Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO2 Reduction
The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 33; pp. e2101568 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2 single‐atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni–N2O2 catalytic centers into pristine phthalocyanine‐based Ni–N4 framework achieves remarkable CO generation ability (7.77 mmol g–1) with a high selectivity of 96% over H2. In combination with control experiments, as well as theoretical studies, the Ni–N2O2 moiety is evidenced as a more active site for CO2RR compared with the traditional Ni–N4 moiety, which can be ascribed to the M–N2O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments.
Single metal sites with –N4 and –N2O2 coordination mode simultaneously incorporated into one porous organic backbone are reported. With the assistance of experimental results and theoretical calculations, the –N2O2 coordinated single metal sites are identified with higher catalytic activity toward CO2 photoreduction compared to that of traditional –N4 coordinated one. |
---|---|
AbstractList | The precise identification of single-atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well-defined M-N4 and M-N2 O2 single-atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni-N2 O2 catalytic centers into pristine phthalocyanine-based Ni-N4 framework achieves remarkable CO generation ability (7.77 mmol g-1 ) with a high selectivity of 96% over H2 . In combination with control experiments, as well as theoretical studies, the Ni-N2 O2 moiety is evidenced as a more active site for CO2 RR compared with the traditional Ni-N4 moiety, which can be ascribed to the M-N2 O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments. The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2 single‐atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni–N2O2 catalytic centers into pristine phthalocyanine‐based Ni–N4 framework achieves remarkable CO generation ability (7.77 mmol g–1) with a high selectivity of 96% over H2. In combination with control experiments, as well as theoretical studies, the Ni–N2O2 moiety is evidenced as a more active site for CO2RR compared with the traditional Ni–N4 moiety, which can be ascribed to the M–N2O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments. Single metal sites with –N4 and –N2O2 coordination mode simultaneously incorporated into one porous organic backbone are reported. With the assistance of experimental results and theoretical calculations, the –N2O2 coordinated single metal sites are identified with higher catalytic activity toward CO2 photoreduction compared to that of traditional –N4 coordinated one. The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging. Herein, for the first time a series of porous organic polymers is designed and prepared simultaneously, containing well‐defined M–N4 and M–N2O2 single‐atom sites. Such a strategy not only offers multiactive sites to promote the catalytic efficiency but also provides a more direct chance to identify the metal center activity. The CO2 photoreduction results indicate that the introduction of salphen unit with Ni–N2O2 catalytic centers into pristine phthalocyanine‐based Ni–N4 framework achieves remarkable CO generation ability (7.77 mmol g–1) with a high selectivity of 96% over H2. In combination with control experiments, as well as theoretical studies, the Ni–N2O2 moiety is evidenced as a more active site for CO2RR compared with the traditional Ni–N4 moiety, which can be ascribed to the M–N2O2 active sites effectively reducing the energy barrier, facilitating the adsorption of reaction radicals *COOH, and improving the charge transportation. This work might shed some light on designing more efficient SACs toward CO2 reduction through modification of their coordination environments. |
Author | Wang, Qian‐You Si, Ya‐Nan Zang, Shuang‐Quan Dong, Xiao‐Yu Wang, Shan |
Author_xml | – sequence: 1 givenname: Xiao‐Yu surname: Dong fullname: Dong, Xiao‐Yu organization: Zhengzhou University – sequence: 2 givenname: Ya‐Nan surname: Si fullname: Si, Ya‐Nan organization: Zhengzhou University – sequence: 3 givenname: Qian‐You orcidid: 0000-0002-8892-7825 surname: Wang fullname: Wang, Qian‐You organization: Zhengzhou University – sequence: 4 givenname: Shan orcidid: 0000-0002-7593-0910 surname: Wang fullname: Wang, Shan email: shanwang@zzu.edu.cn organization: Zhengzhou University – sequence: 5 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University |
BookMark | eNpdkc1LJDEQxYMoOLpePQe87KW1ku7E5DiMrisoI36cm3S6Mka6k9l0ZmXu_uGbQfGwlype8auiHu-I7IcYkJBTBucMgF-YfjTnHDgDJqTaIzMmOKsa0GKfzEDXotKyUYfkaJreAEBLkDPycRsyrpLJPqzoUykD0nmO40TffX6lV945TBgyvfc2RQx_fYphLIOJ-pAjXQakDzHFzUSXaWWCt0UO2xETdTHRa-e89bv9h9eYozXZDNtcoMWS00fsNzb7GH6QA2eGCU---jF5-XX9vPhd3S1vbhfzu2rNpVSVVI3ranAd66TiPYIRqq4704vLYlKjEq7nyNBycLYTPde9ho7bRtq60Y2pj8nPz7vrFP9scMrt6CeLw2ACFgctFwK4vIRaFvTsP_QtblIo3xVKMsUVa1ih9Cf17gfctuvkR5O2LYN2l0i7S6T9TqSdX93Pv1X9D8PjhVU |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202101568 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202101568 |
Genre | article |
GrantInformation_xml | – fundername: Universities of Henan Province funderid: 19IRTSTHN022 – fundername: National Natural Science Foundation of China funderid: 92061201; 21825106; 21905254; 21901234 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-p2668-684fb30fb1b682de0a5833bad570959e85fd2e1ec20fcb5d29d90b2c46c3494a3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 11 04:26:25 EDT 2025 Fri Jul 25 03:36:11 EDT 2025 Wed Jan 22 16:28:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2668-684fb30fb1b682de0a5833bad570959e85fd2e1ec20fcb5d29d90b2c46c3494a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8892-7825 0000-0002-6728-0559 0000-0002-7593-0910 |
PQID | 2561828141 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2550267036 proquest_journals_2561828141 wiley_primary_10_1002_adma_202101568_ADMA202101568 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2021 2017; 3 17 139 2020; 8 2021 2021; 12 6 2019; 4 2019 2019 2020 2020 2019 2019 2021; 4 2 5 49 2 119 2 2018 2011; 8 1 2015 2016 2021; 137 7 3 2018 2021; 57 11 2017 2020; 139 13 2020; 30 2020; 142 2019 2019; 31 245 2017 2020; 139 59 2020 2020; 142 59 2020 2020 2019 2020 2021 2020; 59 142 58 16 50 63 2019 2020 2020 2019 2021; 48 32 10 141 2 2019 2021; 141 284 2020 2020; 11 16 2020; 14 2020 2017; 6 139 2021; 143 2014; 9 2019; 141 2020 2020 2020 2020; 266 142 59 5 |
References_xml | – volume: 4 2 5 49 2 119 2 start-page: 732 198 486 1385 648 3962 year: 2019 2019 2020 2020 2019 2019 2021 publication-title: Nat. Energy Nat. Catal. ACS Energy Lett. Chem. Soc. Rev. Nat. Catal. Chem. Rev. Small Struct. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 141 284 year: 2019 2021 publication-title: J. Am. Chem. Soc. Appl. Catal., B – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 57 11 start-page: 5076 year: 2018 2021 publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 139 13 start-page: 6538 4609 year: 2017 2020 publication-title: J. Am. Chem. Soc. Energy Environ. Sci. – volume: 137 7 3 start-page: 606 408 year: 2015 2016 2021 publication-title: J. Am. Chem. Soc. ACS Catal. CCS Chem. – volume: 9 start-page: 50 year: 2014 publication-title: Nano Energy – volume: 4 start-page: 690 year: 2019 publication-title: Nat. Energy – volume: 3 17 139 start-page: 8078 year: 2019 2021 2017 publication-title: Small Methods Small J. Am. Chem. Soc. – volume: 59 142 58 16 50 63 start-page: 2540 1289 year: 2020 2020 2019 2020 2021 2020 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Small Chem. Soc. Rev. Sci. China Chem. – volume: 31 245 start-page: 496 year: 2019 2019 publication-title: Adv. Mater. Appl. Catal., B – volume: 266 142 59 5 start-page: 2705 1044 year: 2020 2020 2020 2020 publication-title: Appl. Catal., B J. Am. Chem. Soc. Angew. Chem., Int. Ed. ACS Energy Lett. – volume: 14 start-page: 6164 year: 2020 publication-title: ACS Nano – volume: 48 32 10 141 2 start-page: 5310 7615 year: 2019 2020 2020 2019 2021 publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Energy Mater. J. Am. Chem. Soc. Small Struct. – volume: 12 6 start-page: 586 713 year: 2021 2021 publication-title: Nat. Commun. ACS Energy Lett. – volume: 11 16 start-page: 543 year: 2020 2020 publication-title: Chem. Sci. Small – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 139 59 start-page: 4258 6007 year: 2017 2020 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 143 start-page: 925 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 6 139 start-page: 2335 3774 year: 2020 2017 publication-title: Chem J. Am. Chem. Soc. – volume: 8 1 start-page: 6961 819 year: 2018 2011 publication-title: ACS Catal. ACS Catal. – volume: 142 59 year: 2020 2020 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. |
SSID | ssj0009606 |
Score | 2.662174 |
Snippet | The precise identification of single‐atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging.... The precise identification of single-atom catalysts (SACs) activity and boosting their efficiency toward CO2 conversion is imperative yet quite challenging.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2101568 |
SubjectTerms | Carbon dioxide CO 2 reduction porous organic polymers Selectivity single metal sites |
Title | Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO2 Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202101568 https://www.proquest.com/docview/2561828141 https://www.proquest.com/docview/2550267036 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QJzjwRgwGChLXQpolWXuc9tBAGqABErcqSVOBgBat3QHO_HDsthsbR7hUtdpIiRzXn137CyFnTDgTt5n0EuYHnnBCeIASQk9ppdFnKN9iHnJ0rYYP4upRPi508Vf8EPOEG1pG-b1GA9cmv_ghDdVxyRsEIQuEINjtiwVbiIrGP_xRCM9Lsr2W9EIlghlrI-MXy8OX8OUiSi3dzGCT6NkEq-qSl_NpYc7t5y_uxv-sYIts1BiUdqpNs01WXLpD1heYCXfJ12VNIwESvYPLq6OdInvLKSZuaa8-VqWgIyzoW-yWo89pkdGb1NHbbJJNc1p1e1oQXz_e3IQCSqb9krgCx98-ZUVW5pA-YDa0e8PpGNlkcb_skYdB_7479OoDG7x38POBpwKRmBZLjG9UwGPHNPZ0GR3LNqYbXSCTmDvfWc4Sa2TMwzhkhluhLLLk6NY-WU2z1B0Q2hLKcWmta0suEq61NjoBqOebkCXtMGyQ5kxhUW11eQTwDcKlwBd-g5zOH4O94E8QnTpYNLwj8dAtcNwNwkvtRO8Vr0dUMTjzCPUSzfUSdXqjzlw6_MugI7KG91XdYJOsFpOpOwYsU5iTcr9-A-mA7dI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQ9FPqnbkupK7XHgOO1vcmhhxUL2i0sIAoSt9R2HLUqJGg3q2o580J9FZ6oM0l2WThW4tBLJCdx5Dgz9jeTmW8APnHpbdrhKsh4GAXSSxkgSogDbbShPUOHjvyQwwPdP5Vfz9TZEvyZ5cLU_BBzhxtpRrVek4KTQ3rrljXUpBVxENosaINETVzlnp_-Rqtt_GXQw0_8WYjdnZPtftAUFggucT-KAh3JzLZ5ZkOrI5F6bij3yJpUdcgt5iOVpcKH3gmeOatSEacxt8JJ7YjNxbTxuY9ghcqIE11_7_iWsYoMgorer62CWMtoxhPJxdbd8d5BtIu4uNrYdlfhZjYldTzLr81JaTfd1T22yP9qztbgWQOzWbfWi-ew5PMX8HSBfPElXA8apgxssW94OPesWxYXY0a-adZrKseUbEgxi4sJgexnXhbsMPfsqBgVkzGrE1odNs-nF37E0BBgOxU3B_U_-lGUReUmm-Jo2PahYMdEmEsq8QpOH2QaXsNyXuT-DbC21F4o53xHCZkJY4w1GaLZ0MY868RxC9ZnEpI0C8s4QYSKFmEUyrAFH-eXcUmg_zwm9_jSeI-iumKITVogKnFILmvqkqQmqRYJyUEyl4Ok2xt25623_9LpAzzunwz3k_3Bwd47eELn6zDJdVguRxP_HqFbaTcqZWHw_aEl7S-fy0xu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NISH2wH9EYYCR4DGb49pu8sBDtaxaGd2qwaS9BdtxBNqWVG0qVJ75QHwVvhF3Sdp1PCLtgZdITuLIce7s313ufgfwlktvsx5XQc7DKJBeygBRQhxoow3tGTp05IccHemDU_nhTJ1twK9lLkzDD7FyuJFm1Os1Kfgky3evSENNVvMGocmCJkjUhlUe-sV3NNpm74cJfuF3Qgz2P-8dBG1dgWCC21EU6EjmtstzG1odicxzQ6lH1mSqR14xH6k8Ez70TvDcWZWJOIu5FU5qR2QupovPvQW3peYxFYtITq4Iq8geqNn9uiqItYyWNJFc7F4f7zVAuw6L631tcB9-L2ekCWc535lXdsf9-Iss8n-asgdwrwXZrN9oxUPY8MUj2FqjXnwMP4ctTwa22Cc8XHjWr8rLGSPPNEvaujEVG1HE4no6IPtWVCU7Ljwbl9NyPmNNOqvD5sXi0k8ZmgFsv2bmoP7jr2VV1k6yBY6G7R0LdkJ0uaQQT-D0RqbhKWwWZeGfAetK7YVyzveUkLkwxliTI5YNbczzXhx3YHspIGm7rMxSxKdoD0ahDDvwZnUZFwT6y2MKjy-N9yiqKobIpAOiloZ00hCXpA1FtUhJDtKVHKT9ZNRftZ7_S6fXcGecDNKPw6PDF3CXTjcxktuwWU3n_iXitsq-qlWFwZebFrQ_U0lLHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Single+Atoms+with+Different+Microenvironments+into+One+Porous+Organic+Polymer+for+Efficient+Photocatalytic+CO2+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dong%2C+Xiao-Yu&rft.au=Si%2C+Ya-Nan&rft.au=Wang%2C+Qian-You&rft.au=Wang%2C+Shan&rft.date=2021-08-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=33&rft.spage=e2101568&rft.epage=e2101568&rft_id=info:doi/10.1002%2Fadma.202101568&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |