 2021
  end-page: 8425
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 16480
  year: 2018
  end-page: 16485
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 46
  start-page: 761
  year: 2017
  end-page: 796
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 197
  year: 2021
  end-page: 199
  publication-title: Nat. Clim. Change
– volume: 11
  start-page: 418
  year: 2020
  publication-title: Nat. Commun.
– volume: 48
  start-page: 205
  year: 2019
  end-page: 259
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 7271
  year: 2020
  end-page: 7283
  publication-title: Chem. Soc. Rev.
– volume: 145
  start-page: 25195
  year: 2023
  end-page: 25202
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 14670
  year: 2013
  end-page: 14678
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 21493
  year: 2020
  end-page: 21501
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 6188
  year: 2020
  end-page: 6195
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 2659
  year: 2020
  end-page: 2663
  publication-title: Angew. Chem. Int. Ed.
– volume: 378
  start-page: 237
  year: 2019
  end-page: 261
  publication-title: Coord. Chem. Rev.
SSID ssj0028806
Score 2.5279298
Snippet Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction,...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202411639
SubjectTerms Carbon dioxide
Carbon monoxide
Catalysis
Catalytic activity
Catalytic converters
Chemical reduction
CO2 reduction
Cobalt
Cobalt compounds
Coordination compounds
dinuclear metal complex
dinuclear metal synergistic catalysis (DMSC)
Efficiency
Electron transfer
Mass transfer
Metal complexes
Microenvironments
molecular photocatalysis
Photocatalysis
Photochemicals
planar structure
Planar structures
Title A Planar‐Structured Dinuclear Cobalt(II) Complex with Indirect Synergy for Photocatalytic CO2‐to‐CO Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202411639
https://www.proquest.com/docview/3120382897
https://www.proquest.com/docview/3077175012
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN4YL3rxbayvrIkHPdDCLixwbFAjJrZGbdIbWdglGg2YSo168if4G_0lzkDB1qNeCK_lNbM738wy3xByCFqgYk_YhuMpx7AF14YEtTAsKxFgvWyRKpzRveyJ84F9MXSGU1n8FT9EE3DDnlGO19jBZfzc-SENxQxs8O_AAgGkwAw-_GELUdF1wx_FQDmr9CLODaxCX7M2mqwz23wGX06j1NLMnC0TWT9g9XfJQ3tcxO3k_Rd343_eYIUsTTAo7VZKs0rmdLZGFoK69Ns6KboUixnJ0dfH501JMDseaUVP7jNkP5YjGiCLSHEUhscUB5RH_UoxoEvDrDKR9OatzCmkAInp1V1e5GWY6A1uSIM-g8sWOSyCPjTPXqqQ3QYZnJ3eBufGpDyD8QRW3Tc84cfaTgEgatt3pQYkZGozUZq7bqw5OI6eAhEAfJeeYrGVKsFgP_cE5ylLJN8k81me6S1CpQ2ozlFp7LEEZCV8y5cATcHAasycNVtktxZPNOljzxG3mMnRYXRb5KA5DF8KpzxkpvMxnGO64K86YIVbhJWyiJ4qFo-o4mtmEUohaqQQdXvhabO1_ZdGO2QR18uERXuXzIOY9B4glyLeL7XzG5Or54w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALtDzEAm1diQMcAomdOMlxlYI2LSwVD4lb5MSOWoEStGRR6ak_ob-RX8KMs0lLj_QSKQ_nNWPPN2PPNwA7qAU6j6TvBJEOHF8K4yhUC8fzConWy5elphndk7EcXfqfr4JuNSHlwrT8EH3AjXqGHa-pg1NA-uAPayilYKODhyYIMUU8B6-prLf1qs56BimO6tkmGAnhUB36jrfR5QfP2z9DmH_jVGtojpYh716xXV9yvT9t8v3i5z_sjf_1DW9gaQZD2bDVm7fwylQrsJB01d9WoRkyqmekJo-_fp9bjtnpxGj26XtFBMhqwhIiEml203SP0ZhyY34wiumytGqtJDt_sGmFDFEx-_qtbmobKXrAB7LklONtmxo3ySk2r-7bqN0aXB4dXiQjZ1ahwblFwx47kYxz45eIEY0fh8ogGHKNW2gjwjA3An3HSKMMEMGrSPPcK7XkeFxEUoiSF0qsw3xVV2YDmPIR2AW6zCNeoLBk7MUK0SnaWEPJs-4Atjv5ZLNudpcJj7uCfMZwAB_70_inaNZDVaae4jVuiC5rgIZ4ANwKI7ttiTyylrKZZySFrJdCNhynh_3e5ksafYCF0cXJcXacjr9swSIdt_mL_jbMo8jMOwQyTf7equoTEobrpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT6RAEK74SNSLuurG8bW9yR70gEJ308BxwjiRXR2Nj8QbaegmazQwGRmjnvwJ_kZ_idUwg4-jXkhoaF5V3fVVNfUVwB_UApX4gluur1yLC6YtiWphOU4q0HpxkSmzonvUEwcX_O-le_kui7_mh2gCbmZkVPO1GeB9le29kYaaDGz079ACIaQIJmGaC9s3et05bQikKGpnnV_EmGXK0I9pG22697H_B4D5HqZWdqa7AHL8hPXvJde7wzLZTR8_kTd-5xUWYX4EQkm71pofMKHzJZgNx7XflqFsE1PNSA5enp7PKobZ4UAr0rnKDf2xHJDQ0IiU21G0Q8yMcqPviYnokiivbSQ5e6iSCgliYnLyvyiLKk70gDck4THFy5YFbsJj7J7f1TG7Fbjo7p-HB9aoPoPVR7MeWL4IEs0zRIiaB57UCIVsbadKM89LNEPP0VcoAsTv0lc0cTIlKLYzXzCW0VSynzCVF7leBSI5wjpXZYlPU5SVCJxAIjZFC6tN6qzdgo2xeOLRILuNmUNtZjxGrwW_m8P4pcyah8x1McRzbA8dVhfNcAtoJYu4X9N4xDVhM42NFOJGCnG7F-03e2tf6fQLZk463fgw6v1bhznTXCUv8g2YQonpTUQxZbJVKeored_qXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Planar-Structured+Dinuclear+Cobalt%28II%29+Complex+with+Indirect+Synergy+for+Photocatalytic+CO2-to-CO+Conversion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gong%2C+Yun-Nan&rft.au=Zhao%2C+Si-Qi&rft.au=Wang%2C+Hong-Juan&rft.au=Ge%2C+Zhao-Ming&rft.date=2024-11-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=45&rft.spage=e202411639&rft_id=info:doi/10.1002%2Fanie.202411639&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon