Bifunctional WC‐Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media
We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fol...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 21; pp. e202202519 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
16.05.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202202519 |
Cover
Loading…
Abstract | We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fold higher than that of commercial RuO2 (176 A gRu−1). Theoretical calculations demonstrate that the strong catalyst–support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2‐WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm−2. The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.
Unique 0D/2D WC‐supported RuO2 nanoparticles anchored on carbon nanosheets with low loading of Ru (4.11 wt.%) were constructed as a bifunctional electrocatalyst, applying a cell voltage of 1.66 V to realize acidic overall water splitting (OWS) with excellent long‐term stability. |
---|---|
AbstractList | We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fold higher than that of commercial RuO2 (176 A gRu−1). Theoretical calculations demonstrate that the strong catalyst–support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2‐WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm−2. The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.
Unique 0D/2D WC‐supported RuO2 nanoparticles anchored on carbon nanosheets with low loading of Ru (4.11 wt.%) were constructed as a bifunctional electrocatalyst, applying a cell voltage of 1.66 V to realize acidic overall water splitting (OWS) with excellent long‐term stability. We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications. We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fold higher than that of commercial RuO2 (176 A gRu−1). Theoretical calculations demonstrate that the strong catalyst–support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2‐WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm−2. The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications. |
Author | Sun, Shu‐Chao Zhen, Liang Chen, Zi‐Yao Chen, Qing Xu, Cheng‐Yan Song, Bo Jiang, Hao Ma, Ming‐Yuan |
Author_xml | – sequence: 1 givenname: Shu‐Chao surname: Sun fullname: Sun, Shu‐Chao organization: Harbin Institute of Technology – sequence: 2 givenname: Hao surname: Jiang fullname: Jiang, Hao organization: Harbin Institute of Technology – sequence: 3 givenname: Zi‐Yao surname: Chen fullname: Chen, Zi‐Yao organization: Harbin Institute of Technology – sequence: 4 givenname: Qing surname: Chen fullname: Chen, Qing organization: Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Ming‐Yuan surname: Ma fullname: Ma, Ming‐Yuan organization: Harbin Institute of Technology – sequence: 6 givenname: Liang orcidid: 0000-0001-6159-8972 surname: Zhen fullname: Zhen, Liang email: lzhen@hit.edu.cn organization: Harbin Institute of Technology (Shenzhen) – sequence: 7 givenname: Bo orcidid: 0000-0003-2000-5071 surname: Song fullname: Song, Bo email: songbo@hit.edu.cn organization: Harbin Institute of Technology – sequence: 8 givenname: Cheng‐Yan orcidid: 0000-0002-7835-6635 surname: Xu fullname: Xu, Cheng‐Yan email: cy_xu@hit.edu.cn organization: Harbin Institute of Technology (Shenzhen) |
BookMark | eNpd0M9LwzAUB_AgE9ymV88BL14686NNk-McUwdzg20wPIW0TSWjS2qTIrv5J_g3-pfYMdlBePDegw8P3ncAetZZDcAtRiOMEHlQ1ugRQaSrBIsL0McJwRFNU9rr5pjSKOUJvgID73ed5xyxPnh7NGVr82CcVRXcTn6-vtdtXbsm6AKu2iWBC2VdrZpg8kp7WLoGrlzW-gC3KugGruvKhGDsOzQWjnNTmBy-6sKoa3BZqsrrm78-BJun6WbyEs2Xz7PJeB7VhDERkTxVMVYZQ6iMdYwKIXRGKItZqSkncS5oQRDXiNM4y0pS8jRJEBVJkeJUZ3QI7k9n68Z9tNoHuTc-11WlrHatl4RRjghFQnT07h_dubbp_j4qhkScCME7JU7q01T6IOvG7FVzkBjJY8rymLI8pyzHi9n0vNFfSYh0aQ |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202202519 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202202519 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20200109113212238 – fundername: National Natural Science Foundation of China funderid: 52072085 – fundername: Heilongjiang Touyan Innovation Team Program |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p2669-2c7a41ab600f4e40d99eb23646fe3824c93d208e0834bbf2f87550395d717eb3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:43:42 EDT 2025 Fri Jul 25 10:34:36 EDT 2025 Wed Jan 22 16:25:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2669-2c7a41ab600f4e40d99eb23646fe3824c93d208e0834bbf2f87550395d717eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6159-8972 0000-0003-2000-5071 0000-0002-7835-6635 |
PQID | 2660945998 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2638023099 proquest_journals_2660945998 wiley_primary_10_1002_anie_202202519_ANIE202202519 |
PublicationCentury | 2000 |
PublicationDate | May 16, 2022 |
PublicationDateYYYYMMDD | 2022-05-16 |
PublicationDate_xml | – month: 05 year: 2022 text: May 16, 2022 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 5 2017; 7 2021; 408 2021; 20 2012; 486 1973; 181 2019; 12 1999; 285 2011; 13 2022; 66 2020; 10 2007; 32 2012; 11 2017; 9 2018; 6 2018; 9 2014; 5 2020; 3 2012; 134 2015; 40 2017; 33 2015; 44 2002; 524–525 2017; 34 2022; 34 2005; 30 2016; 41 2018; 30 2022; 32 2017; 203 2001; 414 2021; 9 2014; 118 2018; 28 2019; 9 2018; 140 2013; 49 2021; 88 2019; 31 2019; 2 2021; 423 2019; 1 2017; 29 2020; 32 2012; 37 2007; 607 2015; 9 2014; 312 2019 2019; 58 131 2014; 43 2017; 139 2021; 57 2016; 7 2016; 1 2012; 3 2021; 11 2018; 236 2021 2021; 60 133 2009; 460 2020; 22 2021; 297 2016; 29 2018; 11 2018; 10 2018; 54 2016; 8 2022; 17 2016; 9 2018; 14 |
References_xml | – volume: 44 start-page: 2060 year: 2015 end-page: 2086 publication-title: Chem. Soc. Rev. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 start-page: 763 year: 2011 end-page: 765 publication-title: Electrochem. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 765 year: 2017 end-page: 772 publication-title: J. Mater. Chem. A – volume: 11 start-page: 2114 year: 2018 end-page: 2123 publication-title: Energy Environ. Sci. – volume: 9 start-page: 18208 year: 2021 end-page: 18212 publication-title: J. Mater. Chem. A – volume: 486 start-page: 43 year: 2012 end-page: 51 publication-title: Nature – volume: 14 year: 2018 publication-title: Small – volume: 7 start-page: 11296 year: 2016 publication-title: Nat. Commun. – volume: 3 start-page: 12269 year: 2020 end-page: 12277 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 6555 year: 2014 end-page: 6569 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 7483 year: 2019 end-page: 7489 publication-title: ACS Appl. Energ. Mater. – volume: 9 start-page: 5125 year: 2015 end-page: 5134 publication-title: ACS Nano – volume: 37 start-page: 2173 year: 2012 end-page: 2181 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 13196 year: 2017 end-page: 13203 publication-title: J. Mater. Chem. A – volume: 524–525 start-page: 252 year: 2002 end-page: 260 publication-title: J. Electroanal. Chem. – volume: 1 start-page: 16053 year: 2016 publication-title: Nat. Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 58 131 start-page: 13897 14035 year: 2019 2019 end-page: 13903 14041 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 start-page: 2879 year: 2021 end-page: 2882 publication-title: Chem. Commun. – volume: 9 start-page: 2387 year: 2017 end-page: 2395 publication-title: ACS Appl. Mater. Interfaces – volume: 607 start-page: 83 year: 2007 end-page: 89 publication-title: J. Electroanal. Chem. – volume: 22 start-page: 4580 year: 2020 end-page: 4590 publication-title: CrystEngComm – volume: 54 start-page: 3859 year: 2018 end-page: 3862 publication-title: Chem. Commun. – volume: 285 start-page: 687 year: 1999 end-page: 689 publication-title: Science – volume: 12 start-page: 1334 year: 2019 end-page: 1341 publication-title: ChemSusChem – volume: 30 start-page: 795 year: 2005 end-page: 802 publication-title: Int. J. Hydrogen Energy – volume: 53 126 start-page: 10960 11140 year: 2014 2014 end-page: 10964 11144 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 28678 year: 2016 end-page: 28688 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 41 start-page: 13005 year: 2016 end-page: 13013 publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 554 year: 2020 end-page: 563 publication-title: Nat. Catal. – volume: 7 start-page: 13216 year: 2016 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 2905 year: 2015 end-page: 2911 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 1892 year: 2018 end-page: 1897 publication-title: Nanoscale – volume: 140 start-page: 451 year: 2018 end-page: 458 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 924 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 1082 year: 2018 end-page: 1091 publication-title: ChemSusChem – volume: 17 start-page: 358 year: 2022 end-page: 377 publication-title: Nat. Protoc. – volume: 9 start-page: 1210 year: 2016 end-page: 1214 publication-title: Energy Environ. Sci. – volume: 134 start-page: 3025 year: 2012 end-page: 3033 publication-title: J. Am. Chem. Soc. – volume: 203 start-page: 684 year: 2017 end-page: 691 publication-title: Appl. Catal. B – volume: 181 start-page: 547 year: 1973 end-page: 549 publication-title: Science – volume: 49 start-page: 8896 year: 2013 end-page: 8909 publication-title: Chem. Commun. – volume: 118 start-page: 17594 year: 2014 end-page: 17599 publication-title: J. Phys. Chem. C – volume: 5 start-page: 2474 year: 2014 end-page: 2478 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 3038 year: 2019 end-page: 3052 publication-title: Energy Environ. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 408 year: 2021 publication-title: Chem. Eng. J. – volume: 66 start-page: 560 year: 2022 end-page: 565 publication-title: J. Energy Chem. – volume: 34 start-page: 385 year: 2017 end-page: 391 publication-title: Nano Energy – volume: 297 year: 2021 publication-title: Appl. Catal. B – volume: 60 133 start-page: 23388 23576 year: 2021 2021 end-page: 23393 23581 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 423 year: 2021 publication-title: Chem. Eng. J. – volume: 2 start-page: 304 year: 2019 end-page: 313 publication-title: Nat. Catal. – volume: 236 start-page: 147 year: 2018 end-page: 153 publication-title: Appl. Catal. B – volume: 33 start-page: 356 year: 2017 end-page: 362 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 29 start-page: 126 year: 2016 end-page: 135 publication-title: Nano Energy – volume: 2 start-page: 955 year: 2019 end-page: 970 publication-title: Nat. Catal. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1152 year: 2020 end-page: 1160 publication-title: ACS Catal. – volume: 32 start-page: 365 year: 2007 end-page: 370 publication-title: Int. J. Hydrogen Energy – volume: 312 start-page: 216 year: 2014 end-page: 220 publication-title: J. Catal. – volume: 10 start-page: 21123 year: 2018 end-page: 21131 publication-title: Nanoscale – volume: 414 start-page: 345 year: 2001 end-page: 352 publication-title: Nature – volume: 134 start-page: 20479 year: 2012 end-page: 20489 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 414 start-page: 332 year: 2001 end-page: 337 publication-title: Nature – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 20 start-page: 1240 year: 2021 end-page: 1247 publication-title: Nat. Mater. – volume: 3 start-page: 399 year: 2012 end-page: 404 publication-title: J. Phys. Chem. Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 88 year: 2021 publication-title: Nano Energy – volume: 414 start-page: 353 year: 2001 end-page: 358 publication-title: Nature – volume: 460 start-page: 809 year: 2009 end-page: 811 publication-title: Nature – volume: 1 start-page: 1494 year: 2019 end-page: 1518 publication-title: Matter – volume: 11 start-page: 550 year: 2012 end-page: 557 publication-title: Nat. Mater. – volume: 6 start-page: 9009 year: 2018 end-page: 9018 publication-title: J. Mater. Chem. A – volume: 139 start-page: 5285 year: 2017 end-page: 5288 publication-title: J. Am. Chem. Soc. |
SSID | ssj0028806 |
Score | 2.6809306 |
Snippet | We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11... We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202202519 |
SubjectTerms | Acidic Water Splitting Bifunctional Electrocatalysts Catalysts Catalytic activity Electronic structure Hydrogen production Metal oxides Nanoparticles Oxygen evolution reactions Ruthenium Ruthenium oxide Supported Electrocatalysts Transition Metal Carbide Water splitting |
Title | Bifunctional WC‐Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202202519 https://www.proquest.com/docview/2660945998 https://www.proquest.com/docview/2638023099 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQCyx8IwoFGYk1bWI7IRlL1aogUaRS1DJFtuNIFVJatcnCxE_gN_JLuMsXLSNsiZKTHMf2vWffvSPkJsYixjLmlvA9PGbk2gqU41jg62IupJKRxq2Bx6E3eBEPU3e6lsVf6EPUG244M_L1Gie4VKv2j2goZmADv2MMUTJm8GHAFqKiUa0fxWBwFulFnFtYhb5SbbRZe9N8A1-uo9TczfT3iawaWESXvLWyVLX0-y_txv98wQHZKzEo7RSD5pBsmeSI7HSr0m_H5PVuhv6u2Cakk-7XxydW_8S43IiOsidGYVEGtl0G1VEAvnQ0V9kqpRPArkv6DNA2D6ims4R29CyaaYpHQvKEjPu9cXdglTUYrAW47sBi-lYKRyrARbEwwo6CALg494QXG-4zoQMeMds3gOSEUjGLgf-4Ng_cCHgiEPVTsp3ME3NGKJMqYh6YS7BWivu29pn2pIm4lsbWDdKsfkFYzqNVCG0A_ukCJ2yQ6_ox9AYea8jEzDN8h6OKHUDdBmF5f4eLQqkjLDSZWYg9HdY9HXaG97367vwvRhdkF68xjMDxmmQ7XWbmEtBJqq7yEfgNxg3ddg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOZQLO6JQwEhcU1LbDcmxVFRlK1IpKpwi23GkCimtoLlw4hP4Rr6EmaQJyxGOWUZyHNvz3nj8BuA4piLGKhaO9D3aZhTGCXSz6aCvi4VUWkWGQgM3fa93Ly8fWkU2IZ2FyfUhyoAbzYxsvaYJTgHpky_VUDqCjQSPc4LJwSIsUVnvjFUNSgUpjsMzP2AkhEN16AvdRpef_LT_gTC_49TM0XRXQRdNzPNLnhrpTDfM6y_1xn99wxqszGEoa-fjZh0WbLIB1U5R_W0THs_G5PLySCEbdT7e3qkAKKXmRmyQ3nKG6zIS7nleHUPsywYTnb7M2Ajh6zO7Q3Sb5VSzccLaZhyNDaNdIbUFw-75sNNz5mUYnCl678Dh5lTJptIIjWJppRsFAdJx4UkvtsLn0gQi4q5vEcxJrWMeIwVquSJoRUgVkatvQyWZJHYHGFc64h6aK7TWWviu8bnxlI2EUdY1NagX_yCcT6WXENuAFLSFtLAGR-Vj7A3a2VCJnaT0jiAhO0S7NeBZh4fTXKwjzGWZeUg9HZY9Hbb7F-fl1e5fjA6h2hveXIfXF_2rPVim-5RV0PTqUJk9p3YfwcpMH2TD8ROrpOGR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVFWI3ENpLYbkmNpqVgLKiDgFHmLVCGlFTQXTnwC38iXMJO0gXKEY5aRHGfsec8evwHYT6iIsUqEJ8OAthmF8SJdrXoY6xIhlVbW0NLAVTs4vZfnj7XHH6f4C32IcsGNRkY-X9MA79vk8Fs0lE5gI7_jnFByNAnTMvBD8utmpxSQ4uidxfkiITwqQz-SbfT54bj9GMD8CVPzONNaADVqYZFe8nyQDfSBefsl3vifT1iE-SEIZfXCa5ZgwqXLMNsY1X5bgafjLgW8Yp2QPTQ-3z-o_Ccl5lrWya45w1kZ6fYwq44h8mWdns5eB-wBwesLu0Vsm2dUs27K6qZru4bRnpBahbvWyV3j1BsWYfD6GLsjj5sjJatKIzBKpJO-jSIk4yKQQeJEyKWJhOV-6BDKSa0TniABqvkiqlkkisjU12Aq7aVuHRhX2vIAzRVaay1C34TcBMpZYZTzTQW2Rr8gHg6k1xjbgAS0hqSwAnvlY-wN2tdQqetl9I4gGTvEuhXgeX_H_UKqIy5EmXlMPR2XPR3X22cn5dXGX4x2Yeam2Yovz9oXmzBHtymloBpswdTgJXPbiFQGeid3xi82DOBJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+WC%E2%80%90Supported+RuO2+Nanoparticles+for+Robust+Water+Splitting+in+Acidic+Media&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shu%E2%80%90Chao+Sun&rft.au=Jiang%2C+Hao&rft.au=Zi%E2%80%90Yao+Chen&rft.au=Chen%2C+Qing&rft.date=2022-05-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=21&rft_id=info:doi/10.1002%2Fanie.202202519&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |