Bifunctional WC‐Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media

We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fol...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 21; pp. e202202519 - n/a
Main Authors Sun, Shu‐Chao, Jiang, Hao, Chen, Zi‐Yao, Chen, Qing, Ma, Ming‐Yuan, Zhen, Liang, Song, Bo, Xu, Cheng‐Yan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 16.05.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202202519

Cover

Loading…
Abstract We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fold higher than that of commercial RuO2 (176 A gRu−1). Theoretical calculations demonstrate that the strong catalyst–support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2‐WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm−2. The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications. Unique 0D/2D WC‐supported RuO2 nanoparticles anchored on carbon nanosheets with low loading of Ru (4.11 wt.%) were constructed as a bifunctional electrocatalyst, applying a cell voltage of 1.66 V to realize acidic overall water splitting (OWS) with excellent long‐term stability.
AbstractList We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fold higher than that of commercial RuO2 (176 A gRu−1). Theoretical calculations demonstrate that the strong catalyst–support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2‐WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm−2. The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications. Unique 0D/2D WC‐supported RuO2 nanoparticles anchored on carbon nanosheets with low loading of Ru (4.11 wt.%) were constructed as a bifunctional electrocatalyst, applying a cell voltage of 1.66 V to realize acidic overall water splitting (OWS) with excellent long‐term stability.
We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.
We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu−1, eight‐fold higher than that of commercial RuO2 (176 A gRu−1). Theoretical calculations demonstrate that the strong catalyst–support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2‐WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm−2. The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.
Author Sun, Shu‐Chao
Zhen, Liang
Chen, Zi‐Yao
Chen, Qing
Xu, Cheng‐Yan
Song, Bo
Jiang, Hao
Ma, Ming‐Yuan
Author_xml – sequence: 1
  givenname: Shu‐Chao
  surname: Sun
  fullname: Sun, Shu‐Chao
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Hao
  surname: Jiang
  fullname: Jiang, Hao
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Zi‐Yao
  surname: Chen
  fullname: Chen, Zi‐Yao
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Qing
  surname: Chen
  fullname: Chen, Qing
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Ming‐Yuan
  surname: Ma
  fullname: Ma, Ming‐Yuan
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Liang
  orcidid: 0000-0001-6159-8972
  surname: Zhen
  fullname: Zhen, Liang
  email: lzhen@hit.edu.cn
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 7
  givenname: Bo
  orcidid: 0000-0003-2000-5071
  surname: Song
  fullname: Song, Bo
  email: songbo@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Cheng‐Yan
  orcidid: 0000-0002-7835-6635
  surname: Xu
  fullname: Xu, Cheng‐Yan
  email: cy_xu@hit.edu.cn
  organization: Harbin Institute of Technology (Shenzhen)
BookMark eNpd0M9LwzAUB_AgE9ymV88BL14686NNk-McUwdzg20wPIW0TSWjS2qTIrv5J_g3-pfYMdlBePDegw8P3ncAetZZDcAtRiOMEHlQ1ugRQaSrBIsL0McJwRFNU9rr5pjSKOUJvgID73ed5xyxPnh7NGVr82CcVRXcTn6-vtdtXbsm6AKu2iWBC2VdrZpg8kp7WLoGrlzW-gC3KugGruvKhGDsOzQWjnNTmBy-6sKoa3BZqsrrm78-BJun6WbyEs2Xz7PJeB7VhDERkTxVMVYZQ6iMdYwKIXRGKItZqSkncS5oQRDXiNM4y0pS8jRJEBVJkeJUZ3QI7k9n68Z9tNoHuTc-11WlrHatl4RRjghFQnT07h_dubbp_j4qhkScCME7JU7q01T6IOvG7FVzkBjJY8rymLI8pyzHi9n0vNFfSYh0aQ
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202202519
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202202519
Genre article
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20200109113212238
– fundername: National Natural Science Foundation of China
  funderid: 52072085
– fundername: Heilongjiang Touyan Innovation Team Program
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2669-2c7a41ab600f4e40d99eb23646fe3824c93d208e0834bbf2f87550395d717eb3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:43:42 EDT 2025
Fri Jul 25 10:34:36 EDT 2025
Wed Jan 22 16:25:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2669-2c7a41ab600f4e40d99eb23646fe3824c93d208e0834bbf2f87550395d717eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6159-8972
0000-0003-2000-5071
0000-0002-7835-6635
PQID 2660945998
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2638023099
proquest_journals_2660945998
wiley_primary_10_1002_anie_202202519_ANIE202202519
PublicationCentury 2000
PublicationDate May 16, 2022
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 05
  year: 2022
  text: May 16, 2022
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 5
2017; 7
2021; 408
2021; 20
2012; 486
1973; 181
2019; 12
1999; 285
2011; 13
2022; 66
2020; 10
2007; 32
2012; 11
2017; 9
2018; 6
2018; 9
2014; 5
2020; 3
2012; 134
2015; 40
2017; 33
2015; 44
2002; 524–525
2017; 34
2022; 34
2005; 30
2016; 41
2018; 30
2022; 32
2017; 203
2001; 414
2021; 9
2014; 118
2018; 28
2019; 9
2018; 140
2013; 49
2021; 88
2019; 31
2019; 2
2021; 423
2019; 1
2017; 29
2020; 32
2012; 37
2007; 607
2015; 9
2014; 312
2019 2019; 58 131
2014; 43
2017; 139
2021; 57
2016; 7
2016; 1
2012; 3
2021; 11
2018; 236
2021 2021; 60 133
2009; 460
2020; 22
2021; 297
2016; 29
2018; 11
2018; 10
2018; 54
2016; 8
2022; 17
2016; 9
2018; 14
References_xml – volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 763
  year: 2011
  end-page: 765
  publication-title: Electrochem. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 765
  year: 2017
  end-page: 772
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2114
  year: 2018
  end-page: 2123
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 18208
  year: 2021
  end-page: 18212
  publication-title: J. Mater. Chem. A
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  publication-title: Nature
– volume: 14
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 11296
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  start-page: 12269
  year: 2020
  end-page: 12277
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 6555
  year: 2014
  end-page: 6569
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 7483
  year: 2019
  end-page: 7489
  publication-title: ACS Appl. Energ. Mater.
– volume: 9
  start-page: 5125
  year: 2015
  end-page: 5134
  publication-title: ACS Nano
– volume: 37
  start-page: 2173
  year: 2012
  end-page: 2181
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 13196
  year: 2017
  end-page: 13203
  publication-title: J. Mater. Chem. A
– volume: 524–525
  start-page: 252
  year: 2002
  end-page: 260
  publication-title: J. Electroanal. Chem.
– volume: 1
  start-page: 16053
  year: 2016
  publication-title: Nat. Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 13897 14035
  year: 2019 2019
  end-page: 13903 14041
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57
  start-page: 2879
  year: 2021
  end-page: 2882
  publication-title: Chem. Commun.
– volume: 9
  start-page: 2387
  year: 2017
  end-page: 2395
  publication-title: ACS Appl. Mater. Interfaces
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  publication-title: J. Electroanal. Chem.
– volume: 22
  start-page: 4580
  year: 2020
  end-page: 4590
  publication-title: CrystEngComm
– volume: 54
  start-page: 3859
  year: 2018
  end-page: 3862
  publication-title: Chem. Commun.
– volume: 285
  start-page: 687
  year: 1999
  end-page: 689
  publication-title: Science
– volume: 12
  start-page: 1334
  year: 2019
  end-page: 1341
  publication-title: ChemSusChem
– volume: 30
  start-page: 795
  year: 2005
  end-page: 802
  publication-title: Int. J. Hydrogen Energy
– volume: 53 126
  start-page: 10960 11140
  year: 2014 2014
  end-page: 10964 11144
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 28678
  year: 2016
  end-page: 28688
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 41
  start-page: 13005
  year: 2016
  end-page: 13013
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 554
  year: 2020
  end-page: 563
  publication-title: Nat. Catal.
– volume: 7
  start-page: 13216
  year: 2016
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 2905
  year: 2015
  end-page: 2911
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 1892
  year: 2018
  end-page: 1897
  publication-title: Nanoscale
– volume: 140
  start-page: 451
  year: 2018
  end-page: 458
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 924
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1082
  year: 2018
  end-page: 1091
  publication-title: ChemSusChem
– volume: 17
  start-page: 358
  year: 2022
  end-page: 377
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 1210
  year: 2016
  end-page: 1214
  publication-title: Energy Environ. Sci.
– volume: 134
  start-page: 3025
  year: 2012
  end-page: 3033
  publication-title: J. Am. Chem. Soc.
– volume: 203
  start-page: 684
  year: 2017
  end-page: 691
  publication-title: Appl. Catal. B
– volume: 181
  start-page: 547
  year: 1973
  end-page: 549
  publication-title: Science
– volume: 49
  start-page: 8896
  year: 2013
  end-page: 8909
  publication-title: Chem. Commun.
– volume: 118
  start-page: 17594
  year: 2014
  end-page: 17599
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 2474
  year: 2014
  end-page: 2478
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 3038
  year: 2019
  end-page: 3052
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 408
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 66
  start-page: 560
  year: 2022
  end-page: 565
  publication-title: J. Energy Chem.
– volume: 34
  start-page: 385
  year: 2017
  end-page: 391
  publication-title: Nano Energy
– volume: 297
  year: 2021
  publication-title: Appl. Catal. B
– volume: 60 133
  start-page: 23388 23576
  year: 2021 2021
  end-page: 23393 23581
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 423
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 304
  year: 2019
  end-page: 313
  publication-title: Nat. Catal.
– volume: 236
  start-page: 147
  year: 2018
  end-page: 153
  publication-title: Appl. Catal. B
– volume: 33
  start-page: 356
  year: 2017
  end-page: 362
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 29
  start-page: 126
  year: 2016
  end-page: 135
  publication-title: Nano Energy
– volume: 2
  start-page: 955
  year: 2019
  end-page: 970
  publication-title: Nat. Catal.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1152
  year: 2020
  end-page: 1160
  publication-title: ACS Catal.
– volume: 32
  start-page: 365
  year: 2007
  end-page: 370
  publication-title: Int. J. Hydrogen Energy
– volume: 312
  start-page: 216
  year: 2014
  end-page: 220
  publication-title: J. Catal.
– volume: 10
  start-page: 21123
  year: 2018
  end-page: 21131
  publication-title: Nanoscale
– volume: 414
  start-page: 345
  year: 2001
  end-page: 352
  publication-title: Nature
– volume: 134
  start-page: 20479
  year: 2012
  end-page: 20489
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  publication-title: Nature
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 1240
  year: 2021
  end-page: 1247
  publication-title: Nat. Mater.
– volume: 3
  start-page: 399
  year: 2012
  end-page: 404
  publication-title: J. Phys. Chem. Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 414
  start-page: 353
  year: 2001
  end-page: 358
  publication-title: Nature
– volume: 460
  start-page: 809
  year: 2009
  end-page: 811
  publication-title: Nature
– volume: 1
  start-page: 1494
  year: 2019
  end-page: 1518
  publication-title: Matter
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  publication-title: Nat. Mater.
– volume: 6
  start-page: 9009
  year: 2018
  end-page: 9018
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 5285
  year: 2017
  end-page: 5288
  publication-title: J. Am. Chem. Soc.
SSID ssj0028806
Score 2.6809306
Snippet We report the strong catalyst–support interaction in WC‐supported RuO2 nanoparticles (RuO2‐WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11...
We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202202519
SubjectTerms Acidic Water Splitting
Bifunctional Electrocatalysts
Catalysts
Catalytic activity
Electronic structure
Hydrogen production
Metal oxides
Nanoparticles
Oxygen evolution reactions
Ruthenium
Ruthenium oxide
Supported Electrocatalysts
Transition Metal Carbide
Water splitting
Title Bifunctional WC‐Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202202519
https://www.proquest.com/docview/2660945998
https://www.proquest.com/docview/2638023099
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQCyx8IwoFGYk1bWI7IRlL1aogUaRS1DJFtuNIFVJatcnCxE_gN_JLuMsXLSNsiZKTHMf2vWffvSPkJsYixjLmlvA9PGbk2gqU41jg62IupJKRxq2Bx6E3eBEPU3e6lsVf6EPUG244M_L1Gie4VKv2j2goZmADv2MMUTJm8GHAFqKiUa0fxWBwFulFnFtYhb5SbbRZe9N8A1-uo9TczfT3iawaWESXvLWyVLX0-y_txv98wQHZKzEo7RSD5pBsmeSI7HSr0m_H5PVuhv6u2Cakk-7XxydW_8S43IiOsidGYVEGtl0G1VEAvnQ0V9kqpRPArkv6DNA2D6ims4R29CyaaYpHQvKEjPu9cXdglTUYrAW47sBi-lYKRyrARbEwwo6CALg494QXG-4zoQMeMds3gOSEUjGLgf-4Ng_cCHgiEPVTsp3ME3NGKJMqYh6YS7BWivu29pn2pIm4lsbWDdKsfkFYzqNVCG0A_ukCJ2yQ6_ox9AYea8jEzDN8h6OKHUDdBmF5f4eLQqkjLDSZWYg9HdY9HXaG97367vwvRhdkF68xjMDxmmQ7XWbmEtBJqq7yEfgNxg3ddg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOZQLO6JQwEhcU1LbDcmxVFRlK1IpKpwi23GkCimtoLlw4hP4Rr6EmaQJyxGOWUZyHNvz3nj8BuA4piLGKhaO9D3aZhTGCXSz6aCvi4VUWkWGQgM3fa93Ly8fWkU2IZ2FyfUhyoAbzYxsvaYJTgHpky_VUDqCjQSPc4LJwSIsUVnvjFUNSgUpjsMzP2AkhEN16AvdRpef_LT_gTC_49TM0XRXQRdNzPNLnhrpTDfM6y_1xn99wxqszGEoa-fjZh0WbLIB1U5R_W0THs_G5PLySCEbdT7e3qkAKKXmRmyQ3nKG6zIS7nleHUPsywYTnb7M2Ajh6zO7Q3Sb5VSzccLaZhyNDaNdIbUFw-75sNNz5mUYnCl678Dh5lTJptIIjWJppRsFAdJx4UkvtsLn0gQi4q5vEcxJrWMeIwVquSJoRUgVkatvQyWZJHYHGFc64h6aK7TWWviu8bnxlI2EUdY1NagX_yCcT6WXENuAFLSFtLAGR-Vj7A3a2VCJnaT0jiAhO0S7NeBZh4fTXKwjzGWZeUg9HZY9Hbb7F-fl1e5fjA6h2hveXIfXF_2rPVim-5RV0PTqUJk9p3YfwcpMH2TD8ROrpOGR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVFWI3ENpLYbkmNpqVgLKiDgFHmLVCGlFTQXTnwC38iXMJO0gXKEY5aRHGfsec8evwHYT6iIsUqEJ8OAthmF8SJdrXoY6xIhlVbW0NLAVTs4vZfnj7XHH6f4C32IcsGNRkY-X9MA79vk8Fs0lE5gI7_jnFByNAnTMvBD8utmpxSQ4uidxfkiITwqQz-SbfT54bj9GMD8CVPzONNaADVqYZFe8nyQDfSBefsl3vifT1iE-SEIZfXCa5ZgwqXLMNsY1X5bgafjLgW8Yp2QPTQ-3z-o_Ccl5lrWya45w1kZ6fYwq44h8mWdns5eB-wBwesLu0Vsm2dUs27K6qZru4bRnpBahbvWyV3j1BsWYfD6GLsjj5sjJatKIzBKpJO-jSIk4yKQQeJEyKWJhOV-6BDKSa0TniABqvkiqlkkisjU12Aq7aVuHRhX2vIAzRVaay1C34TcBMpZYZTzTQW2Rr8gHg6k1xjbgAS0hqSwAnvlY-wN2tdQqetl9I4gGTvEuhXgeX_H_UKqIy5EmXlMPR2XPR3X22cn5dXGX4x2Yeam2Yovz9oXmzBHtymloBpswdTgJXPbiFQGeid3xi82DOBJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+WC%E2%80%90Supported+RuO2+Nanoparticles+for+Robust+Water+Splitting+in+Acidic+Media&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shu%E2%80%90Chao+Sun&rft.au=Jiang%2C+Hao&rft.au=Zi%E2%80%90Yao+Chen&rft.au=Chen%2C+Qing&rft.date=2022-05-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=21&rft_id=info:doi/10.1002%2Fanie.202202519&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon