Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO2 Reduction

The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 33; pp. e2101568 - n/a
Main Authors Dong, Xiao‐Yu, Si, Ya‐Nan, Wang, Qian‐You, Wang, Shan, Zang, Shuang‐Quan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2 single‐atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni–N2O2 catalytic centers into pristine phthalocyanine‐based Ni–N4 framework achieves remarkable CO generation ability (7.77 mmol g–1) with a high selectivity of 96% over H2. In combination with control experiments, as well as theoretical studies, the Ni–N2O2 moiety is evidenced as a more active site for CO2RR compared with the traditional Ni–N4 moiety, which can be ascribed to the M–N2O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments. Single metal sites with –N4 and –N2O2 coordination mode simultaneously incorporated into one porous organic backbone are reported. With the assistance of experimental results and theoretical calculations, the –N2O2 coordinated single metal sites are identified with higher catalytic activity toward CO2 photoreduction compared to that of traditional –N4 coordinated one.
AbstractList The precise identification of single-atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well-defined M-N4 and M-N2 O2 single-atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni-N2 O2 catalytic centers into pristine phthalocyanine-based Ni-N4 framework achieves remarkable CO generation ability (7.77 mmol g-1 ) with a high selectivity of 96% over H2 . In combination with control experiments, as well as theoretical studies, the Ni-N2 O2 moiety is evidenced as a more active site for CO2 RR compared with the traditional Ni-N4 moiety, which can be ascribed to the M-N2 O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments.
The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2 single‐atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni–N2O2 catalytic centers into pristine phthalocyanine‐based Ni–N4 framework achieves remarkable CO generation ability (7.77 mmol g–1) with a high selectivity of 96% over H2. In combination with control experiments, as well as theoretical studies, the Ni–N2O2 moiety is evidenced as a more active site for CO2RR compared with the traditional Ni–N4 moiety, which can be ascribed to the M–N2O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments. Single metal sites with –N4 and –N2O2 coordination mode simultaneously incorporated into one porous organic backbone are reported. With the assistance of experimental results and theoretical calculations, the –N2O2 coordinated single metal sites are identified with higher catalytic activity toward CO2 photoreduction compared to that of traditional –N4 coordinated one.
The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2 single‐atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni–N2O2 catalytic centers into pristine phthalocyanine‐based Ni–N4 framework achieves remarkable CO generation ability (7.77 mmol g–1) with a high selectivity of 96% over H2. In combination with control experiments, as well as theoretical studies, the Ni–N2O2 moiety is evidenced as a more active site for CO2RR compared with the traditional Ni–N4 moiety, which can be ascribed to the M–N2O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments.
Author Wang, Qian‐You
Si, Ya‐Nan
Zang, Shuang‐Quan
Dong, Xiao‐Yu
Wang, Shan
Author_xml – sequence: 1
  givenname: Xiao‐Yu
  surname: Dong
  fullname: Dong, Xiao‐Yu
  organization: Zhengzhou University
– sequence: 2
  givenname: Ya‐Nan
  surname: Si
  fullname: Si, Ya‐Nan
  organization: Zhengzhou University
– sequence: 3
  givenname: Qian‐You
  orcidid: 0000-0002-8892-7825
  surname: Wang
  fullname: Wang, Qian‐You
  organization: Zhengzhou University
– sequence: 4
  givenname: Shan
  orcidid: 0000-0002-7593-0910
  surname: Wang
  fullname: Wang, Shan
  email: shanwang@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 5
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
BookMark eNpdkc1LJDEQxYMoOLpePQe87KW1ku7E5DiMrisoI36cm3S6Mka6k9l0ZmXu_uGbQfGwlype8auiHu-I7IcYkJBTBucMgF-YfjTnHDgDJqTaIzMmOKsa0GKfzEDXotKyUYfkaJreAEBLkDPycRsyrpLJPqzoUykD0nmO40TffX6lV945TBgyvfc2RQx_fYphLIOJ-pAjXQakDzHFzUSXaWWCt0UO2xETdTHRa-e89bv9h9eYozXZDNtcoMWS00fsNzb7GH6QA2eGCU---jF5-XX9vPhd3S1vbhfzu2rNpVSVVI3ranAd66TiPYIRqq4704vLYlKjEq7nyNBycLYTPde9ho7bRtq60Y2pj8nPz7vrFP9scMrt6CeLw2ACFgctFwK4vIRaFvTsP_QtblIo3xVKMsUVa1ih9Cf17gfctuvkR5O2LYN2l0i7S6T9TqSdX93Pv1X9D8PjhVU
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202101568
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202101568
Genre article
GrantInformation_xml – fundername: Universities of Henan Province
  funderid: 19IRTSTHN022
– fundername: National Natural Science Foundation of China
  funderid: 92061201; 21825106; 21905254; 21901234
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2668-684fb30fb1b682de0a5833bad570959e85fd2e1ec20fcb5d29d90b2c46c3494a3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 11 04:26:25 EDT 2025
Fri Jul 25 03:36:11 EDT 2025
Wed Jan 22 16:28:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2668-684fb30fb1b682de0a5833bad570959e85fd2e1ec20fcb5d29d90b2c46c3494a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8892-7825
0000-0002-6728-0559
0000-0002-7593-0910
PQID 2561828141
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2550267036
proquest_journals_2561828141
wiley_primary_10_1002_adma_202101568_ADMA202101568
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2021 2017; 3 17 139
2020; 8
2021 2021; 12 6
2019; 4
2019 2019 2020 2020 2019 2019 2021; 4 2 5 49 2 119 2
2018 2011; 8 1
2015 2016 2021; 137 7 3
2018 2021; 57 11
2017 2020; 139 13
2020; 30
2020; 142
2019 2019; 31 245
2017 2020; 139 59
2020 2020; 142 59
2020 2020 2019 2020 2021 2020; 59 142 58 16 50 63
2019 2020 2020 2019 2021; 48 32 10 141 2
2019 2021; 141 284
2020 2020; 11 16
2020; 14
2020 2017; 6 139
2021; 143
2014; 9
2019; 141
2020 2020 2020 2020; 266 142 59 5
References_xml – volume: 4 2 5 49 2 119 2
  start-page: 732 198 486 1385 648 3962
  year: 2019 2019 2020 2020 2019 2019 2021
  publication-title: Nat. Energy Nat. Catal. ACS Energy Lett. Chem. Soc. Rev. Nat. Catal. Chem. Rev. Small Struct.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 141 284
  year: 2019 2021
  publication-title: J. Am. Chem. Soc. Appl. Catal., B
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 57 11
  start-page: 5076
  year: 2018 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 139 13
  start-page: 6538 4609
  year: 2017 2020
  publication-title: J. Am. Chem. Soc. Energy Environ. Sci.
– volume: 137 7 3
  start-page: 606 408
  year: 2015 2016 2021
  publication-title: J. Am. Chem. Soc. ACS Catal. CCS Chem.
– volume: 9
  start-page: 50
  year: 2014
  publication-title: Nano Energy
– volume: 4
  start-page: 690
  year: 2019
  publication-title: Nat. Energy
– volume: 3 17 139
  start-page: 8078
  year: 2019 2021 2017
  publication-title: Small Methods Small J. Am. Chem. Soc.
– volume: 59 142 58 16 50 63
  start-page: 2540 1289
  year: 2020 2020 2019 2020 2021 2020
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Small Chem. Soc. Rev. Sci. China Chem.
– volume: 31 245
  start-page: 496
  year: 2019 2019
  publication-title: Adv. Mater. Appl. Catal., B
– volume: 266 142 59 5
  start-page: 2705 1044
  year: 2020 2020 2020 2020
  publication-title: Appl. Catal., B J. Am. Chem. Soc. Angew. Chem., Int. Ed. ACS Energy Lett.
– volume: 14
  start-page: 6164
  year: 2020
  publication-title: ACS Nano
– volume: 48 32 10 141 2
  start-page: 5310 7615
  year: 2019 2020 2020 2019 2021
  publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Energy Mater. J. Am. Chem. Soc. Small Struct.
– volume: 12 6
  start-page: 586 713
  year: 2021 2021
  publication-title: Nat. Commun. ACS Energy Lett.
– volume: 11 16
  start-page: 543
  year: 2020 2020
  publication-title: Chem. Sci. Small
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 139 59
  start-page: 4258 6007
  year: 2017 2020
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 143
  start-page: 925
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 6 139
  start-page: 2335 3774
  year: 2020 2017
  publication-title: Chem J. Am. Chem. Soc.
– volume: 8 1
  start-page: 6961 819
  year: 2018 2011
  publication-title: ACS Catal. ACS Catal.
– volume: 142 59
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
SSID ssj0009606
Score 2.662174
Snippet The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging....
The precise identification of single-atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2101568
SubjectTerms Carbon dioxide
CO 2 reduction
porous organic polymers
Selectivity
single metal sites
Title Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO2 Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202101568
https://www.proquest.com/docview/2561828141
https://www.proquest.com/docview/2550267036
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QJzjwRgwGChLXQpolWXuc9tBAGqABErcqSVOBgBat3QHO_HDsthsbR7hUtdpIiRzXn137CyFnTDgTt5n0EuYHnnBCeIASQk9ppdFnKN9iHnJ0rYYP4upRPi508Vf8EPOEG1pG-b1GA9cmv_ghDdVxyRsEIQuEINjtiwVbiIrGP_xRCM9Lsr2W9EIlghlrI-MXy8OX8OUiSi3dzGCT6NkEq-qSl_NpYc7t5y_uxv-sYIts1BiUdqpNs01WXLpD1heYCXfJ12VNIwESvYPLq6OdInvLKSZuaa8-VqWgIyzoW-yWo89pkdGb1NHbbJJNc1p1e1oQXz_e3IQCSqb9krgCx98-ZUVW5pA-YDa0e8PpGNlkcb_skYdB_7479OoDG7x38POBpwKRmBZLjG9UwGPHNPZ0GR3LNqYbXSCTmDvfWc4Sa2TMwzhkhluhLLLk6NY-WU2z1B0Q2hLKcWmta0suEq61NjoBqOebkCXtMGyQ5kxhUW11eQTwDcKlwBd-g5zOH4O94E8QnTpYNLwj8dAtcNwNwkvtRO8Vr0dUMTjzCPUSzfUSdXqjzlw6_MugI7KG91XdYJOsFpOpOwYsU5iTcr9-A-mA7dI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQ9FPqnbkupK7XHgOO1vcmhhxUL2i0sIAoSt9R2HLUqJGg3q2o580J9FZ6oM0l2WThW4tBLJCdx5Dgz9jeTmW8APnHpbdrhKsh4GAXSSxkgSogDbbShPUOHjvyQwwPdP5Vfz9TZEvyZ5cLU_BBzhxtpRrVek4KTQ3rrljXUpBVxENosaINETVzlnp_-Rqtt_GXQw0_8WYjdnZPtftAUFggucT-KAh3JzLZ5ZkOrI5F6bij3yJpUdcgt5iOVpcKH3gmeOatSEacxt8JJ7YjNxbTxuY9ghcqIE11_7_iWsYoMgorer62CWMtoxhPJxdbd8d5BtIu4uNrYdlfhZjYldTzLr81JaTfd1T22yP9qztbgWQOzWbfWi-ew5PMX8HSBfPElXA8apgxssW94OPesWxYXY0a-adZrKseUbEgxi4sJgexnXhbsMPfsqBgVkzGrE1odNs-nF37E0BBgOxU3B_U_-lGUReUmm-Jo2PahYMdEmEsq8QpOH2QaXsNyXuT-DbC21F4o53xHCZkJY4w1GaLZ0MY868RxC9ZnEpI0C8s4QYSKFmEUyrAFH-eXcUmg_zwm9_jSeI-iumKITVogKnFILmvqkqQmqRYJyUEyl4Ok2xt25623_9LpAzzunwz3k_3Bwd47eELn6zDJdVguRxP_HqFbaTcqZWHw_aEl7S-fy0xu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NISH2wH9EYYCR4DGb49pu8sBDtaxaGd2qwaS9BdtxBNqWVG0qVJ75QHwVvhF3Sdp1PCLtgZdITuLIce7s313ufgfwlktvsx5XQc7DKJBeygBRQhxoow3tGTp05IccHemDU_nhTJ1twK9lLkzDD7FyuJFm1Os1Kfgky3evSENNVvMGocmCJkjUhlUe-sV3NNpm74cJfuF3Qgz2P-8dBG1dgWCC21EU6EjmtstzG1odicxzQ6lH1mSqR14xH6k8Ez70TvDcWZWJOIu5FU5qR2QupovPvQW3peYxFYtITq4Iq8geqNn9uiqItYyWNJFc7F4f7zVAuw6L631tcB9-L2ekCWc535lXdsf9-Iss8n-asgdwrwXZrN9oxUPY8MUj2FqjXnwMP4ctTwa22Cc8XHjWr8rLGSPPNEvaujEVG1HE4no6IPtWVCU7Ljwbl9NyPmNNOqvD5sXi0k8ZmgFsv2bmoP7jr2VV1k6yBY6G7R0LdkJ0uaQQT-D0RqbhKWwWZeGfAetK7YVyzveUkLkwxliTI5YNbczzXhx3YHspIGm7rMxSxKdoD0ahDDvwZnUZFwT6y2MKjy-N9yiqKobIpAOiloZ00hCXpA1FtUhJDtKVHKT9ZNRftZ7_S6fXcGecDNKPw6PDF3CXTjcxktuwWU3n_iXitsq-qlWFwZebFrQ_U0lLHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Single+Atoms+with+Different+Microenvironments+into+One+Porous+Organic+Polymer+for+Efficient+Photocatalytic+CO2+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dong%2C+Xiao-Yu&rft.au=Si%2C+Ya-Nan&rft.au=Wang%2C+Qian-You&rft.au=Wang%2C+Shan&rft.date=2021-08-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=33&rft.spage=e2101568&rft.epage=e2101568&rft_id=info:doi/10.1002%2Fadma.202101568&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon