Controllable Crystallization of Two‐Dimensional Bi Nanocrystals with Morphology‐Boosted CO2 Electroreduction in Wide pH Environments

Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (cr...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 34; pp. e2301639 - n/a
Main Authors Chen, Li‐Wei, Hao, Yu‐Chen, Li, Jiani, Hu, Linyu, Zuo, Xintao, Dai, Chunlong, Yu, Zi‐Long, Huang, Hui‐Zi, Tian, Wenjing, Liu, Di, Chang, Xiaoxue, Li, Pengfei, Shao, Ruiwen, Wang, Bo, Yin, An‐Xiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction‐melting‐crystallization (RMC) protocol to synthesize free‐standing and surfactant‐free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm–2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free‐standing two‐dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications. Ultrathin, free‐standing, and surfactant‐free bismuth nanosheets were synthesized by the controllable reduction‐melting‐crystallization method. Increasing the high‐index facets of bismuth nanosheets can modify their surface electronic structures to strengthen the adsorption of CO2, lower the reaction energy barriers, and promote CO2 reduction reaction selectivity and activity for formate in wide pH environments, realizing high‐energy‐efficiency CO2‐to‐HCOOH conversion in a flow cell system.
AbstractList Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction‐melting‐crystallization (RMC) protocol to synthesize free‐standing and surfactant‐free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm–2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free‐standing two‐dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications. Ultrathin, free‐standing, and surfactant‐free bismuth nanosheets were synthesized by the controllable reduction‐melting‐crystallization method. Increasing the high‐index facets of bismuth nanosheets can modify their surface electronic structures to strengthen the adsorption of CO2, lower the reaction energy barriers, and promote CO2 reduction reaction selectivity and activity for formate in wide pH environments, realizing high‐energy‐efficiency CO2‐to‐HCOOH conversion in a flow cell system.
Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction-melting-crystallization (RMC) protocol to synthesize free-standing and surfactant-free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm-2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free-standing two-dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction-melting-crystallization (RMC) protocol to synthesize free-standing and surfactant-free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm-2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free-standing two-dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.
Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction‐melting‐crystallization (RMC) protocol to synthesize free‐standing and surfactant‐free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm–2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free‐standing two‐dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.
Author Yu, Zi‐Long
Chen, Li‐Wei
Zuo, Xintao
Dai, Chunlong
Chang, Xiaoxue
Li, Jiani
Tian, Wenjing
Wang, Bo
Yin, An‐Xiang
Hao, Yu‐Chen
Hu, Linyu
Liu, Di
Li, Pengfei
Shao, Ruiwen
Huang, Hui‐Zi
Author_xml – sequence: 1
  givenname: Li‐Wei
  surname: Chen
  fullname: Chen, Li‐Wei
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Yu‐Chen
  surname: Hao
  fullname: Hao, Yu‐Chen
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Jiani
  surname: Li
  fullname: Li, Jiani
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Linyu
  surname: Hu
  fullname: Hu, Linyu
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Xintao
  surname: Zuo
  fullname: Zuo, Xintao
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Chunlong
  surname: Dai
  fullname: Dai, Chunlong
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Zi‐Long
  surname: Yu
  fullname: Yu, Zi‐Long
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Hui‐Zi
  surname: Huang
  fullname: Huang, Hui‐Zi
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Wenjing
  surname: Tian
  fullname: Tian, Wenjing
  organization: Beijing Institute of Technology
– sequence: 10
  givenname: Di
  surname: Liu
  fullname: Liu, Di
  organization: Beijing Institute of Technology
– sequence: 11
  givenname: Xiaoxue
  surname: Chang
  fullname: Chang, Xiaoxue
  organization: Beijing Institute of Technology
– sequence: 12
  givenname: Pengfei
  surname: Li
  fullname: Li, Pengfei
  organization: Beijing Institute of Technology
– sequence: 13
  givenname: Ruiwen
  surname: Shao
  fullname: Shao, Ruiwen
  organization: Beijing Institute of Technology
– sequence: 14
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Beijing Institute of Technology
– sequence: 15
  givenname: An‐Xiang
  orcidid: 0000-0002-7711-7018
  surname: Yin
  fullname: Yin, An‐Xiang
  email: yin@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNpdkT1v2zAQhokiAZqPrp0JdOnilEeKkjk2itsEcJIhLjoKlHysGdCkQso13Cljxv7G_JLQceAh033gwXPAvcfkwAePhHwGdgaM8W9p6dwZZ1wwKIX6QI6gBDEqx1wd7HtgH8lxSveMCeBFdUSe6uCHGJzTrUNax00atHP2nx5s8DQYOluH58f_F3aJPuWVdvTc0hvtQ7djE13bYUGvQ-wXwYU_m0yfh5AGnNP6ltOJwy4fiDhfda9O6-lvO0faX9KJ_2tj8Fk9pFNyaLINP73VE_Lrx2RWX46mtz-v6u_TUc_LUo0q1IUosIMKCmBoKqMMcNXqShetkqjKtpVtp5lhLc4LY0CWZoxQSRBYGS5OyNedt4_hYYVpaJY2dZgf4DGsUsPHTEoohJAZ_fIOvQ-rmF-wpWShKiHHkCm1o9bW4abpo13quGmANdtUmm0qzT6V5u56Ot1P4gWaeon6
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202301639
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202301639
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2020YFB1506300
– fundername: National Natural Science Foundation of China
  funderid: 21971012; 21922502; 22075018; 21971017
– fundername: Beijing Municipal Natural Science Foundation
  funderid: JQ20007
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-p2669-7ea434ec171410ef7f9f129ba7a4b95e96bb5bca0f0bed4ff156f8e17513e7f23
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 01:29:52 EDT 2025
Fri Jul 25 12:14:20 EDT 2025
Wed Jan 22 16:17:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2669-7ea434ec171410ef7f9f129ba7a4b95e96bb5bca0f0bed4ff156f8e17513e7f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7711-7018
PQID 2854973581
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2805514335
proquest_journals_2854973581
wiley_primary_10_1002_smll_202301639_SMLL202301639
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 360
2019; 10
2017; 46
2019; 58
2004; 4
2020; 59
2020; 13
2020; 11
2020; 10
2017; 355
2017; 357
2018; 49
2014; 136
2009; 48
2018; 47
2018; 9
2021; 37
2018; 8
2021; 32
2021; 31
2020; 3
2018; 4
1986; 144
2002; 45
2014; 16
2018; 30
2008; 112
2005; 590
2019; 4
2019; 2
2006; 18
2006; 5
2021; 50
2018; 20
2017; 139
2016; 2
2021; 12
2022; 5
2018; 118
2017; 13
2022; 12
2019
2022; 14
2021; 372
2018; 11
2018; 10
2009; 1
2018; 53
1968; 71
2022; 17
2019; 574
1972; 39
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 732
  year: 2019
  publication-title: Nat. Energy
– volume: 17
  start-page: 33
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 9
  start-page: 1320
  year: 2018
  publication-title: Nat Commun.
– volume: 11
  start-page: 1088
  year: 2020
  publication-title: Nat. Commun.
– volume: 372
  start-page: 1074
  year: 2021
  publication-title: Science
– volume: 360
  start-page: 783
  year: 2018
  publication-title: Science
– volume: 71
  start-page: 1828
  year: 1968
  publication-title: Kogyo Kagahu Zasshi
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 357
  start-page: 287
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 498
  year: 2020
  publication-title: Matter
– volume: 12
  start-page: 2357
  year: 2022
  publication-title: ACS Catal.
– volume: 59
  start-page: 1674
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 4082
  year: 2018
  publication-title: Nano Res.
– volume: 5
  start-page: 268
  year: 2022
  publication-title: Nat. Catal.
– volume: 16
  start-page: 4720
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 18
  start-page: 471
  year: 2006
  publication-title: Adv. Mater.
– volume: 37
  year: 2021
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 10
  start-page: 2807
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 6307
  year: 2020
  publication-title: ChemSusChem
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 112
  start-page: 1308
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 60
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 634
  year: 2018
  publication-title: Nano Energy
– volume: 355
  year: 2017
  publication-title: Science
– volume: 20
  start-page: 2299
  year: 2018
  publication-title: CrystEngComm
– start-page: 32
  year: 2019
  end-page: 75
– volume: 118
  start-page: 6409
  year: 2018
  publication-title: Chem. Rev.
– volume: 574
  start-page: 81
  year: 2019
  publication-title: Nature
– volume: 45
  start-page: 117
  year: 2002
  publication-title: Surf. Sci. Rep.
– volume: 136
  start-page: 1734
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2047
  year: 2004
  publication-title: Nano Lett.
– volume: 10
  start-page: 358
  year: 2020
  publication-title: ACS Catal.
– volume: 12
  start-page: 4952
  year: 2021
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  start-page: 163
  year: 1972
  publication-title: J. Electroanal. Chem.
– volume: 144
  start-page: 297
  year: 1986
  publication-title: Thin Solid Films
– volume: 53
  start-page: 808
  year: 2018
  publication-title: Nano Energy
– volume: 139
  start-page: 9359
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 982
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 46
  start-page: 2127
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 590
  start-page: 247
  year: 2005
  publication-title: Surf. Sci.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 448
  year: 2019
  publication-title: Nat. Catal.
– volume: 12
  start-page: 4943
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 1
  start-page: 37
  year: 2009
  publication-title: Nat. Chem.
SSID ssj0031247
Score 2.4928052
Snippet Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique...
Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2301639
SubjectTerms Aqueous solutions
Bismuth
bismuth nanosheets
Carbon dioxide
carbon dioxide reduction reaction
Chemical synthesis
Controllability
Crystal defects
Crystallization
low‐melting‐point metals
Melting points
Morphology
Nanocrystals
Nanomaterials
Nanostructure
Nanotechnology
Nucleation
stepped edges
two‐dimensional materials
Title Controllable Crystallization of Two‐Dimensional Bi Nanocrystals with Morphology‐Boosted CO2 Electroreduction in Wide pH Environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202301639
https://www.proquest.com/docview/2854973581
https://www.proquest.com/docview/2805514335
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQT8sBlpcoW5CRuKZN4zhpjrS0qlALErSit8iOx1JFSao-tFpOe9wjv5FfsjN2G1qOcMvDjhKNx_PFnu8bxt4lIKQ1aRhIJU0QQ5ihz6U6MClQ5e1MAhDBefopGc_jjwu5OGHxe32IesGNPMPN1-TgSm87f0RDtz9WtHWAEBohBTH4KGGLUNGXWj9KYPBy1VUwZgUkvHVUbQyjznn3M3x5ilJdmBk9Zur4gj675Ht7v9Pt4udf2o3_8wWX7NEBg_L3ftA8YQ-gfMoenigTPmN3A5_CviJmFR9sbhBErlYHziavLJ9dV79vf32g2gBe14P3lxyn6qrwbbecVnj5tEI7upV7bN2vHKOEDz5HfOjL72xIOdY9c1nyb0sDfD3mwxPy3XM2Hw1ng3FwKNoQrDHWZ0EKKhYxFFRYvRuCTW1mEVNolapYo-mzRGupCxXaUIOJrcUfSNsDRDFdAamNxAvWKKsSXjJuMmFkz4hYGkXka3xEYuMMBF7pFco2WetotPzgeducGKFZSqpuTfa2vo0-QxshqoRqT21CBxSFbLLIWShfe22P3Ks4RznZJq9tk3-dTib12at_6XTFLujY5w62WGO32cNrxDM7_caN2Xse_PPR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V9gAcoHxULJRiJK5p0zjerI90u9UWdosEW8EtiuOxtOo2We2HEJw4cuQ38kuYsXfTLUc4xrGtROOJX8bz3gC8aaNUzmZxpAploxRjTT6XmchmyJW3tUJkgvPwot2_TN99UetsQubCBH2IJuDGnuG_1-zgHJA-ulENnV9P-OyAMDRhCn0Hdnhyls8__dgoSEnavnx9Fdq1IpbeWus2xsnR7fG3EOYmTvUbzdlDMOtHDPklV4fLhTksv_-l3vhf77ALD1YwVLwN6-YRbGH1GO5viBM-gZ_dkMU-YXKV6M6-EY6cTFa0TVE7Mfpa__7x65TLAwRpD3EyFvS1rsvQdy44yCuGNZnSB--p90ntSSWi-yERvVCBZ8bisX7OcSU-jy2KaV_0Nvh3T-HyrDfq9qNV3YZoStu9jjIsUpliybXVj2N0mdOOYIUpsiI1ZH3dNkaZsohdbNCmztE_pOsgAZljiZlL5B5sV3WFz0BYLa3qWJkqWzD_mqZou1SjpJZOWbgW7K-tlq-cb54zKVRnLOzWgtfNbXIbPgspKqyX3Cf2WFGqFiTeRPk0yHvkQcg5ydk2eWOb_NNwMGiunv_LoFdwtz8aDvLB-cX7F3CP20Mq4T5sL2ZLfEnwZmEO_AL-A1CP9-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIiE48F5RWMBIXLObje2kPrJ9qEC7INgVe4vs2JYqSlL1IQQnjhz5jfwSZuw2dDnCMY5txRqP54vt7xuAF7nj0tsiTaSWNhEuVehzhUls4SjztpLOEcF5cpqPzsXrC3mxw-KP-hDthht5RlivycHn1h_9EQ1dfp7R0QFCaIQU6ipcE3mqKHlD_30rIMUxeoX0Khi0ElLe2so2ptnR5faXAOYuTA1xZngb9PYL4_WST4frlTmsvv0l3vg_Q7gDtzYglL2Ms-YuXHH1Pbi5I014H3704h32GVGrWG_xFVHkbLYhbbLGs7Mvza_vP_uUHCAKe7CTKcO1uqli3SWjLV42adCQYesea580gVLCem8zNoj5dxYkHRv6nNbs49Q6Nh-xwQ777gGcDwdnvVGyydqQzDHYq6RwWnDhKsqsfpw6X3jlEVQYXWhh0PYqN0aaSqc-Nc4K7_EP0ncdwphj7gqf8X3Yq5vaPQRmFbeya7mQVhP7GrvIvVCOY0m30r4DB1ujlRvXW5ZECVUFybp14Hn7Gp2GTkJ07Zo11UkDUuSyA1mwUDmP4h5llHHOSrJN2dqm_DAZj9unR__S6Blcf9cfluNXp28eww0qjvcID2BvtVi7J4htVuZpmL6_AXyx9pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Crystallization+of+Two-Dimensional+Bi+Nanocrystals+with+Morphology-Boosted+CO2+Electroreduction+in+Wide+pH+Environments&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Li-Wei&rft.au=Hao%2C+Yu-Chen&rft.au=Li%2C+Jiani&rft.au=Hu%2C+Linyu&rft.date=2023-08-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=34&rft.spage=e2301639&rft_id=info:doi/10.1002%2Fsmll.202301639&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon