Piezocatalysis for Chemical–Mechanical Polishing of SiC: Dual Roles of t‐BaTiO3 as a Piezocatalyst and an Abrasive
Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 21; pp. e2310117 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP) is reported. Investigation shows that the Piezo‐CMP based on tetragonal BaTiO3 (t‐BT) can polish the rough surface of a reaction sintering SiC (RS‐SiC) to the ultra‐smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single‐crystal 4H‐SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t‐BT plays a dual role of piezocatalyst and abrasive. That is, it piezo‐catalytically generates in‐situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo‐CMP process do not require any additional oxidant and energy, being a green and effective polishing method.
Piezo‐chemical mechanical polishing (CMP) can efficiently polish the rough surface of 4H‐SiC to an atomic planarization surface. In this process, t‐BaTiO3 acts the dual role of a piezocatalyst and an abrasive, and no additional oxidant and energy are required. Thus, Piezo‐CMP is a green and effective polishing method. |
---|---|
AbstractList | Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method.Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method. Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP) is reported. Investigation shows that the Piezo‐CMP based on tetragonal BaTiO3 (t‐BT) can polish the rough surface of a reaction sintering SiC (RS‐SiC) to the ultra‐smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single‐crystal 4H‐SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t‐BT plays a dual role of piezocatalyst and abrasive. That is, it piezo‐catalytically generates in‐situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo‐CMP process do not require any additional oxidant and energy, being a green and effective polishing method. Piezo‐chemical mechanical polishing (CMP) can efficiently polish the rough surface of 4H‐SiC to an atomic planarization surface. In this process, t‐BaTiO3 acts the dual role of a piezocatalyst and an abrasive, and no additional oxidant and energy are required. Thus, Piezo‐CMP is a green and effective polishing method. Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP) is reported. Investigation shows that the Piezo‐CMP based on tetragonal BaTiO3 (t‐BT) can polish the rough surface of a reaction sintering SiC (RS‐SiC) to the ultra‐smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single‐crystal 4H‐SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t‐BT plays a dual role of piezocatalyst and abrasive. That is, it piezo‐catalytically generates in‐situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo‐CMP process do not require any additional oxidant and energy, being a green and effective polishing method. |
Author | Feng, Jinxi Hu, Tao Wei, Di Sun, Jingxiang Liu, Xiaosheng Yan, Wen Yu, Yang Liu, Shaorong Wang, Ziming Tian, Shuanghong Lam, Jason Chun‐Ho Xiong, Ya Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2794-4891 surname: Hu fullname: Hu, Tao organization: Sun Yat‐sen University – sequence: 2 givenname: Jinxi surname: Feng fullname: Feng, Jinxi email: jinxfeng@cityu.edu.hk organization: City University of Hong Kong – sequence: 3 givenname: Wen surname: Yan fullname: Yan, Wen organization: Sun Yat‐sen University – sequence: 4 givenname: Shuanghong orcidid: 0000-0002-9734-9932 surname: Tian fullname: Tian, Shuanghong email: tshuangh@mail.sysu.edu.cn organization: Sun Yat‐sen University – sequence: 5 givenname: Jingxiang surname: Sun fullname: Sun, Jingxiang organization: Sun Yat‐sen University – sequence: 6 givenname: Xiaosheng surname: Liu fullname: Liu, Xiaosheng organization: Sun Yat‐sen University – sequence: 7 givenname: Di surname: Wei fullname: Wei, Di organization: Chinese Academy of Sciences – sequence: 8 givenname: Ziming surname: Wang fullname: Wang, Ziming organization: Chinese Academy of Sciences – sequence: 9 givenname: Yang surname: Yu fullname: Yu, Yang organization: Chinese Academy of Sciences – sequence: 10 givenname: Jason Chun‐Ho surname: Lam fullname: Lam, Jason Chun‐Ho organization: City University of Hong Kong – sequence: 11 givenname: Shaorong surname: Liu fullname: Liu, Shaorong organization: University of Oklahoma – sequence: 12 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin organization: Chinese Academy of Sciences – sequence: 13 givenname: Ya orcidid: 0000-0002-6141-5379 surname: Xiong fullname: Xiong, Ya organization: Sun Yat‐sen University |
BookMark | eNpdkU9rAjEQxUNpoWp77TnQSy_aTOLGbG_W_gVFqfYcZtdsjcSN3ajFnvwIhX5DP0lXLFJ6GGbe48dj4FXJce5zQ8gFsAYwxq_DzLkGZ1wAA2gdkQpIEHWpeHx8uIGdkmoIU8YE8GarQlYDaz59igt062ADzXxBOxMzsym67ea7Z9IJ5jtBB97ZMLH5G_UZHdrODb1blvaLdybsrMV283WLI9sXFANF-jd4QTEfl0PbSYHBrswZOcnQBXP-u2vk9eF-1Hmqd_uPz512tz7nUrbqyJqQIjIOTRBCJUk6jkwLZAJZpiIuIqlUrBBVGssxGiE5JIIlgkcyUamKRI1c7XPnhX9fmrDQMxtS4xzmxi-D5jFTUNKyWaKX_9CpXxZ5-Z0WLIqBxTJiJRXvqQ_rzFrPCzvDYq2B6V0HeteBPnSgh71u96DEDyFjf5Q |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202310117 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202310117 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province funderid: 2021A1515012036 – fundername: Guangzhou Municipal Science and Technology Project funderid: 202002030417 – fundername: Science and Technology Projects of Guangdong Province funderid: 2019B1515120022 – fundername: National Natural Science Foundation of China funderid: 22306034; 21976215 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY EBD EMOBN JG9 L7M SV3 7X8 |
ID | FETCH-LOGICAL-p2667-a041caa02141338bbcd5e716b1ff8523568898aa8c96dae3621b30b3256b8c853 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 16:23:03 EDT 2025 Fri Jul 25 12:02:36 EDT 2025 Wed Jan 22 17:18:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2667-a041caa02141338bbcd5e716b1ff8523568898aa8c96dae3621b30b3256b8c853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9734-9932 0000-0002-6141-5379 0000-0002-2794-4891 |
PQID | 3059109650 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2908125664 proquest_journals_3059109650 wiley_primary_10_1002_smll_202310117_SMLL202310117 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2021; 45 2012 2019 2017 2022; 51 58 51 309 2018 2012 2020; 33 12 500 2013; 24 2023 2014; 14 11 2016 2017; 28 40 2003 2022; 3 96 2015; 54 2016; 122 2022 2023 2017; 61 461 92 2020; 11 2017; 110 2007 2008; 316 451 2020; 32 1996 2003 2015; 77 118 119 1995 1997; 34 80 2022; 29 2022 2023; 56 321 2021 2020; 72 276 2021; 36 2018; 6 2018; 271 2014 2014 2022; 118 111 622 2021; 203649 2022; 61 2023 2015; 12 62 2022; 12 2023; 458 2014 2022; 316 13 1994; 77 2022; 36 2022; 209 2013 2009; 21 49 2014 2020; 77 12 2012; 7 2021 2022; 7 2 2022; 169 2022 2021; 9 22 |
References_xml | – volume: 56 321 start-page: 3678 year: 2022 2023 publication-title: Environ. Sci. Technol. Appl. Catal. B – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 316 13 start-page: 643 1752 year: 2014 2022 publication-title: Appl. Surf. Sci. Micromachines – volume: 110 start-page: 20 year: 2017 publication-title: Appl. Phys. Lett. – volume: 24 start-page: 5040 year: 2013 publication-title: J. Mate. Sci.‐Mater. Electron. – volume: 72 276 start-page: 102 year: 2021 2020 publication-title: Precis. Eng. Mater. Lett. – volume: 21 49 start-page: 366 year: 2013 2009 publication-title: Opt. Express Int. J. Mach. Tool. Manu. – volume: 45 year: 2021 publication-title: Int. J. Energy Res. – volume: 458 year: 2023 publication-title: Chem. Eng. J. – volume: 77 118 119 start-page: 3865 8207 year: 1996 2003 2015 publication-title: Phys. Rev. Lett. J. Chem. Phys. J. Phys. Chem. C – volume: 77 12 start-page: 705 149 year: 2014 2020 publication-title: Carbon Nano‐Micro Lett. – volume: 12 62 start-page: 278 year: 2023 2015 publication-title: ECS J. Solid State Sci. Technol. IEEE Trans. Electron Devices – volume: 54 year: 2015 publication-title: Opt. Eng. – volume: 271 start-page: 666 year: 2018 publication-title: Electrochim. Acta – volume: 36 year: 2022 publication-title: Int. J. Mod. Phys B – volume: 9 22 start-page: 349 951 year: 2022 2021 publication-title: Int. J. Precis. Eng. Man‐GT. Int. J. Precis. Eng. Manuf. – volume: 51 58 51 309 start-page: 5962 7526 6560 year: 2012 2019 2017 2022 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Environ. Sci. Technol. Appl. Catal. B – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 118 111 622 start-page: 688 602 year: 2014 2014 2022 publication-title: J. Phys. Chem. C Carbohydr. Polym. J. Colloid Interface Sci. – volume: 7 start-page: 522 year: 2012 publication-title: J. Nanoelectron. Optoelectron. – volume: 29 year: 2022 publication-title: Surf. Interfaces. – volume: 14 11 start-page: 764 621 year: 2023 2014 publication-title: Micromachines Phys. Status. Solidi. – volume: 203649 start-page: 472 year: 2021 publication-title: Wear – volume: 3 96 start-page: 1625 year: 2003 2022 publication-title: Nano Lett. Nano Energy – volume: 28 40 start-page: 3718 481 year: 2016 2017 publication-title: Adv. Mater. Nano Energy – volume: 12 start-page: 101 year: 2022 publication-title: Crystals – volume: 10 year: 2023 publication-title: Adv. Mater. Interfaces – volume: 77 start-page: 3186 year: 1994 publication-title: J. Am. Ceram. Soc. – volume: 36 start-page: 235 year: 2021 publication-title: J. Mater. Res. – volume: 6 start-page: 6032 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 122 year: 2016 publication-title: Appl. Phys. A – volume: 33 12 500 start-page: 1214 S41 year: 2018 2012 2020 publication-title: Wafer. Mater. Manuf. Processes Curr. Appl. Phys. Appl. Surf. Sci. – volume: 11 start-page: 1328 year: 2020 publication-title: Nat. Commun. – volume: 7 2 start-page: 101 year: 2021 2022 publication-title: Chem. Eng. J. Adv. ACS ES&T Eng. – volume: 61 461 92 start-page: 152 year: 2022 2023 2017 publication-title: Angew. Chem., Int. Ed. Chem. Eng. J. J. Chem. Technol. Biotechnol. – volume: 34 80 start-page: 6149 2844 year: 1995 1997 publication-title: Jpn. J. Appl. Phys J. Am. Ceram. Soc. – volume: 209 year: 2022 publication-title: Water Res. – volume: 316 451 start-page: 102 809 year: 2007 2008 publication-title: Science Nature |
SSID | ssj0031247 |
Score | 2.4916725 |
Snippet | Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of... Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2310117 |
SubjectTerms | Activated sintering Barium titanates BaTiO3 Chemical-mechanical polishing Clean energy Density functional theory Oxidation Oxidizing agents piezocatalytic‐CMP Polishes polishing SiC Silicon carbide Silicon dioxide Surface roughness |
Title | Piezocatalysis for Chemical–Mechanical Polishing of SiC: Dual Roles of t‐BaTiO3 as a Piezocatalyst and an Abrasive |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202310117 https://www.proquest.com/docview/3059109650 https://www.proquest.com/docview/2908125664 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT4MwFG_MTnrwv3E6TU28slEoDLzN6bKYTc3-JLuRFkqyqGwR8LDTPoKJ33CfxPdgw82jHkhoSYHmvdf3a_ver4Rc-wEobejamqW4oXGuwKQsCXMepgfcUaruZOlj3Ue7PeQPI2u0lsWf80MUC25oGdl4jQYuZFz7IQ2N315x6wDxCWOYTo4BW4iKegV_lAnOKztdBXyWhsRbK9ZG3ahtNt_Al-soNXMzrT0iVj-YR5e8VNNEVv3ZL-7G__Rgn-wuMSht5EpzQLZUdEh21pgJj8jH81jNJtnaDlKWUIC2dMUtsJh_dRUmDGOBYgBdtoxFJyHtj5s39C6F6h4SRWFVsph_3orB-MmkIqaCrr84oSIK4KIN6AbG0R-TYet-0GxryyMatCl49romdM58IZB4DSe7UvqBpWAKJlkYgpRNy3Yc1xHC8V07EAq8JZOmLk0AWtLxASqckFI0idQpoUFo-4zZujIcn9cF6E9dCMkC5CQ0XemWSWUlIm9pZ7EHoxXgHRdgZplcFY_BQnDbQ0Rqksae4QLsgQ_avEyMTB7eNGfy8HLOZsNDSXiFJLx-t9MpSmd_aXROtuGe55GRFVJK3lN1AeglkZeZhn4DI8Hopw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPUAPUF7q8ihG4hqIE-fVG-WhBXYBwSJxs-zEkVa0WcRmOXDiJ1TiH_JLOuNs0oUjHHKwIyexZibzzXj8GWAnzVBp8yR0AiM8RwiDJhVojHm4m4nYmCi228e652H7RpzeBnU1Ie2FqfghmoQbWYb9X5OBU0J67z9r6PDPb1o7IIDCeTQNX-hYbxtVXTUMUj66L3u-Cnoth6i3at5G19t7O_4NwpzEqdbRHC-Arj-xqi-52x2Vejd9esfe-Kk5fIP5MQxl-5XeLMKUKZbg6wQ54TI8XvbN08Cmd4i1hCG6ZTW9wOvzS9fQnmFqMKqhs5ksNsjZdf_gJzscYfcVcUVRV_n6_PeX6vUvfKaGTLHJB5dMFRlebB_nQaX0K3BzfNQ7aDvjUxqce3TukaNcwVOliHuN4l2t0ywwGIVpnucoaD8I4ziJlYrTJMyUQYfJte9qH7GWjlNEC6swUwwK8x1Ylocp56FrvDgVkUIVipTSPCNaQj_RSQs2ahnJsakNJf6wEPIkiDRbsN3cRiOhlQ9VmMFoKL0EkQ--MBQt8KxA5H1F5iEr2mZPkiRkIwl53e10mtbaRwZtwWy71-3Izsn52TrMYb-oCiU3YKZ8GJlNBDOl_mHV9R-1WuzC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61i4TogQIt6tIFjMQ1ECdO4vRGd1nxswuIH4mbZSeOtIJmV91sD5x4hEq8IU_CTLIblh7pIQc7cmJrZjzf2OPPALtJikqbxaETWOE5Qlg0qcBgzMPdVEhrI1keH-ufhUc34uQ2uJ07xV_xQ9QLbmQZ5XxNBj5Ks_1X0tDxr3vaOiB8wnn0ERZE6ErS685lTSDlo_cqr1dBp-UQ89aMttH19t-2fwMw52Fq6We6n0HPelill9ztTQqzlzz8Q974P0NYgeUpCGUHldaswgebr8GnOWrCL_DnYmAfhuXiDnGWMMS2bEYu8Pz41Ld0YpgKjDLoynUsNszY1aD9g3UmWH1JTFFUVTw__v2prwfnPtNjptn8hwum8xQfdoDDoET6r3DTPbxuHznTOxqcEbr2yNGu4InWxLxG0a4xSRpYjMEMzzIUsx-EUsZSa5nEYaotuktufNf4iLSMTBArrEMjH-b2G7A0CxPOQ9d6MhGRRgWKtDY8JVJCPzZxE1ozEampoY0VTlcIeGLEmU3YqV-jidC-h87tcDJWXoy4B38YiiZ4pTzUqKLyUBVps6dIEqqWhLrq93p1aeM9jbZh8aLTVb3js9PvsITVosqSbEGj-D2xm4hkCrNVKusLF3jreg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezocatalysis+for+Chemical-Mechanical+Polishing+of+SiC%3A+Dual+Roles+of+t-BaTiO3+as+a+Piezocatalyst+and+an+Abrasive&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hu%2C+Tao&rft.au=Feng%2C+Jinxi&rft.au=Yan%2C+Wen&rft.au=Tian%2C+Shuanghong&rft.date=2024-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=21&rft.spage=e2310117&rft_id=info:doi/10.1002%2Fsmll.202310117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |