Controllable Crystallization of Two‐Dimensional Bi Nanocrystals with Morphology‐Boosted CO2 Electroreduction in Wide pH Environments
Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (cr...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 34; pp. e2301639 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction‐melting‐crystallization (RMC) protocol to synthesize free‐standing and surfactant‐free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm–2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free‐standing two‐dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.
Ultrathin, free‐standing, and surfactant‐free bismuth nanosheets were synthesized by the controllable reduction‐melting‐crystallization method. Increasing the high‐index facets of bismuth nanosheets can modify their surface electronic structures to strengthen the adsorption of CO2, lower the reaction energy barriers, and promote CO2 reduction reaction selectivity and activity for formate in wide pH environments, realizing high‐energy‐efficiency CO2‐to‐HCOOH conversion in a flow cell system. |
---|---|
AbstractList | Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction‐melting‐crystallization (RMC) protocol to synthesize free‐standing and surfactant‐free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm–2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free‐standing two‐dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.
Ultrathin, free‐standing, and surfactant‐free bismuth nanosheets were synthesized by the controllable reduction‐melting‐crystallization method. Increasing the high‐index facets of bismuth nanosheets can modify their surface electronic structures to strengthen the adsorption of CO2, lower the reaction energy barriers, and promote CO2 reduction reaction selectivity and activity for formate in wide pH environments, realizing high‐energy‐efficiency CO2‐to‐HCOOH conversion in a flow cell system. Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction-melting-crystallization (RMC) protocol to synthesize free-standing and surfactant-free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm-2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free-standing two-dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction-melting-crystallization (RMC) protocol to synthesize free-standing and surfactant-free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm-2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free-standing two-dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications. Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction‐melting‐crystallization (RMC) protocol to synthesize free‐standing and surfactant‐free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm–2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free‐standing two‐dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications. |
Author | Yu, Zi‐Long Chen, Li‐Wei Zuo, Xintao Dai, Chunlong Chang, Xiaoxue Li, Jiani Tian, Wenjing Wang, Bo Yin, An‐Xiang Hao, Yu‐Chen Hu, Linyu Liu, Di Li, Pengfei Shao, Ruiwen Huang, Hui‐Zi |
Author_xml | – sequence: 1 givenname: Li‐Wei surname: Chen fullname: Chen, Li‐Wei organization: Beijing Institute of Technology – sequence: 2 givenname: Yu‐Chen surname: Hao fullname: Hao, Yu‐Chen organization: Beijing Institute of Technology – sequence: 3 givenname: Jiani surname: Li fullname: Li, Jiani organization: Beijing Institute of Technology – sequence: 4 givenname: Linyu surname: Hu fullname: Hu, Linyu organization: Beijing Institute of Technology – sequence: 5 givenname: Xintao surname: Zuo fullname: Zuo, Xintao organization: Beijing Institute of Technology – sequence: 6 givenname: Chunlong surname: Dai fullname: Dai, Chunlong organization: Beijing Institute of Technology – sequence: 7 givenname: Zi‐Long surname: Yu fullname: Yu, Zi‐Long organization: Beijing Institute of Technology – sequence: 8 givenname: Hui‐Zi surname: Huang fullname: Huang, Hui‐Zi organization: Beijing Institute of Technology – sequence: 9 givenname: Wenjing surname: Tian fullname: Tian, Wenjing organization: Beijing Institute of Technology – sequence: 10 givenname: Di surname: Liu fullname: Liu, Di organization: Beijing Institute of Technology – sequence: 11 givenname: Xiaoxue surname: Chang fullname: Chang, Xiaoxue organization: Beijing Institute of Technology – sequence: 12 givenname: Pengfei surname: Li fullname: Li, Pengfei organization: Beijing Institute of Technology – sequence: 13 givenname: Ruiwen surname: Shao fullname: Shao, Ruiwen organization: Beijing Institute of Technology – sequence: 14 givenname: Bo surname: Wang fullname: Wang, Bo organization: Beijing Institute of Technology – sequence: 15 givenname: An‐Xiang orcidid: 0000-0002-7711-7018 surname: Yin fullname: Yin, An‐Xiang email: yin@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNpdkT1v2zAQhokiAZqPrp0JdOnilEeKkjk2itsEcJIhLjoKlHysGdCkQso13Cljxv7G_JLQceAh033gwXPAvcfkwAePhHwGdgaM8W9p6dwZZ1wwKIX6QI6gBDEqx1wd7HtgH8lxSveMCeBFdUSe6uCHGJzTrUNax00atHP2nx5s8DQYOluH58f_F3aJPuWVdvTc0hvtQ7djE13bYUGvQ-wXwYU_m0yfh5AGnNP6ltOJwy4fiDhfda9O6-lvO0faX9KJ_2tj8Fk9pFNyaLINP73VE_Lrx2RWX46mtz-v6u_TUc_LUo0q1IUosIMKCmBoKqMMcNXqShetkqjKtpVtp5lhLc4LY0CWZoxQSRBYGS5OyNedt4_hYYVpaJY2dZgf4DGsUsPHTEoohJAZ_fIOvQ-rmF-wpWShKiHHkCm1o9bW4abpo13quGmANdtUmm0qzT6V5u56Ot1P4gWaeon6 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202301639 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202301639 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2020YFB1506300 – fundername: National Natural Science Foundation of China funderid: 21971012; 21922502; 22075018; 21971017 – fundername: Beijing Municipal Natural Science Foundation funderid: JQ20007 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2669-7ea434ec171410ef7f9f129ba7a4b95e96bb5bca0f0bed4ff156f8e17513e7f23 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 01:29:52 EDT 2025 Fri Jul 25 12:14:20 EDT 2025 Wed Jan 22 16:17:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2669-7ea434ec171410ef7f9f129ba7a4b95e96bb5bca0f0bed4ff156f8e17513e7f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7711-7018 |
PQID | 2854973581 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2805514335 proquest_journals_2854973581 wiley_primary_10_1002_smll_202301639_SMLL202301639 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 360 2019; 10 2017; 46 2019; 58 2004; 4 2020; 59 2020; 13 2020; 11 2020; 10 2017; 355 2017; 357 2018; 49 2014; 136 2009; 48 2018; 47 2018; 9 2021; 37 2018; 8 2021; 32 2021; 31 2020; 3 2018; 4 1986; 144 2002; 45 2014; 16 2018; 30 2008; 112 2005; 590 2019; 4 2019; 2 2006; 18 2006; 5 2021; 50 2018; 20 2017; 139 2016; 2 2021; 12 2022; 5 2018; 118 2017; 13 2022; 12 2019 2022; 14 2021; 372 2018; 11 2018; 10 2009; 1 2018; 53 1968; 71 2022; 17 2019; 574 1972; 39 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 732 year: 2019 publication-title: Nat. Energy – volume: 17 start-page: 33 year: 2022 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 9 start-page: 1320 year: 2018 publication-title: Nat Commun. – volume: 11 start-page: 1088 year: 2020 publication-title: Nat. Commun. – volume: 372 start-page: 1074 year: 2021 publication-title: Science – volume: 360 start-page: 783 year: 2018 publication-title: Science – volume: 71 start-page: 1828 year: 1968 publication-title: Kogyo Kagahu Zasshi – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 357 start-page: 287 year: 2017 publication-title: Science – volume: 3 start-page: 498 year: 2020 publication-title: Matter – volume: 12 start-page: 2357 year: 2022 publication-title: ACS Catal. – volume: 59 start-page: 1674 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 4082 year: 2018 publication-title: Nano Res. – volume: 5 start-page: 268 year: 2022 publication-title: Nat. Catal. – volume: 16 start-page: 4720 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 471 year: 2006 publication-title: Adv. Mater. – volume: 37 year: 2021 publication-title: Acta Phys.‐Chim. Sin. – volume: 10 start-page: 2807 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 6307 year: 2020 publication-title: ChemSusChem – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 112 start-page: 1308 year: 2008 publication-title: J. Phys. Chem. C – volume: 48 start-page: 60 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 634 year: 2018 publication-title: Nano Energy – volume: 355 year: 2017 publication-title: Science – volume: 20 start-page: 2299 year: 2018 publication-title: CrystEngComm – start-page: 32 year: 2019 end-page: 75 – volume: 118 start-page: 6409 year: 2018 publication-title: Chem. Rev. – volume: 574 start-page: 81 year: 2019 publication-title: Nature – volume: 45 start-page: 117 year: 2002 publication-title: Surf. Sci. Rep. – volume: 136 start-page: 1734 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2047 year: 2004 publication-title: Nano Lett. – volume: 10 start-page: 358 year: 2020 publication-title: ACS Catal. – volume: 12 start-page: 4952 year: 2021 publication-title: Nat. Commun. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 39 start-page: 163 year: 1972 publication-title: J. Electroanal. Chem. – volume: 144 start-page: 297 year: 1986 publication-title: Thin Solid Films – volume: 53 start-page: 808 year: 2018 publication-title: Nano Energy – volume: 139 start-page: 9359 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 982 year: 2018 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 46 start-page: 2127 year: 2017 publication-title: Chem. Soc. Rev. – volume: 590 start-page: 247 year: 2005 publication-title: Surf. Sci. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 448 year: 2019 publication-title: Nat. Catal. – volume: 12 start-page: 4943 year: 2021 publication-title: Nat. Commun. – volume: 13 year: 2017 publication-title: Small – volume: 1 start-page: 37 year: 2009 publication-title: Nat. Chem. |
SSID | ssj0031247 |
Score | 2.4928052 |
Snippet | Two‐dimensional low‐melting‐point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique... Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2301639 |
SubjectTerms | Aqueous solutions Bismuth bismuth nanosheets Carbon dioxide carbon dioxide reduction reaction Chemical synthesis Controllability Crystal defects Crystallization low‐melting‐point metals Melting points Morphology Nanocrystals Nanomaterials Nanostructure Nanotechnology Nucleation stepped edges two‐dimensional materials |
Title | Controllable Crystallization of Two‐Dimensional Bi Nanocrystals with Morphology‐Boosted CO2 Electroreduction in Wide pH Environments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202301639 https://www.proquest.com/docview/2854973581 https://www.proquest.com/docview/2805514335 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQT8sBlpcoW5CRuKZN4zhpjrS0qlALErSit8iOx1JFSao-tFpOe9wjv5FfsjN2G1qOcMvDjhKNx_PFnu8bxt4lIKQ1aRhIJU0QQ5ihz6U6MClQ5e1MAhDBefopGc_jjwu5OGHxe32IesGNPMPN1-TgSm87f0RDtz9WtHWAEBohBTH4KGGLUNGXWj9KYPBy1VUwZgUkvHVUbQyjznn3M3x5ilJdmBk9Zur4gj675Ht7v9Pt4udf2o3_8wWX7NEBg_L3ftA8YQ-gfMoenigTPmN3A5_CviJmFR9sbhBErlYHziavLJ9dV79vf32g2gBe14P3lxyn6qrwbbecVnj5tEI7upV7bN2vHKOEDz5HfOjL72xIOdY9c1nyb0sDfD3mwxPy3XM2Hw1ng3FwKNoQrDHWZ0EKKhYxFFRYvRuCTW1mEVNolapYo-mzRGupCxXaUIOJrcUfSNsDRDFdAamNxAvWKKsSXjJuMmFkz4hYGkXka3xEYuMMBF7pFco2WetotPzgeducGKFZSqpuTfa2vo0-QxshqoRqT21CBxSFbLLIWShfe22P3Ks4RznZJq9tk3-dTib12at_6XTFLujY5w62WGO32cNrxDM7_caN2Xse_PPR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V9gAcoHxULJRiJK5p0zjerI90u9UWdosEW8EtiuOxtOo2We2HEJw4cuQ38kuYsXfTLUc4xrGtROOJX8bz3gC8aaNUzmZxpAploxRjTT6XmchmyJW3tUJkgvPwot2_TN99UetsQubCBH2IJuDGnuG_1-zgHJA-ulENnV9P-OyAMDRhCn0Hdnhyls8__dgoSEnavnx9Fdq1IpbeWus2xsnR7fG3EOYmTvUbzdlDMOtHDPklV4fLhTksv_-l3vhf77ALD1YwVLwN6-YRbGH1GO5viBM-gZ_dkMU-YXKV6M6-EY6cTFa0TVE7Mfpa__7x65TLAwRpD3EyFvS1rsvQdy44yCuGNZnSB--p90ntSSWi-yERvVCBZ8bisX7OcSU-jy2KaV_0Nvh3T-HyrDfq9qNV3YZoStu9jjIsUpliybXVj2N0mdOOYIUpsiI1ZH3dNkaZsohdbNCmztE_pOsgAZljiZlL5B5sV3WFz0BYLa3qWJkqWzD_mqZou1SjpJZOWbgW7K-tlq-cb54zKVRnLOzWgtfNbXIbPgspKqyX3Cf2WFGqFiTeRPk0yHvkQcg5ydk2eWOb_NNwMGiunv_LoFdwtz8aDvLB-cX7F3CP20Mq4T5sL2ZLfEnwZmEO_AL-A1CP9-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIiE48F5RWMBIXLObje2kPrJ9qEC7INgVe4vs2JYqSlL1IQQnjhz5jfwSZuw2dDnCMY5txRqP54vt7xuAF7nj0tsiTaSWNhEuVehzhUls4SjztpLOEcF5cpqPzsXrC3mxw-KP-hDthht5RlivycHn1h_9EQ1dfp7R0QFCaIQU6ipcE3mqKHlD_30rIMUxeoX0Khi0ElLe2so2ptnR5faXAOYuTA1xZngb9PYL4_WST4frlTmsvv0l3vg_Q7gDtzYglL2Ms-YuXHH1Pbi5I014H3704h32GVGrWG_xFVHkbLYhbbLGs7Mvza_vP_uUHCAKe7CTKcO1uqli3SWjLV42adCQYesea580gVLCem8zNoj5dxYkHRv6nNbs49Q6Nh-xwQ777gGcDwdnvVGyydqQzDHYq6RwWnDhKsqsfpw6X3jlEVQYXWhh0PYqN0aaSqc-Nc4K7_EP0ncdwphj7gqf8X3Yq5vaPQRmFbeya7mQVhP7GrvIvVCOY0m30r4DB1ujlRvXW5ZECVUFybp14Hn7Gp2GTkJ07Zo11UkDUuSyA1mwUDmP4h5llHHOSrJN2dqm_DAZj9unR__S6Blcf9cfluNXp28eww0qjvcID2BvtVi7J4htVuZpmL6_AXyx9pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Crystallization+of+Two-Dimensional+Bi+Nanocrystals+with+Morphology-Boosted+CO2+Electroreduction+in+Wide+pH+Environments&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Li-Wei&rft.au=Hao%2C+Yu-Chen&rft.au=Li%2C+Jiani&rft.au=Hu%2C+Linyu&rft.date=2023-08-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=34&rft.spage=e2301639&rft_id=info:doi/10.1002%2Fsmll.202301639&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |