Band Position‐Independent Piezo‐Electrocatalysis for Ultrahigh CO2 Conversion

Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo‐electrocatalysis, i.e., screening charge effect and energy band theory, general...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 21; pp. e2300027 - n/a
Main Authors Ma, Jiangping, Xiong, Xin, Wu, Di, Wang, Yang, Ban, Chaogang, Feng, Yajie, Meng, Jiazhi, Gao, Xingsen, Dai, Ji‐Yan, Han, Guang, Gan, Li‐Yong, Zhou, Xiaoyuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo‐electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo‐electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow‐bandgap piezo‐electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of −0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2‐to‐CO redox potential of −0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g−1 h−1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2‐to‐CO potential verified by theoretical investigation and piezo‐photocatalytic experiment, further indicating that the mechanism of piezo‐electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense “breathing” effect under vibration and enable the naked‐eye‐visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self‐designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo‐electrocatalysis. Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities, drawing great interest but also suffering from the controversial mechanisms. A narrow‐bandgap piezo‐electrocatalyst strategy is proposed by choosing CO2 reduction as a probe reaction to distinguish the two potential mechanisms, i.e., screening charge effect and energy band theory, and reveal that piezo‐electrocatalysis is independent of band positions.
AbstractList Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo‐electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo‐electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow‐bandgap piezo‐electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of −0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2‐to‐CO redox potential of −0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g−1 h−1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2‐to‐CO potential verified by theoretical investigation and piezo‐photocatalytic experiment, further indicating that the mechanism of piezo‐electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense “breathing” effect under vibration and enable the naked‐eye‐visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self‐designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo‐electrocatalysis. Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities, drawing great interest but also suffering from the controversial mechanisms. A narrow‐bandgap piezo‐electrocatalyst strategy is proposed by choosing CO2 reduction as a probe reaction to distinguish the two potential mechanisms, i.e., screening charge effect and energy band theory, and reveal that piezo‐electrocatalysis is independent of band positions.
Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo‐electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo‐electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow‐bandgap piezo‐electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of −0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2‐to‐CO redox potential of −0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g−1 h−1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2‐to‐CO potential verified by theoretical investigation and piezo‐photocatalytic experiment, further indicating that the mechanism of piezo‐electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense “breathing” effect under vibration and enable the naked‐eye‐visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self‐designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo‐electrocatalysis.
Piezo-electrocatalysis as an emerging mechano-to-chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo-electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo-electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow-bandgap piezo-electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of -0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2 -to-CO redox potential of -0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g-1 h-1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2 -to-CO potential verified by theoretical investigation and piezo-photocatalytic experiment, further indicating that the mechanism of piezo-electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense "breathing" effect under vibration and enable the naked-eye-visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self-designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo-electrocatalysis.Piezo-electrocatalysis as an emerging mechano-to-chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo-electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo-electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow-bandgap piezo-electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of -0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2 -to-CO redox potential of -0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g-1 h-1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2 -to-CO potential verified by theoretical investigation and piezo-photocatalytic experiment, further indicating that the mechanism of piezo-electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense "breathing" effect under vibration and enable the naked-eye-visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self-designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo-electrocatalysis.
Author Wang, Yang
Han, Guang
Gao, Xingsen
Feng, Yajie
Dai, Ji‐Yan
Meng, Jiazhi
Ban, Chaogang
Gan, Li‐Yong
Xiong, Xin
Wu, Di
Zhou, Xiaoyuan
Ma, Jiangping
Author_xml – sequence: 1
  givenname: Jiangping
  surname: Ma
  fullname: Ma, Jiangping
  organization: Chongqing University
– sequence: 2
  givenname: Xin
  surname: Xiong
  fullname: Xiong, Xin
  organization: Chongqing University
– sequence: 3
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: Chongqing University
– sequence: 4
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Chongqing University
– sequence: 5
  givenname: Chaogang
  surname: Ban
  fullname: Ban, Chaogang
  organization: Chongqing University
– sequence: 6
  givenname: Yajie
  surname: Feng
  fullname: Feng, Yajie
  organization: Chongqing University
– sequence: 7
  givenname: Jiazhi
  surname: Meng
  fullname: Meng, Jiazhi
  organization: Chongqing University
– sequence: 8
  givenname: Xingsen
  surname: Gao
  fullname: Gao, Xingsen
  organization: South China Normal University
– sequence: 9
  givenname: Ji‐Yan
  surname: Dai
  fullname: Dai, Ji‐Yan
  organization: The Hong Kong Polytechnic University
– sequence: 10
  givenname: Guang
  surname: Han
  fullname: Han, Guang
  email: guang.han@cqu.edu.cn
  organization: Institute of Emerging Energy Storage Materials and Equipment
– sequence: 11
  givenname: Li‐Yong
  surname: Gan
  fullname: Gan, Li‐Yong
  email: ganly@cqu.edu.cn
  organization: Chongqing University
– sequence: 12
  givenname: Xiaoyuan
  orcidid: 0000-0003-1088-0809
  surname: Zhou
  fullname: Zhou, Xiaoyuan
  email: xiaoyuan2013@cqu.edu.cn
  organization: Chongqing University
BookMark eNpdkM1OAjEURhuDiYBuXU_ixs1g25npzxIRlQQDJrJuyrQjJUM7toMGVz6Cz-iTWIJh4ebefDcnX25OD3SssxqASwQHCEJ8I9VGDjDEGYyJnoAuKjBKc8iLDuhCnhUpJzk7A70Q1hHhBJIueL6VViVzF0xrnP35-p5YpRsdh22TudGfLt7GtS5b70rZynoXTEgq55NF3Xq5Mq-rZDTDycjZd-1D7DgHp5Wsg774232wuB-_jB7T6exhMhpO0wYTQtMq07nGimPEYakIlYgwRdGSY8ppJjONcpIjyJHSqMJLKRVBDJWc6orLJYRZH1wfehvv3rY6tGJjQqnrWlrttkFgyjLKCCtIRK_-oWu39TZ-JzBDrOCcsTxS_EB9mFrvROPNRvqdQFDs9Yq9XnHUK4Z3T8Njyn4Bff9zqA
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202300027
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202300027
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 52125103
– fundername: The Hong Kong Polytechnic University
  funderid: 1‐ZVSQ; UAEZ
– fundername: National Natural Science Foundation of China
  funderid: 52071041; 12074048; 12147102
– fundername: Graduate research and innovation foundation of Chongqing, China
  funderid: CYB22076
– fundername: Fundamental and Frontier Research in Chongqing
  funderid: cstc2020jcyj‐msxmX0777; cstc2020jcyj‐msxmX0796
– fundername: Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and Devices
  funderid: 2019B121205001; 15301421
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2667-f3e4e2d92190cd67a168d71b927973a3e14641091de1f2baad6181c97ef9ab003
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:59:22 EDT 2025
Mon Jul 14 08:16:08 EDT 2025
Wed Jan 22 16:20:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2667-f3e4e2d92190cd67a168d71b927973a3e14641091de1f2baad6181c97ef9ab003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1088-0809
PQID 2818599884
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2783786856
proquest_journals_2818599884
wiley_primary_10_1002_adma_202300027_ADMA202300027
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 514
2022; 134
2019; 4
2021; 4
2017; 3
2019; 5
2021; 586
2022; 92
2019; 31
2019; 11
2020 2021 2016; 10 33 1
2020; 32
2018; 45
2018 2018; 140 47
1996; 54
1996; 77
2022 2021 2020; 13 33 11
2022; 121
2020; 3
2018; 2
2021; 12
2021 2021; 6 4
2021; 553
2019; 66
2019; 45
2013; 117
2019 2019; 366 7
2022; 12
2022 2017; 608 51
2009; 8
2023; 616
2016; 116
2017 2018 2020; 56 52 262
2021; 60
2016; 28
1998; 5
1994; 50
2012; 22
2019; 131
1996; 6
References_xml – volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comp. Mater. Sci.
– volume: 11
  start-page: 7690
  year: 2019
  publication-title: Nanoscale
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 56 52 262
  start-page: 351
  year: 2017 2018 2020
  publication-title: Angew. Chem., Int. Ed. Nano Energy Appl Catal B
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 690
  year: 2019
  publication-title: Nat. Energy
– volume: 13 33 11
  start-page: 2425 1328
  year: 2022 2021 2020
  publication-title: Nat. Commun. Adv. Mater. Nat. Commun.
– volume: 45
  start-page: 44
  year: 2018
  publication-title: Nano Energy
– volume: 3
  start-page: 1063
  year: 2020
  publication-title: Nano Mater
– volume: 586
  start-page: 758
  year: 2021
  publication-title: J. Colloid Interf. Sci.
– volume: 28
  start-page: 3718
  year: 2016
  publication-title: Adv. Mater.
– volume: 553
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 4
  start-page: 719
  year: 2021
  publication-title: Nat. Catal.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 608 51
  start-page: 69 6560
  year: 2022 2017
  publication-title: Nature Environ. Sci. Technol.
– volume: 2
  start-page: 0105
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 6 4
  start-page: 46 952
  year: 2021 2021
  publication-title: Nat. Energy Nat. Catal.
– volume: 366 7
  start-page: 1500
  year: 2019 2019
  publication-title: Science J. Mater. Chem. A
– volume: 22
  start-page: 1385
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 478
  year: 2020
  publication-title: Nat. Catal.
– volume: 3
  year: 2017
– volume: 12
  start-page: 3508
  year: 2021
  publication-title: Nat. Commun.
– volume: 616
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 514
  start-page: 470
  year: 2014
  publication-title: Nature
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 10 33 1
  year: 2020 2021 2016
  publication-title: Adv. Energy Mater. Adv. Mater. Nat. Rev. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 73
  year: 1998
  publication-title: Ultrason. Sonochem.
– volume: 131
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 121
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 140 47
  year: 2018 2018
  publication-title: J. Am. Chem. Soc. John Dalton Prog. Sci., Pap. Conf. Hist. Sci.
– volume: 45
  start-page: 90
  year: 2019
  publication-title: Ceram. Int.
– volume: 5
  year: 2019
  publication-title: Sci Adv
SSID ssj0009606
Score 2.621309
Snippet Piezo‐electrocatalysis as an emerging mechano‐to‐chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over...
Piezo-electrocatalysis as an emerging mechano-to-chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2300027
SubjectTerms Band theory
Carbon cycle
Carbon dioxide
Carbon sequestration
Chemical reduction
CO 2 reduction
Conduction bands
Electrocatalysis
Electrocatalysts
energy band theory
Energy bands
Energy conversion
Materials science
Molybdenum disulfide
piezo‐electrocatalysis
Respiration
screening charge effect
Surface reactions
Vibration
Title Band Position‐Independent Piezo‐Electrocatalysis for Ultrahigh CO2 Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300027
https://www.proquest.com/docview/2818599884
https://www.proquest.com/docview/2783786856
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMct1AkGvhGFgoLEmjZxHDseS2lVkAoFUalb5NiOhEBpRdOlE4_AM_IknJ00bRlhy6eUnM7n_10uPyN0jcNAeqHkLqMphwSFaDcxdatAEIplQCW2sOrBA-2PyP04HK_9xV_wIaqCmxkZNl6bAS6SWWsFDRXKcoNAQpvUCoKwadgyquh5xY8y8tzC9oLQ5ZRES2qjh1ubt2_oy3WVaqeZ3h4SywcsukvemvM8acrFL3bjf95gH-2WGtRpF05zgLZ0doh21siER-jpRmTKGZYdXd-fX3fVcrm5M3zViwkc6xZL6NgKkAGbOCCAndF7DvELUn6n84idjmlqtxW5YzTqdV86fbdcfcGdwqTN3DTQRGPFIaR5UlEmfBop5iccM84CEWiIscRgRZX2U5wIoSioBcmZTrkwweIE1bJJpk-REwjtc2HnQkWYZCLi4DmUKci9wkh7ddRYWj8uh9AstpgqSAYjUkdX1WlwfvNFQ2R6ModrmOHh0yikdYStqeNpAemICxwzjo2R48rIcft20K72zv5y0znaNttF02MD1fKPub4AYZInl9b5fgDSstvE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTuMwFECvoCwGFrwR5WkkZhloncSOFyxKC2qBMoCoxC44scugGaVomgrBik_gV_gVPoEv4dpJA8wSiQXLOA8lvrnP3BwDbFLfjSt-LBzOugITFE87kalbudJjNHZZTC2sun3Mmh3v4MK_GIGn4b8wGR-iKLgZzbD22ii4KUhvv1FDpbLgIIyhTW6V91Ue6rtbzNr6O60Givgnpft75_Wmky8s4NygP-JO19WepkqgtlZixbisskDxaiQoF9yVrkbz4RliptLVLo2kVAwdYSy47gpp9ACvOwpjZhlxg-tvnL0Rq0xCYPF-ru8I5gVDTmSFbn-83w8R7fu42Dq2_Sl4Hk5J1s_yZ2uQRlvx_X-0yG81Z9MwmYfZpJbpxQyM6GQWJt7BF-fgdFcmipzkTWsvD4-tYkXglJxc6_seju1lqwTZIpdhtxCM8Unnb4om-vrqN6n_oqRu-vZt0XEeOl_yTAtQSnqJXgTiSl0V0rp75fGYy0CgcjCuML30A10pw8pQ3GFuJfqhJXFhvht4ZdgodqN-m482MtG9AR7DDfKfBT4rA7WyDW8yDkmYEadpaIQaFkINa412rdha-sxJ6_Cjed4-Co9ax4fLMG7Gsx7PFSil_wZ6FeOwNFqzbz6By69-bV4BEQs4pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFECvgEqILvqAok5LWyPBMpBxHDtesBhmGDHlNaCOxC44sQMjqsyoZFTBqp_QT-mv8Av9kl47mfBYVmLBMs5DiW_uMzfHAGs0DFI_TKUneCYxQWHGS2zdKlCM0zTgKXWw6oNDvjtgX0_D0xn4M_0XpuRD1AU3qxnOXlsFH-ts8w4aqrTjBmEIbVOrqq1yz1z_xKTtaqvXQQmvU9rd-dbe9ap1BbwxuiPhZYFhhmqJyuqnmgvV5JEWzURSIUWgAoPWg1lgpjbNjCZKaY5-MJXCZFJZNcDrzsILxn1pF4vonNwBq2w-4Oh-QehJzqIpJtKnmw_v90FAez8sdn6t-xpupzNStrNcbkyKZCO9eQSLfE5T9gZeVUE2aZVa8RZmTL4IL--hF5fgeFvlmvSrlrW_v3736vWAC9IfmpsRju2UawS5EpcltxCM8Mnge4EGenh-QdpHlLRt174rOb6DwZM80zLM5aPcvAcSKNOUyjl7zUQqVCRRNbjQmFyGkfEbsDKVdlzZiKvYcbgw241YA1br3ajd9pONys1ogscIC_znUcgbQJ1o43FJIYlL3jSNrVDjWqhxq3PQqrc-_M9JX2C-3-nG-73DvY-wYIfLBs8VmCt-TMwnDMKK5LN77wmcPfVb8w8JEDdW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Band+Position%E2%80%90Independent+Piezo%E2%80%90Electrocatalysis+for+Ultrahigh+CO2+Conversion&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ma%2C+Jiangping&rft.au=Xiong%2C+Xin&rft.au=Wu%2C+Di&rft.au=Wang%2C+Yang&rft.date=2023-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202300027&rft.externalDBID=10.1002%252Fadma.202300027&rft.externalDocID=ADMA202300027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon