Salt‐Induced High‐Density Vacancy‐Rich 2D MoS2 for Efficient Hydrogen Evolution

Emerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 17; pp. e2304808 - n/a
Main Authors Man, Ping, Jiang, Shan, Leung, Ka Ho, Lai, Ka Hei, Guang, Zhiqiang, Chen, Honglin, Huang, Lingli, Chen, Tianren, Gao, Shan, Peng, Yung‐Kang, Lee, Chun‐Sing, Deng, Qingming, Zhao, Jiong, Ly, Thuc Hue
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post‐treatment processes. Here, a novel salt‐assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh‐density vacancy‐rich 2H‐MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm−2. This approach involves a pre‐sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2‐K‐H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post‐treatment methods. The vacancy‐rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm−2) and a Tafel slope of 54.3 mV dec−1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt‐assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials. Sulfur vacancy engineering is a vital strategy to activate the hydrogen evolution activity of the MoS2 basal plane. Unlike traditional costly post‐treatment methods, this work demonstrates a novel salt‐assisted chemical vapor deposition method for synthesizing vacancy‐rich 2H‐MoS2 electrocatalysts with exceptional catalytic activity. The generation of such defects is closely related to ion adsorption in the growth process.
AbstractList Emerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post‐treatment processes. Here, a novel salt‐assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh‐density vacancy‐rich 2H‐MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm−2. This approach involves a pre‐sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2‐K‐H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post‐treatment methods. The vacancy‐rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm−2) and a Tafel slope of 54.3 mV dec−1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt‐assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.
Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm-2. This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2-K-H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm-2. This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2-K-H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.
Emerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post‐treatment processes. Here, a novel salt‐assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh‐density vacancy‐rich 2H‐MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm−2. This approach involves a pre‐sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2‐K‐H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post‐treatment methods. The vacancy‐rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm−2) and a Tafel slope of 54.3 mV dec−1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt‐assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials. Sulfur vacancy engineering is a vital strategy to activate the hydrogen evolution activity of the MoS2 basal plane. Unlike traditional costly post‐treatment methods, this work demonstrates a novel salt‐assisted chemical vapor deposition method for synthesizing vacancy‐rich 2H‐MoS2 electrocatalysts with exceptional catalytic activity. The generation of such defects is closely related to ion adsorption in the growth process.
Author Huang, Lingli
Peng, Yung‐Kang
Lee, Chun‐Sing
Zhao, Jiong
Leung, Ka Ho
Guang, Zhiqiang
Ly, Thuc Hue
Lai, Ka Hei
Man, Ping
Gao, Shan
Deng, Qingming
Jiang, Shan
Chen, Tianren
Chen, Honglin
Author_xml – sequence: 1
  givenname: Ping
  surname: Man
  fullname: Man, Ping
  organization: City University of Hong Kong Shenzhen Research Institute
– sequence: 2
  givenname: Shan
  surname: Jiang
  fullname: Jiang, Shan
  organization: The Hong Kong Polytechnic University Shenzhen Research Institute
– sequence: 3
  givenname: Ka Ho
  surname: Leung
  fullname: Leung, Ka Ho
  organization: City University of Hong Kong Shenzhen Research Institute
– sequence: 4
  givenname: Ka Hei
  surname: Lai
  fullname: Lai, Ka Hei
  organization: The Hong Kong Polytechnic University Shenzhen Research Institute
– sequence: 5
  givenname: Zhiqiang
  surname: Guang
  fullname: Guang, Zhiqiang
  organization: City University of Hong Kong
– sequence: 6
  givenname: Honglin
  surname: Chen
  fullname: Chen, Honglin
  organization: The Hong Kong Polytechnic University Shenzhen Research Institute
– sequence: 7
  givenname: Lingli
  surname: Huang
  fullname: Huang, Lingli
  organization: City University of Hong Kong Shenzhen Research Institute
– sequence: 8
  givenname: Tianren
  surname: Chen
  fullname: Chen, Tianren
  organization: The Hong Kong Polytechnic University Shenzhen Research Institute
– sequence: 9
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
  organization: City University of Hong Kong Shenzhen Research Institute
– sequence: 10
  givenname: Yung‐Kang
  surname: Peng
  fullname: Peng, Yung‐Kang
  organization: City University of Hong Kong
– sequence: 11
  givenname: Chun‐Sing
  surname: Lee
  fullname: Lee, Chun‐Sing
  organization: City University of Hong Kong
– sequence: 12
  givenname: Qingming
  surname: Deng
  fullname: Deng, Qingming
  email: q.deng@hytc.edu.cn
  organization: Huaiyin Normal University
– sequence: 13
  givenname: Jiong
  surname: Zhao
  fullname: Zhao, Jiong
  email: jiongzhao@polyu.edu.hk
  organization: The Hong Kong Polytechnic University Shenzhen Research Institute
– sequence: 14
  givenname: Thuc Hue
  orcidid: 0000-0001-7852-3811
  surname: Ly
  fullname: Ly, Thuc Hue
  email: thuchly@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNpdkMtKAzEUhoMoWC9b1wNu3IyeXCYmy9JWKyiCt21Ic6kp06TORZmdj-Aj-Cw-ik_iFKULV4f_8PHz8-2h7ZiiQ-gIwykGIGfaLvUpAUKBCRBbaIALgnMGsthGA5C0yCVnYhft1fUCACQHPkBP97psvt8_rqJtjbPZNMyf-zh2sQ5Nlz1po6Pp-s9dMM8ZGWc36Z58ffpUZRPvgwkuNtm0s1Wau5hNXlPZNiHFA7TjdVm7w7-7jx4vJg-jaX59e3k1Gl7nK8K5yEnhTUEFt86LQlg6c1gWTGvKz70XmhqMKciZo3Z2DoJ5xsFyJ40BbZjUlu6jk9_eVZVeWlc3ahlq48pSR5faWhFRMEaBAu7R43_oIrVV7Nep3hiTUgq8puQv9RZK16lVFZa66hQGtXas1o7VxrEajm-Gm0R_AEOYdrw
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202304808
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202304808
Genre article
GrantInformation_xml – fundername: Shenzhen Science, Technology and Innovation Commission
  funderid: JCYJ20200109110213442
– fundername: Hong Kong Research Grant Council General Research Fund
  funderid: 11312022; 11300820; 15302522
– fundername: National Science Foundation of China
  funderid: 52222218; 52272045; 52173230; 21703076
– fundername: Environment and Conservation Fund
  funderid: 69/2021 34/2022
– fundername: Hong Kong Special Administrative Region, China
  funderid: C1009‐17EF
– fundername: Natural Science Foundation of Jiangsu Province of China
  funderid: BK20211609
– fundername: City University of Hong Kong
  funderid: 9229074; 9667223; 9678303; 7005602
– fundername: Hong Kong Polytechnic University
  funderid: ZVGH; ZVRP
– fundername: Collaborative Research Fund
  funderid: SKLMP/SCRF/0037
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2668-25fc5386def858d3be1954aa367ff8a3c11309be3db7084f460d6e9cc0ac49ad3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:14:10 EDT 2025
Fri Jul 25 02:32:56 EDT 2025
Wed Jan 22 17:21:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2668-25fc5386def858d3be1954aa367ff8a3c11309be3db7084f460d6e9cc0ac49ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7852-3811
PQID 3044999811
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2854430301
proquest_journals_3044999811
wiley_primary_10_1002_adma_202304808_ADMA202304808
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2017 2016; 139 26
2015; 6
2021; 5
2013; 25
2005; 152
2020; 63
2020; 142
2019; 13
2016; 30
2019; 18
2020; 14
2017; 29
2020; 11
2015; 9
2016; 16
2014 2018 2018 2018 2019 2022 2014; 14 17 10 10 31 13 8
2004 2017; 305 355
2013 2014 2016 2016 2017; 13 4 15 10 8
1996 1996; 54 6
1996; 77
1996; 105
2007; 317
1976; 13
2018 2019; 9 30
2020; 30
2018; 556
2019 2020; 10 142
2019; 25
2010; 132
2018; 30
1994; 50
References_xml – volume: 13
  start-page: 9958
  year: 2019
  publication-title: ACS Nano
– volume: 14
  start-page: 767
  year: 2020
  publication-title: ACS Nano
– volume: 11
  start-page: 3682
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6293
  year: 2015
  publication-title: Nat. Commun.
– volume: 25
  start-page: 28
  year: 2019
  publication-title: Mater. Today
– volume: 105
  start-page: 9982
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 152
  start-page: J23
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 305 355
  start-page: 972
  year: 2004 2017
  publication-title: Science Science
– volume: 18
  start-page: 1098
  year: 2019
  publication-title: Nat. Mater.
– volume: 13
  start-page: 6824
  year: 2019
  publication-title: ACS Nano
– volume: 13 4 15 10 8
  start-page: 6222 3957 48 8929
  year: 2013 2014 2016 2016 2017
  publication-title: Nano Lett. ACS Catal. Nat. Mater. ACS Nano Nat. Commun.
– volume: 11
  start-page: 57
  year: 2020
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 10 142
  start-page: 1584 4298
  year: 2019 2020
  publication-title: Nat. Commun. J. Am. Chem. Soc.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 30
  start-page: 846
  year: 2016
  publication-title: Nano Energy
– volume: 139 26
  start-page: 4733
  year: 2017 2016
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 63
  start-page: 1065
  year: 2020
  publication-title: Sci. China Mater.
– volume: 556
  start-page: 355
  year: 2018
  publication-title: Nature
– volume: 9 30
  start-page: 979
  year: 2018 2019
  publication-title: Nat. Commun. Nanotechnology
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  year: 2013
  publication-title: J. Phys., Condens. Matter
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 1520
  year: 2015
  publication-title: ACS Nano
– volume: 54 6
  start-page: 15
  year: 1996 1996
  publication-title: Phys. Rev. B Comput. Mater. Sci.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 16
  start-page: 1097
  year: 2016
  publication-title: Nano Lett.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 14 17 10 10 31 13 8
  start-page: 553 1108 1246 638 2193
  year: 2014 2018 2018 2018 2019 2022 2014
  publication-title: Nano Lett. Nat. Mater. Nat. Chem. Nat. Chem. Adv. Mater. Nat. Commun. ACS Nano
– volume: 5
  start-page: 28
  year: 2021
  publication-title: Nat. Electron.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0009606
Score 2.5944562
Snippet Emerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is...
Emerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is...
Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2304808
SubjectTerms 2D MoS2
Basal plane
Catalytic activity
Chemical vapor deposition
Controllability
Defects
Density
Hydrogen evolution reactions
Ion adsorption
Molybdenum disulfide
Noble metals
salt‐assisted
Substrates
Sulfur
sulfur vacancies
Sulfuric acid
Two dimensional materials
Title Salt‐Induced High‐Density Vacancy‐Rich 2D MoS2 for Efficient Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304808
https://www.proquest.com/docview/3044999811
https://www.proquest.com/docview/2854430301
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YTnrw34iiWROvhf5sy_ZIBEJM8CBCuDX714umECgmePIRfASfxUfxSZxpSwGPemq3zSbd6czON7sz3xJy60rBpHZDSzncWCzQ3BIQN1sasHYzNEHscCxw7j8EvSG7H_vjjSr-nB-iXHBDy8jmazRwIeeNNWmo0BlvEC5q8qzaFxO2EBU9rvmjEJ5nZHueb4UB4yvWRtttbHffwpebKDVzM90DIlYfmGeXPNcXqayrt1_cjf8ZwSHZLzAobeVKc0R2THJM9jaYCU_IaCBe0u_3DzzZQxlNMR0Emm1Md0-XdCQUzsrwBAvzqdum_cnA_foEBEw7GSkF-DLaW-rZBBSUdl4LBT8lw27n6a5nFUcwWFPw3GBDfqxgSgy0ibnPtScNMsQJ4QXNOObCUw74wFAaZGm2OYtZYOvAhErZQrFQaO-MVJJJYs4JbRoV-iZ2bCMlU7YMFW6xekIDRJVwrZLa6hdEhR3NIxANhmTccarkpnwNFoDbGiIxk8U8whpQ5mFoVyVuJu9omjN1RDknsxuhpKNS0lGr3W-VrYu_dLoku3BfpPDUSCWdLcwVoJNUXmca-ANzi-Bf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHdkShgJG4ps3ipM6xoq3K0h5YKm6Wt1xAbVVSJDjxCXwC38Kn8CXMJGkLHOEU2ZGlZDzjeWPPPBNy4ivJlPFjR3vcOiwy3JEQNzsGsHY9tlHicSxw7vaizi07vwun2YRYC5PzQ8w23NAysvUaDRw3pGtz1lBpMuIg3NXkWO67iNd6Z1HV1ZxBCgF6RrcXhE4cMT7lbXT92s_xPxDmd5yaOZr2GlHTT8zzS-6rk1RV9csv9sZ__cM6WS1gKG3kerNBFuxgk6x8IyfcIv1r-ZB-vr7h5R7aGooZIdBsYsZ7-kz7UuPCDD1Ym0_9Ju0Or_2PdwDBtJXxUoA7o51nMx6CjtLWU6Hj2-S23bo57TjFLQzOCJw3mFGYaFgVI2MTHnITKIskcVIGUT1JuAy0B24wVhaJml3OEha5JrKx1q7ULJYm2CGlwXBgdwmtWx2HNvFcqxTTroo1nrIG0gBKVfAsk8p0DkRhSo8CRINRGfe8MjmevQYjwJMNObDDyaPAMlAWYHRXJn4mcDHKyTpETsvsC5S0mElaNJrdxqy195dBR2Spc9O9FJdnvYt9sgz9RUZPhZTS8cQeAFhJ1WGmjl99EOR6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkRAc2BFlNRLX0CxO6hwr0qosRQhoxc3ylguorSBFghOfwCfwLXwKX8JMkpbCEU6RHVlKxrM82zPPhBz6SjJl_NjRHrcOiwx3JKybHQNYux7bKPU4Fjh3LqJ2l53ehrdTVfwFP8Rkww0tI_fXaOBDk9a-SUOlyXmDcFOTY7XvLItcjnqdXH0TSCE-z9n2gtCJI8bHtI2uX_s5_gfAnIapeZxpLRE5_sIiveTuaJSpI_3yi7zxP7-wTBZLEEobhdaskBnbXyULU9SEa6R3Le-zz9c3vNpDW0MxHwSaCea7Z8-0JzW6ZejBynzqJ7QzuPY_3gEC02bOSgHBjLafzcMANJQ2n0oNXyfdVvPmuO2UdzA4QwjdYERhqsEnRsamPOQmUBYp4qQMonqachloD4JgrCzSNLucpTAJJrKx1q7ULJYm2CCV_qBvNwmtWx2HNvVcqxTTroo1nrEG0gBGVfCskp3xFIjSkB4FiAbXZNzzquRg8hpMAM81ZN8ORo8Ci0BZgGu7KvFzeYthQdUhClJmX6CkxUTSopF0GpPW1l8G7ZO5y6Qlzk8uzrbJPHSX6Tw7pJI9jOwuIJVM7eXK-AUEA-My
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salt%E2%80%90Induced+High%E2%80%90Density+Vacancy%E2%80%90Rich+2D+MoS2+for+Efficient+Hydrogen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Man%2C+Ping&rft.au=Jiang%2C+Shan&rft.au=Ka+Ho+Leung&rft.au=Lai%2C+Ka+Hei&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.202304808&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon