Piezocatalysis for Chemical–Mechanical Polishing of SiC: Dual Roles of t‐BaTiO3 as a Piezocatalyst and an Abrasive

Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 21; pp. e2310117 - n/a
Main Authors Hu, Tao, Feng, Jinxi, Yan, Wen, Tian, Shuanghong, Sun, Jingxiang, Liu, Xiaosheng, Wei, Di, Wang, Ziming, Yu, Yang, Lam, Jason Chun‐Ho, Liu, Shaorong, Wang, Zhong Lin, Xiong, Ya
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP) is reported. Investigation shows that the Piezo‐CMP based on tetragonal BaTiO3 (t‐BT) can polish the rough surface of a reaction sintering SiC (RS‐SiC) to the ultra‐smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single‐crystal 4H‐SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t‐BT plays a dual role of piezocatalyst and abrasive. That is, it piezo‐catalytically generates in‐situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo‐CMP process do not require any additional oxidant and energy, being a green and effective polishing method. Piezo‐chemical mechanical polishing (CMP) can efficiently polish the rough surface of 4H‐SiC to an atomic planarization surface. In this process, t‐BaTiO3 acts the dual role of a piezocatalyst and an abrasive, and no additional oxidant and energy are required. Thus, Piezo‐CMP is a green and effective polishing method.
AbstractList Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method.Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method.
Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP) is reported. Investigation shows that the Piezo‐CMP based on tetragonal BaTiO3 (t‐BT) can polish the rough surface of a reaction sintering SiC (RS‐SiC) to the ultra‐smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single‐crystal 4H‐SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t‐BT plays a dual role of piezocatalyst and abrasive. That is, it piezo‐catalytically generates in‐situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo‐CMP process do not require any additional oxidant and energy, being a green and effective polishing method. Piezo‐chemical mechanical polishing (CMP) can efficiently polish the rough surface of 4H‐SiC to an atomic planarization surface. In this process, t‐BaTiO3 acts the dual role of a piezocatalyst and an abrasive, and no additional oxidant and energy are required. Thus, Piezo‐CMP is a green and effective polishing method.
Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic‐CMP (Piezo‐CMP) is reported. Investigation shows that the Piezo‐CMP based on tetragonal BaTiO3 (t‐BT) can polish the rough surface of a reaction sintering SiC (RS‐SiC) to the ultra‐smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single‐crystal 4H‐SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t‐BT plays a dual role of piezocatalyst and abrasive. That is, it piezo‐catalytically generates in‐situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo‐CMP process do not require any additional oxidant and energy, being a green and effective polishing method.
Author Feng, Jinxi
Hu, Tao
Wei, Di
Sun, Jingxiang
Liu, Xiaosheng
Yan, Wen
Yu, Yang
Liu, Shaorong
Wang, Ziming
Tian, Shuanghong
Lam, Jason Chun‐Ho
Xiong, Ya
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2794-4891
  surname: Hu
  fullname: Hu, Tao
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Jinxi
  surname: Feng
  fullname: Feng, Jinxi
  email: jinxfeng@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 3
  givenname: Wen
  surname: Yan
  fullname: Yan, Wen
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Shuanghong
  orcidid: 0000-0002-9734-9932
  surname: Tian
  fullname: Tian, Shuanghong
  email: tshuangh@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Jingxiang
  surname: Sun
  fullname: Sun, Jingxiang
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Xiaosheng
  surname: Liu
  fullname: Liu, Xiaosheng
  organization: Sun Yat‐sen University
– sequence: 7
  givenname: Di
  surname: Wei
  fullname: Wei, Di
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Ziming
  surname: Wang
  fullname: Wang, Ziming
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Jason Chun‐Ho
  surname: Lam
  fullname: Lam, Jason Chun‐Ho
  organization: City University of Hong Kong
– sequence: 11
  givenname: Shaorong
  surname: Liu
  fullname: Liu, Shaorong
  organization: University of Oklahoma
– sequence: 12
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Ya
  orcidid: 0000-0002-6141-5379
  surname: Xiong
  fullname: Xiong, Ya
  organization: Sun Yat‐sen University
BookMark eNpdkU9rAjEQxUNpoWp77TnQSy_aTOLGbG_W_gVFqfYcZtdsjcSN3ajFnvwIhX5DP0lXLFJ6GGbe48dj4FXJce5zQ8gFsAYwxq_DzLkGZ1wAA2gdkQpIEHWpeHx8uIGdkmoIU8YE8GarQlYDaz59igt062ADzXxBOxMzsym67ea7Z9IJ5jtBB97ZMLH5G_UZHdrODb1blvaLdybsrMV283WLI9sXFANF-jd4QTEfl0PbSYHBrswZOcnQBXP-u2vk9eF-1Hmqd_uPz512tz7nUrbqyJqQIjIOTRBCJUk6jkwLZAJZpiIuIqlUrBBVGssxGiE5JIIlgkcyUamKRI1c7XPnhX9fmrDQMxtS4xzmxi-D5jFTUNKyWaKX_9CpXxZ5-Z0WLIqBxTJiJRXvqQ_rzFrPCzvDYq2B6V0HeteBPnSgh71u96DEDyFjf5Q
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202310117
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202310117
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  funderid: 2021A1515012036
– fundername: Guangzhou Municipal Science and Technology Project
  funderid: 202002030417
– fundername: Science and Technology Projects of Guangdong Province
  funderid: 2019B1515120022
– fundername: National Natural Science Foundation of China
  funderid: 22306034; 21976215
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
EBD
EMOBN
JG9
L7M
SV3
7X8
ID FETCH-LOGICAL-p2667-a041caa02141338bbcd5e716b1ff8523568898aa8c96dae3621b30b3256b8c853
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 16:23:03 EDT 2025
Fri Jul 25 12:02:36 EDT 2025
Wed Jan 22 17:18:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2667-a041caa02141338bbcd5e716b1ff8523568898aa8c96dae3621b30b3256b8c853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9734-9932
0000-0002-6141-5379
0000-0002-2794-4891
PQID 3059109650
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2908125664
proquest_journals_3059109650
wiley_primary_10_1002_smll_202310117_SMLL202310117
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2021; 45
2012 2019 2017 2022; 51 58 51 309
2018 2012 2020; 33 12 500
2013; 24
2023 2014; 14 11
2016 2017; 28 40
2003 2022; 3 96
2015; 54
2016; 122
2022 2023 2017; 61 461 92
2020; 11
2017; 110
2007 2008; 316 451
2020; 32
1996 2003 2015; 77 118 119
1995 1997; 34 80
2022; 29
2022 2023; 56 321
2021 2020; 72 276
2021; 36
2018; 6
2018; 271
2014 2014 2022; 118 111 622
2021; 203649
2022; 61
2023 2015; 12 62
2022; 12
2023; 458
2014 2022; 316 13
1994; 77
2022; 36
2022; 209
2013 2009; 21 49
2014 2020; 77 12
2012; 7
2021 2022; 7 2
2022; 169
2022 2021; 9 22
References_xml – volume: 56 321
  start-page: 3678
  year: 2022 2023
  publication-title: Environ. Sci. Technol. Appl. Catal. B
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 316 13
  start-page: 643 1752
  year: 2014 2022
  publication-title: Appl. Surf. Sci. Micromachines
– volume: 110
  start-page: 20
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 5040
  year: 2013
  publication-title: J. Mate. Sci.‐Mater. Electron.
– volume: 72 276
  start-page: 102
  year: 2021 2020
  publication-title: Precis. Eng. Mater. Lett.
– volume: 21 49
  start-page: 366
  year: 2013 2009
  publication-title: Opt. Express Int. J. Mach. Tool. Manu.
– volume: 45
  year: 2021
  publication-title: Int. J. Energy Res.
– volume: 458
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 77 118 119
  start-page: 3865 8207
  year: 1996 2003 2015
  publication-title: Phys. Rev. Lett. J. Chem. Phys. J. Phys. Chem. C
– volume: 77 12
  start-page: 705 149
  year: 2014 2020
  publication-title: Carbon Nano‐Micro Lett.
– volume: 12 62
  start-page: 278
  year: 2023 2015
  publication-title: ECS J. Solid State Sci. Technol. IEEE Trans. Electron Devices
– volume: 54
  year: 2015
  publication-title: Opt. Eng.
– volume: 271
  start-page: 666
  year: 2018
  publication-title: Electrochim. Acta
– volume: 36
  year: 2022
  publication-title: Int. J. Mod. Phys B
– volume: 9 22
  start-page: 349 951
  year: 2022 2021
  publication-title: Int. J. Precis. Eng. Man‐GT. Int. J. Precis. Eng. Manuf.
– volume: 51 58 51 309
  start-page: 5962 7526 6560
  year: 2012 2019 2017 2022
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Environ. Sci. Technol. Appl. Catal. B
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 118 111 622
  start-page: 688 602
  year: 2014 2014 2022
  publication-title: J. Phys. Chem. C Carbohydr. Polym. J. Colloid Interface Sci.
– volume: 7
  start-page: 522
  year: 2012
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 29
  year: 2022
  publication-title: Surf. Interfaces.
– volume: 14 11
  start-page: 764 621
  year: 2023 2014
  publication-title: Micromachines Phys. Status. Solidi.
– volume: 203649
  start-page: 472
  year: 2021
  publication-title: Wear
– volume: 3 96
  start-page: 1625
  year: 2003 2022
  publication-title: Nano Lett. Nano Energy
– volume: 28 40
  start-page: 3718 481
  year: 2016 2017
  publication-title: Adv. Mater. Nano Energy
– volume: 12
  start-page: 101
  year: 2022
  publication-title: Crystals
– volume: 10
  year: 2023
  publication-title: Adv. Mater. Interfaces
– volume: 77
  start-page: 3186
  year: 1994
  publication-title: J. Am. Ceram. Soc.
– volume: 36
  start-page: 235
  year: 2021
  publication-title: J. Mater. Res.
– volume: 6
  start-page: 6032
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 122
  year: 2016
  publication-title: Appl. Phys. A
– volume: 33 12 500
  start-page: 1214 S41
  year: 2018 2012 2020
  publication-title: Wafer. Mater. Manuf. Processes Curr. Appl. Phys. Appl. Surf. Sci.
– volume: 11
  start-page: 1328
  year: 2020
  publication-title: Nat. Commun.
– volume: 7 2
  start-page: 101
  year: 2021 2022
  publication-title: Chem. Eng. J. Adv. ACS ES&T Eng.
– volume: 61 461 92
  start-page: 152
  year: 2022 2023 2017
  publication-title: Angew. Chem., Int. Ed. Chem. Eng. J. J. Chem. Technol. Biotechnol.
– volume: 34 80
  start-page: 6149 2844
  year: 1995 1997
  publication-title: Jpn. J. Appl. Phys J. Am. Ceram. Soc.
– volume: 209
  year: 2022
  publication-title: Water Res.
– volume: 316 451
  start-page: 102 809
  year: 2007 2008
  publication-title: Science Nature
SSID ssj0031247
Score 2.4916725
Snippet Chemical mechanical polishing (CMP) offers a promising pathway to smooth third‐generation semiconductors. However, it is still a challenge to reduce the use of...
Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2310117
SubjectTerms Activated sintering
Barium titanates
BaTiO3
Chemical-mechanical polishing
Clean energy
Density functional theory
Oxidation
Oxidizing agents
piezocatalytic‐CMP
Polishes
polishing
SiC
Silicon carbide
Silicon dioxide
Surface roughness
Title Piezocatalysis for Chemical–Mechanical Polishing of SiC: Dual Roles of t‐BaTiO3 as a Piezocatalyst and an Abrasive
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202310117
https://www.proquest.com/docview/3059109650
https://www.proquest.com/docview/2908125664
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT4MwFG_MTnrwv3E6TU28slEoDLzN6bKYTc3-JLuRFkqyqGwR8LDTPoKJ33CfxPdgw82jHkhoSYHmvdf3a_ver4Rc-wEobejamqW4oXGuwKQsCXMepgfcUaruZOlj3Ue7PeQPI2u0lsWf80MUC25oGdl4jQYuZFz7IQ2N315x6wDxCWOYTo4BW4iKegV_lAnOKztdBXyWhsRbK9ZG3ahtNt_Al-soNXMzrT0iVj-YR5e8VNNEVv3ZL-7G__Rgn-wuMSht5EpzQLZUdEh21pgJj8jH81jNJtnaDlKWUIC2dMUtsJh_dRUmDGOBYgBdtoxFJyHtj5s39C6F6h4SRWFVsph_3orB-MmkIqaCrr84oSIK4KIN6AbG0R-TYet-0GxryyMatCl49romdM58IZB4DSe7UvqBpWAKJlkYgpRNy3Yc1xHC8V07EAq8JZOmLk0AWtLxASqckFI0idQpoUFo-4zZujIcn9cF6E9dCMkC5CQ0XemWSWUlIm9pZ7EHoxXgHRdgZplcFY_BQnDbQ0Rqksae4QLsgQ_avEyMTB7eNGfy8HLOZsNDSXiFJLx-t9MpSmd_aXROtuGe55GRFVJK3lN1AeglkZeZhn4DI8Hopw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPUAPUF7q8ihG4hqIE-fVG-WhBXYBwSJxs-zEkVa0WcRmOXDiJ1TiH_JLOuNs0oUjHHKwIyexZibzzXj8GWAnzVBp8yR0AiM8RwiDJhVojHm4m4nYmCi228e652H7RpzeBnU1Ie2FqfghmoQbWYb9X5OBU0J67z9r6PDPb1o7IIDCeTQNX-hYbxtVXTUMUj66L3u-Cnoth6i3at5G19t7O_4NwpzEqdbRHC-Arj-xqi-52x2Vejd9esfe-Kk5fIP5MQxl-5XeLMKUKZbg6wQ54TI8XvbN08Cmd4i1hCG6ZTW9wOvzS9fQnmFqMKqhs5ksNsjZdf_gJzscYfcVcUVRV_n6_PeX6vUvfKaGTLHJB5dMFRlebB_nQaX0K3BzfNQ7aDvjUxqce3TukaNcwVOliHuN4l2t0ywwGIVpnucoaD8I4ziJlYrTJMyUQYfJte9qH7GWjlNEC6swUwwK8x1Ylocp56FrvDgVkUIVipTSPCNaQj_RSQs2ahnJsakNJf6wEPIkiDRbsN3cRiOhlQ9VmMFoKL0EkQ--MBQt8KxA5H1F5iEr2mZPkiRkIwl53e10mtbaRwZtwWy71-3Izsn52TrMYb-oCiU3YKZ8GJlNBDOl_mHV9R-1WuzC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61i4TogQIt6tIFjMQ1ECdO4vRGd1nxswuIH4mbZSeOtIJmV91sD5x4hEq8IU_CTLIblh7pIQc7cmJrZjzf2OPPALtJikqbxaETWOE5Qlg0qcBgzMPdVEhrI1keH-ufhUc34uQ2uJ07xV_xQ9QLbmQZ5XxNBj5Ks_1X0tDxr3vaOiB8wnn0ERZE6ErS685lTSDlo_cqr1dBp-UQ89aMttH19t-2fwMw52Fq6We6n0HPelill9ztTQqzlzz8Q974P0NYgeUpCGUHldaswgebr8GnOWrCL_DnYmAfhuXiDnGWMMS2bEYu8Pz41Ld0YpgKjDLoynUsNszY1aD9g3UmWH1JTFFUVTw__v2prwfnPtNjptn8hwum8xQfdoDDoET6r3DTPbxuHznTOxqcEbr2yNGu4InWxLxG0a4xSRpYjMEMzzIUsx-EUsZSa5nEYaotuktufNf4iLSMTBArrEMjH-b2G7A0CxPOQ9d6MhGRRgWKtDY8JVJCPzZxE1ozEampoY0VTlcIeGLEmU3YqV-jidC-h87tcDJWXoy4B38YiiZ4pTzUqKLyUBVps6dIEqqWhLrq93p1aeM9jbZh8aLTVb3js9PvsITVosqSbEGj-D2xm4hkCrNVKusLF3jreg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezocatalysis+for+Chemical-Mechanical+Polishing+of+SiC%3A+Dual+Roles+of+t-BaTiO3+as+a+Piezocatalyst+and+an+Abrasive&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hu%2C+Tao&rft.au=Feng%2C+Jinxi&rft.au=Yan%2C+Wen&rft.au=Tian%2C+Shuanghong&rft.date=2024-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=21&rft.spage=e2310117&rft_id=info:doi/10.1002%2Fsmll.202310117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon