Titanium Vacancies in TiO2 Nanofibers Enable Highly Efficient Photodriven Seawater Splitting
Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to direct...
Saved in:
Published in | Chemistry : a European journal Vol. 27; no. 57; pp. 14202 - 14208 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
13.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long‐time stability in photodriven seawater splitting, including photocatalysis and photo‐electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic‐/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer.
Erosion of corrosion: TiO2 nanofibers with rich Ti vacancies have been designed by a facile controllable calcination approach. They exhibit efficient charge transfer and resistance to corrosion by seawater owing to a unidirectional electron trap and superior H+ adsorption; which contribute to excellent activity and long‐time stability in photodriven seawater splitting. This study could provide a promising strategy for the design of efficient semiconductors in marine applications. |
---|---|
AbstractList | Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long-time stability in photodriven seawater splitting, including photocatalysis and photo-electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic-/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer.Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long-time stability in photodriven seawater splitting, including photocatalysis and photo-electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic-/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer. Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long‐time stability in photodriven seawater splitting, including photocatalysis and photo‐electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic‐/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer. Erosion of corrosion: TiO2 nanofibers with rich Ti vacancies have been designed by a facile controllable calcination approach. They exhibit efficient charge transfer and resistance to corrosion by seawater owing to a unidirectional electron trap and superior H+ adsorption; which contribute to excellent activity and long‐time stability in photodriven seawater splitting. This study could provide a promising strategy for the design of efficient semiconductors in marine applications. Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long‐time stability in photodriven seawater splitting, including photocatalysis and photo‐electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic‐/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer. |
Author | Shalom, Menny Wu, Lu Li, Qian‐Ni Ozoemena, Kenneth I. Wu, Si‐Ming Tian, Ge Wu, Jin‐Song Zhang, Yue‐Xing Yang, Xiao‐Yu Zhang, Yan‐Xiang Zhao, Xiao‐Fang Wang, Li‐Ying Janiak, Christoph Yin, Yi‐Xia |
Author_xml | – sequence: 1 givenname: Yan‐Xiang surname: Zhang fullname: Zhang, Yan‐Xiang organization: Wuhan University of Technology – sequence: 2 givenname: Si‐Ming surname: Wu fullname: Wu, Si‐Ming organization: Harvard University – sequence: 3 givenname: Ge surname: Tian fullname: Tian, Ge organization: Wuhan University of Technology – sequence: 4 givenname: Xiao‐Fang surname: Zhao fullname: Zhao, Xiao‐Fang organization: Wuhan University of Technology – sequence: 5 givenname: Li‐Ying surname: Wang fullname: Wang, Li‐Ying organization: The Chinese Academy of Sciences – sequence: 6 givenname: Yi‐Xia surname: Yin fullname: Yin, Yi‐Xia organization: Wuhan University of Technology – sequence: 7 givenname: Lu surname: Wu fullname: Wu, Lu organization: Hubei University – sequence: 8 givenname: Qian‐Ni surname: Li fullname: Li, Qian‐Ni organization: Hubei University – sequence: 9 givenname: Yue‐Xing surname: Zhang fullname: Zhang, Yue‐Xing organization: Hubei University – sequence: 10 givenname: Jin‐Song surname: Wu fullname: Wu, Jin‐Song organization: Wuhan University of Technology – sequence: 11 givenname: Christoph surname: Janiak fullname: Janiak, Christoph organization: Heinrich-Heine-Universität Düsseldorf – sequence: 12 givenname: Kenneth I. surname: Ozoemena fullname: Ozoemena, Kenneth I. organization: University of the Witwatersrand – sequence: 13 givenname: Menny surname: Shalom fullname: Shalom, Menny organization: Ben-Gurion University of the Negev – sequence: 14 givenname: Xiao‐Yu surname: Yang fullname: Yang, Xiao‐Yu email: xyyang@whut.edu.cn, xyyang@seas.harvard.edu organization: Harvard University |
BookMark | eNpd0M9LwzAUwPEgE9ymV88BL14686NNm6OM6YTphE1PQkjTly2jTWt_OPbf2zHZwdPjwYfH4ztCA196QOiWkgklhD2YLRQTRhglNKHxBRrSiNGAxyIaoCGRYRyIiMsrNGqaHSFECs6H6GvtWu1dV-BPbbQ3DhrsPF67JcNv2pfWpVA3eOZ1mgOeu802P-CZta6XvsXv27Its9r9gMcr0HvdQo1XVe7a1vnNNbq0Om_g5m-O0cfTbD2dB4vl88v0cRFUTIg4kGGWcSmpkcQaEwLT1iRxFvKQpobZJARIM2FZQiykEILVFsCGhGecZCloPkb3p7tVXX530LSqcI2BPNceyq5RLBIk4ZGI4p7e_aO7sqt9_12vEkolj-OoV_Kk9i6Hg6pqV-j6oChRx9LqWFqdS6vpfPZ63vgvBkN3tA |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202101817 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 14208 |
ExternalDocumentID | CHEM202101817 |
Genre | article |
GrantInformation_xml | – fundername: China-Deutsche Forschungsgemein-schaft project funderid: JA466/39-1 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2019A1515110435 – fundername: FRFCU funderid: 19lgzd16 – fundername: Guangdong Province International Scientific and Technological Cooperation Projects funderid: 2020A0505100036 – fundername: Sino-German Center COVID-19 Related Bilateral Collaborative Project funderid: C-0046 – fundername: the joint National Natural Science Foundation project funderid: 51861135313 – fundername: Jilin Province Science and Technology Development Plan funderid: 20180101208JC – fundername: International Science and Technology Cooperation Programme funderid: 2015DFE52870 – fundername: South Africa's National Research Foundation funderid: No. 113638 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT 7SR 8BQ 8FD AEYWJ AGHNM AGYGG JG9 K9. 7X8 |
ID | FETCH-LOGICAL-p2667-94dd3991c90fcc4e2afc87d4341bc2f84eebd6f280febe4efafeef403d30dbea3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 05:26:55 EDT 2025 Fri Jul 25 10:32:53 EDT 2025 Wed Jan 22 16:27:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 57 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2667-94dd3991c90fcc4e2afc87d4341bc2f84eebd6f280febe4efafeef403d30dbea3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2581193775 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2560835657 proquest_journals_2581193775 wiley_primary_10_1002_chem_202101817_CHEM202101817 |
PublicationCentury | 2000 |
PublicationDate | October 13, 2021 |
PublicationDateYYYYMMDD | 2021-10-13 |
PublicationDate_xml | – month: 10 year: 2021 text: October 13, 2021 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 95 2015; 14 2017; 1 2015; 5 2020; 20 2019; 31 2019; 55 2019; 10 2017; 46 2014; 26 2006; 110 2011; 10 2020; 13 2020; 400 2011; 4 2013; 6 2014; 136 2014; 114 1998; 44 2018; 47 2014; 43 2017; 139 2018; 24 2014; 156–157 2010; 22 2021; 57 1995; 84 2018; 8 2014; 2 2015; 137 1991; 23 2017; 10 2010; 497 2010; 132 1980; 5 2019; 259 1999; 11 2018; 30 2013; 495 2018; 11 2016; 28 2018; 10 2003; 64 2005; 78 2017; 545 2016; 9 2018; 13 |
References_xml | – volume: 13 start-page: 2313 year: 2020 end-page: 2322 publication-title: Nano Res. – volume: 10 start-page: 434 year: 2011 end-page: 438 publication-title: Nat. Mater. – volume: 28 start-page: 1917 year: 2016 end-page: 1933 publication-title: Adv. Mater. – volume: 137 start-page: 2975 year: 2015 end-page: 2983 publication-title: J. Am. Chem. Soc. – volume: 495 start-page: 215 year: 2013 end-page: 219 publication-title: Nature – volume: 24 start-page: 13246 year: 2018 end-page: 13252 publication-title: Chem. Eur. J. – volume: 136 start-page: 8504 year: 2014 end-page: 8507 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 10020 year: 2017 end-page: 10028 publication-title: J. Am. Chem. Soc. – volume: 84 start-page: 285 year: 1995 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Chem. Rev. – volume: 11 start-page: 4077 year: 2018 end-page: 4085 publication-title: ChemSusChem – volume: 110 start-page: 18492 year: 2006 end-page: 18495 publication-title: J. Phys. Chem. B – volume: 44 start-page: 597 year: 1998 end-page: 603 publication-title: Electrochim. Acta – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 11 start-page: 2770 year: 1999 publication-title: Chem. Mater. – volume: 545 start-page: 80 year: 2017 publication-title: Nature – volume: 13 start-page: 1609 year: 2018 end-page: 1615 publication-title: Chem. Asian J. – volume: 114 start-page: 9919 year: 2014 end-page: 9986 publication-title: Chem. Rev. – volume: 259 year: 2019 publication-title: Appl. Catal. B – volume: 26 start-page: 4711 year: 2014 end-page: 4716 publication-title: Adv. Mater. – volume: 9 start-page: 3151 year: 2016 end-page: 3160 publication-title: Energy Environ. Sci. – volume: 10 start-page: 2275 year: 2018 end-page: 2284 publication-title: Nanoscale – volume: 156–157 start-page: 116 year: 2014 end-page: 121 publication-title: Appl. Catal. B – volume: 400 year: 2020 publication-title: Chem. Eng. J. – volume: 55 start-page: 11642 year: 2019 end-page: 11642 publication-title: Chem. Commun. – volume: 5 start-page: 13801 year: 2015 end-page: 13801 publication-title: Sci. Rep. – volume: 30 year: 2018 publication-title: Nat. Mater. – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 347 year: 2013 end-page: 37 publication-title: Energy Environ. Sci. – volume: 95 start-page: 69 year: 1995 end-page: 96 publication-title: Chem. Rev. – volume: 20 start-page: 3122 year: 2020 end-page: 3129 publication-title: Nano Lett. – volume: 43 start-page: 5234 year: 2014 end-page: 5244 publication-title: Chem. Soc. Rev. – volume: 78 start-page: 1595 year: 2005 end-page: 1607 publication-title: Bull. Chem. Soc. Jpn. – volume: 14 start-page: 1245 year: 2015 end-page: 1251 publication-title: Nat. Mater. – volume: 4 start-page: 4046 year: 2011 publication-title: Energy Environ. Sci. – volume: 2 start-page: 3344 year: 2014 end-page: 3351 publication-title: J. Mater. Chem. A – volume: 497 start-page: 420 year: 2010 end-page: 427 publication-title: J. Alloys Compd. – volume: 46 start-page: 481 year: 2017 end-page: 558 publication-title: Chem. Soc. Rev. – volume: 132 start-page: 4438 year: 2010 end-page: 4444 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 57 start-page: 189 year: 2021 end-page: 197 publication-title: J. Energy Chem. – volume: 22 start-page: 951 year: 2010 end-page: 956 publication-title: Adv. Mater. – volume: 5 start-page: 401 year: 1980 publication-title: Int. J. Hydrogen Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 64 start-page: 1057 year: 2003 end-page: 1067 publication-title: J. Phys. Chem. Solids – volume: 10 start-page: 4544 year: 2017 end-page: 4551 publication-title: ChemSusChem – volume: 23 start-page: 259 year: 1991 end-page: 299 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 110 start-page: 16270 year: 2006 end-page: 16282 publication-title: J. Phys. Chem. B – volume: 47 start-page: 8 year: 2018 end-page: 17 publication-title: Nano Energy – volume: 55 start-page: 42 year: 2019 end-page: 48 publication-title: Nano Energy |
SSID | ssj0009633 |
Score | 2.4857638 |
Snippet | Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 14202 |
SubjectTerms | Catalysts Charge transfer Chemistry Corrosion mechanisms Corrosion resistance Electron transfer Electrons hierarchical nanostructures Hydrogen Hydrogen production Metal oxide semiconductors Nanofibers photo-/electrodirected catalysis Salinity Salinity effects Seawater seawater splitting Splitting Sustainable production Titanium Titanium dioxide Vacancies |
Title | Titanium Vacancies in TiO2 Nanofibers Enable Highly Efficient Photodriven Seawater Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202101817 https://www.proquest.com/docview/2581193775 https://www.proquest.com/docview/2560835657 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xLk6nRPC1W5emTfcoY2MIXnCb7EEoSZPgUNuxC6K_3nPSXX3Ut5Y20JycnO-jOec7hFwbgFwAEu1pZXyPh1J5UkW-Z7kEcED5D471znf3UafPbwfhYK2Kv9CHWP5ww53h4jVucKkmtZVoKMwJK8mZk5zCcnJM2EJW9LTSjwLvKnrJc-GhButCtdFntc3hG_xynaU6mGnvEbn4wCK75K06m6pq-v1Lu_E_M9gnu3MOSm8KpzkgWyY7JNvNReu3I_LSGwJnHM4-6LNMXfveCR1mtDd8YBTCMfijAtZIW67uimKqyPsXbTkxCsAw-viaT3M9xjhKu0Z-Ap0d0y6wXZdjfUz67Vav2fHmbRi8EaC38GC1NNCYetrwbZpyw6RNY6E54J9KmY25MUpHlsW-BY_gxkprjOV-oAMfPEAGJ6SU5Zk5JZQJq63hIdc-50LUGwYCbhTJUFtp4jQok8piGZL5XpokLIzrQDOFCMvkavkYLIJHGzIz-QzfiZBLRqEoE-ZsnowKtY6k0GVmCVo7WVo7QcWJ5d3ZXwadkx28RiCrBxVSmo5n5gIYylRdOi_8AQ9t4Dc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCjiirkbgGUseJwxGhorIjKIgDUmTHtqiAtCqtEHw9M05TliMcs1hKxuN5L87MG4Adi5CLQGICo20YiFjpQOkkDJxQCA4k_yGo3vn8ImneipP7uMompFqYUh9itOFGK8PHa1rgtCG996Uaii9FpeTca07JcZiktt7-q-r6S0EK_avsJi9kQCqslW5jyPd-jv_BML_zVA80R7Ogq0cs80uedgd9vZt__FJv_Nc7zMHMkIayg9Jv5mHMFgswdVh1f1uEh1YbaWN78MLuVO47-L6ydsFa7UvOMCKjS2okjqzhS68YZYs8v7OG16NAGGNXj51-x_QolLIbq96Q0fbYDRJen2a9BLdHjdZhMxh2Ygi6COAywAkzyGTq-X7o8lxYrlyeSiMQAnXOXSqs1SZxPA0dOoWwTjlrnQgjE4XoBCpahomiU9gVYFw646yIhQmFkLK-bzHmJomKjVM2zaMarFfzkA2X02vG47SOTFPKuAbbo8toEfq7oQrbGdA9CdHJJJY14N7oWbcU7MhKaWaekbWzkbUzEp0YHa3-ZdAWTDVb52fZ2fHF6RpM03nCtXq0DhP93sBuIGHp603vkp8bt-RS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD7xkqgv3o0oak18HZSuW-ejEYh3jYDhwWTp1jYSdRCEGP31nnaA6KM-7tJkO_16vi9bz3cAjjRSLhKJ8lSiqccDmXgyCalnuERysPYf3NY7X9-EZy1-0Q7aU1X8uT_E5IObXRkuX9sF3lOm_G0aiu9kK8mZs5wSszDPQxpZXFfvvw2kEF55M3kuPGvCOrZtpKz8c_wPgTktUx3P1FdAjp8w317yXBoOklL6-cu88T-vsArLIxFKTnLUrMGMztZh8XTc-20DHpsdFI2d4St5kKnr3_tGOhlpdm4ZwXyMgExQNpKaK7widq_IywepOTcKJDFy99QddFXfJlLS0PId9WyfNFDuuk3Wm9Cq15qnZ96oD4PXQ_oWHk6XQh1TSY-pSVOumTRpJBRHAkxSZiKudaJCwyJqEBJcG2m0Npz6yqcIAelvwVzWzfQ2ECaMMpoHXFHOhagca8y4YSgDZaSOUr8AxfE0xKPF9BazIKqgzhQiKMDh5DJGxP7bkJnuDu09oRWTYSAKwFzM415u1xHnxswsttGOJ9GOreXE5GjnL4MOYOGuWo-vzm8ud2HJnrakVvGLMDfoD_UeqpVBsu8A-QWfPeMK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanium+Vacancies+in+TiO2+Nanofibers+Enable+Highly+Efficient+Photodriven+Seawater+Splitting&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhang%2C+Yan%E2%80%90Xiang&rft.au=Wu%2C+Si%E2%80%90Ming&rft.au=Tian%2C+Ge&rft.au=Zhao%2C+Xiao%E2%80%90Fang&rft.date=2021-10-13&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=57&rft.spage=14202&rft.epage=14208&rft_id=info:doi/10.1002%2Fchem.202101817&rft.externalDBID=10.1002%252Fchem.202101817&rft.externalDocID=CHEM202101817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |