Titanium Vacancies in TiO2 Nanofibers Enable Highly Efficient Photodriven Seawater Splitting

Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to direct...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 27; no. 57; pp. 14202 - 14208
Main Authors Zhang, Yan‐Xiang, Wu, Si‐Ming, Tian, Ge, Zhao, Xiao‐Fang, Wang, Li‐Ying, Yin, Yi‐Xia, Wu, Lu, Li, Qian‐Ni, Zhang, Yue‐Xing, Wu, Jin‐Song, Janiak, Christoph, Ozoemena, Kenneth I., Shalom, Menny, Yang, Xiao‐Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 13.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long‐time stability in photodriven seawater splitting, including photocatalysis and photo‐electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic‐/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer. Erosion of corrosion: TiO2 nanofibers with rich Ti vacancies have been designed by a facile controllable calcination approach. They exhibit efficient charge transfer and resistance to corrosion by seawater owing to a unidirectional electron trap and superior H+ adsorption; which contribute to excellent activity and long‐time stability in photodriven seawater splitting. This study could provide a promising strategy for the design of efficient semiconductors in marine applications.
AbstractList Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long-time stability in photodriven seawater splitting, including photocatalysis and photo-electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic-/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer.Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long-time stability in photodriven seawater splitting, including photocatalysis and photo-electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic-/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer.
Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long‐time stability in photodriven seawater splitting, including photocatalysis and photo‐electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic‐/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer. Erosion of corrosion: TiO2 nanofibers with rich Ti vacancies have been designed by a facile controllable calcination approach. They exhibit efficient charge transfer and resistance to corrosion by seawater owing to a unidirectional electron trap and superior H+ adsorption; which contribute to excellent activity and long‐time stability in photodriven seawater splitting. This study could provide a promising strategy for the design of efficient semiconductors in marine applications.
Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long‐time stability in photodriven seawater splitting, including photocatalysis and photo‐electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic‐/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer.
Author Shalom, Menny
Wu, Lu
Li, Qian‐Ni
Ozoemena, Kenneth I.
Wu, Si‐Ming
Tian, Ge
Wu, Jin‐Song
Zhang, Yue‐Xing
Yang, Xiao‐Yu
Zhang, Yan‐Xiang
Zhao, Xiao‐Fang
Wang, Li‐Ying
Janiak, Christoph
Yin, Yi‐Xia
Author_xml – sequence: 1
  givenname: Yan‐Xiang
  surname: Zhang
  fullname: Zhang, Yan‐Xiang
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Si‐Ming
  surname: Wu
  fullname: Wu, Si‐Ming
  organization: Harvard University
– sequence: 3
  givenname: Ge
  surname: Tian
  fullname: Tian, Ge
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Xiao‐Fang
  surname: Zhao
  fullname: Zhao, Xiao‐Fang
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Li‐Ying
  surname: Wang
  fullname: Wang, Li‐Ying
  organization: The Chinese Academy of Sciences
– sequence: 6
  givenname: Yi‐Xia
  surname: Yin
  fullname: Yin, Yi‐Xia
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Lu
  surname: Wu
  fullname: Wu, Lu
  organization: Hubei University
– sequence: 8
  givenname: Qian‐Ni
  surname: Li
  fullname: Li, Qian‐Ni
  organization: Hubei University
– sequence: 9
  givenname: Yue‐Xing
  surname: Zhang
  fullname: Zhang, Yue‐Xing
  organization: Hubei University
– sequence: 10
  givenname: Jin‐Song
  surname: Wu
  fullname: Wu, Jin‐Song
  organization: Wuhan University of Technology
– sequence: 11
  givenname: Christoph
  surname: Janiak
  fullname: Janiak, Christoph
  organization: Heinrich-Heine-Universität Düsseldorf
– sequence: 12
  givenname: Kenneth I.
  surname: Ozoemena
  fullname: Ozoemena, Kenneth I.
  organization: University of the Witwatersrand
– sequence: 13
  givenname: Menny
  surname: Shalom
  fullname: Shalom, Menny
  organization: Ben-Gurion University of the Negev
– sequence: 14
  givenname: Xiao‐Yu
  surname: Yang
  fullname: Yang, Xiao‐Yu
  email: xyyang@whut.edu.cn, xyyang@seas.harvard.edu
  organization: Harvard University
BookMark eNpd0M9LwzAUwPEgE9ymV88BL14686NNm6OM6YTphE1PQkjTly2jTWt_OPbf2zHZwdPjwYfH4ztCA196QOiWkgklhD2YLRQTRhglNKHxBRrSiNGAxyIaoCGRYRyIiMsrNGqaHSFECs6H6GvtWu1dV-BPbbQ3DhrsPF67JcNv2pfWpVA3eOZ1mgOeu802P-CZta6XvsXv27Its9r9gMcr0HvdQo1XVe7a1vnNNbq0Om_g5m-O0cfTbD2dB4vl88v0cRFUTIg4kGGWcSmpkcQaEwLT1iRxFvKQpobZJARIM2FZQiykEILVFsCGhGecZCloPkb3p7tVXX530LSqcI2BPNceyq5RLBIk4ZGI4p7e_aO7sqt9_12vEkolj-OoV_Kk9i6Hg6pqV-j6oChRx9LqWFqdS6vpfPZ63vgvBkN3tA
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202101817
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 14208
ExternalDocumentID CHEM202101817
Genre article
GrantInformation_xml – fundername: China-Deutsche Forschungsgemein-schaft project
  funderid: JA466/39-1
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2019A1515110435
– fundername: FRFCU
  funderid: 19lgzd16
– fundername: Guangdong Province International Scientific and Technological Cooperation Projects
  funderid: 2020A0505100036
– fundername: Sino-German Center COVID-19 Related Bilateral Collaborative Project
  funderid: C-0046
– fundername: the joint National Natural Science Foundation project
  funderid: 51861135313
– fundername: Jilin Province Science and Technology Development Plan
  funderid: 20180101208JC
– fundername: International Science and Technology Cooperation Programme
  funderid: 2015DFE52870
– fundername: South Africa's National Research Foundation
  funderid: No. 113638
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
7SR
8BQ
8FD
AEYWJ
AGHNM
AGYGG
JG9
K9.
7X8
ID FETCH-LOGICAL-p2667-94dd3991c90fcc4e2afc87d4341bc2f84eebd6f280febe4efafeef403d30dbea3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 05:26:55 EDT 2025
Fri Jul 25 10:32:53 EDT 2025
Wed Jan 22 16:27:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 57
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2667-94dd3991c90fcc4e2afc87d4341bc2f84eebd6f280febe4efafeef403d30dbea3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2581193775
PQPubID 986340
PageCount 7
ParticipantIDs proquest_miscellaneous_2560835657
proquest_journals_2581193775
wiley_primary_10_1002_chem_202101817_CHEM202101817
PublicationCentury 2000
PublicationDate October 13, 2021
PublicationDateYYYYMMDD 2021-10-13
PublicationDate_xml – month: 10
  year: 2021
  text: October 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 95
2015; 14
2017; 1
2015; 5
2020; 20
2019; 31
2019; 55
2019; 10
2017; 46
2014; 26
2006; 110
2011; 10
2020; 13
2020; 400
2011; 4
2013; 6
2014; 136
2014; 114
1998; 44
2018; 47
2014; 43
2017; 139
2018; 24
2014; 156–157
2010; 22
2021; 57
1995; 84
2018; 8
2014; 2
2015; 137
1991; 23
2017; 10
2010; 497
2010; 132
1980; 5
2019; 259
1999; 11
2018; 30
2013; 495
2018; 11
2016; 28
2018; 10
2003; 64
2005; 78
2017; 545
2016; 9
2018; 13
References_xml – volume: 13
  start-page: 2313
  year: 2020
  end-page: 2322
  publication-title: Nano Res.
– volume: 10
  start-page: 434
  year: 2011
  end-page: 438
  publication-title: Nat. Mater.
– volume: 28
  start-page: 1917
  year: 2016
  end-page: 1933
  publication-title: Adv. Mater.
– volume: 137
  start-page: 2975
  year: 2015
  end-page: 2983
  publication-title: J. Am. Chem. Soc.
– volume: 495
  start-page: 215
  year: 2013
  end-page: 219
  publication-title: Nature
– volume: 24
  start-page: 13246
  year: 2018
  end-page: 13252
  publication-title: Chem. Eur. J.
– volume: 136
  start-page: 8504
  year: 2014
  end-page: 8507
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 10020
  year: 2017
  end-page: 10028
  publication-title: J. Am. Chem. Soc.
– volume: 84
  start-page: 285
  year: 1995
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 11
  start-page: 4077
  year: 2018
  end-page: 4085
  publication-title: ChemSusChem
– volume: 110
  start-page: 18492
  year: 2006
  end-page: 18495
  publication-title: J. Phys. Chem. B
– volume: 44
  start-page: 597
  year: 1998
  end-page: 603
  publication-title: Electrochim. Acta
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 2770
  year: 1999
  publication-title: Chem. Mater.
– volume: 545
  start-page: 80
  year: 2017
  publication-title: Nature
– volume: 13
  start-page: 1609
  year: 2018
  end-page: 1615
  publication-title: Chem. Asian J.
– volume: 114
  start-page: 9919
  year: 2014
  end-page: 9986
  publication-title: Chem. Rev.
– volume: 259
  year: 2019
  publication-title: Appl. Catal. B
– volume: 26
  start-page: 4711
  year: 2014
  end-page: 4716
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3151
  year: 2016
  end-page: 3160
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2275
  year: 2018
  end-page: 2284
  publication-title: Nanoscale
– volume: 156–157
  start-page: 116
  year: 2014
  end-page: 121
  publication-title: Appl. Catal. B
– volume: 400
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 11642
  year: 2019
  end-page: 11642
  publication-title: Chem. Commun.
– volume: 5
  start-page: 13801
  year: 2015
  end-page: 13801
  publication-title: Sci. Rep.
– volume: 30
  year: 2018
  publication-title: Nat. Mater.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 347
  year: 2013
  end-page: 37
  publication-title: Energy Environ. Sci.
– volume: 95
  start-page: 69
  year: 1995
  end-page: 96
  publication-title: Chem. Rev.
– volume: 20
  start-page: 3122
  year: 2020
  end-page: 3129
  publication-title: Nano Lett.
– volume: 43
  start-page: 5234
  year: 2014
  end-page: 5244
  publication-title: Chem. Soc. Rev.
– volume: 78
  start-page: 1595
  year: 2005
  end-page: 1607
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 14
  start-page: 1245
  year: 2015
  end-page: 1251
  publication-title: Nat. Mater.
– volume: 4
  start-page: 4046
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 3344
  year: 2014
  end-page: 3351
  publication-title: J. Mater. Chem. A
– volume: 497
  start-page: 420
  year: 2010
  end-page: 427
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 481
  year: 2017
  end-page: 558
  publication-title: Chem. Soc. Rev.
– volume: 132
  start-page: 4438
  year: 2010
  end-page: 4444
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 57
  start-page: 189
  year: 2021
  end-page: 197
  publication-title: J. Energy Chem.
– volume: 22
  start-page: 951
  year: 2010
  end-page: 956
  publication-title: Adv. Mater.
– volume: 5
  start-page: 401
  year: 1980
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 64
  start-page: 1057
  year: 2003
  end-page: 1067
  publication-title: J. Phys. Chem. Solids
– volume: 10
  start-page: 4544
  year: 2017
  end-page: 4551
  publication-title: ChemSusChem
– volume: 23
  start-page: 259
  year: 1991
  end-page: 299
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 110
  start-page: 16270
  year: 2006
  end-page: 16282
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 8
  year: 2018
  end-page: 17
  publication-title: Nano Energy
– volume: 55
  start-page: 42
  year: 2019
  end-page: 48
  publication-title: Nano Energy
SSID ssj0009633
Score 2.4857638
Snippet Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 14202
SubjectTerms Catalysts
Charge transfer
Chemistry
Corrosion mechanisms
Corrosion resistance
Electron transfer
Electrons
hierarchical nanostructures
Hydrogen
Hydrogen production
Metal oxide semiconductors
Nanofibers
photo-/electrodirected catalysis
Salinity
Salinity effects
Seawater
seawater splitting
Splitting
Sustainable production
Titanium
Titanium dioxide
Vacancies
Title Titanium Vacancies in TiO2 Nanofibers Enable Highly Efficient Photodriven Seawater Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202101817
https://www.proquest.com/docview/2581193775
https://www.proquest.com/docview/2560835657
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xLk6nRPC1W5emTfcoY2MIXnCb7EEoSZPgUNuxC6K_3nPSXX3Ut5Y20JycnO-jOec7hFwbgFwAEu1pZXyPh1J5UkW-Z7kEcED5D471znf3UafPbwfhYK2Kv9CHWP5ww53h4jVucKkmtZVoKMwJK8mZk5zCcnJM2EJW9LTSjwLvKnrJc-GhButCtdFntc3hG_xynaU6mGnvEbn4wCK75K06m6pq-v1Lu_E_M9gnu3MOSm8KpzkgWyY7JNvNReu3I_LSGwJnHM4-6LNMXfveCR1mtDd8YBTCMfijAtZIW67uimKqyPsXbTkxCsAw-viaT3M9xjhKu0Z-Ap0d0y6wXZdjfUz67Vav2fHmbRi8EaC38GC1NNCYetrwbZpyw6RNY6E54J9KmY25MUpHlsW-BY_gxkprjOV-oAMfPEAGJ6SU5Zk5JZQJq63hIdc-50LUGwYCbhTJUFtp4jQok8piGZL5XpokLIzrQDOFCMvkavkYLIJHGzIz-QzfiZBLRqEoE-ZsnowKtY6k0GVmCVo7WVo7QcWJ5d3ZXwadkx28RiCrBxVSmo5n5gIYylRdOi_8AQ9t4Dc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCjiirkbgGUseJwxGhorIjKIgDUmTHtqiAtCqtEHw9M05TliMcs1hKxuN5L87MG4Adi5CLQGICo20YiFjpQOkkDJxQCA4k_yGo3vn8ImneipP7uMompFqYUh9itOFGK8PHa1rgtCG996Uaii9FpeTca07JcZiktt7-q-r6S0EK_avsJi9kQCqslW5jyPd-jv_BML_zVA80R7Ogq0cs80uedgd9vZt__FJv_Nc7zMHMkIayg9Jv5mHMFgswdVh1f1uEh1YbaWN78MLuVO47-L6ydsFa7UvOMCKjS2okjqzhS68YZYs8v7OG16NAGGNXj51-x_QolLIbq96Q0fbYDRJen2a9BLdHjdZhMxh2Ygi6COAywAkzyGTq-X7o8lxYrlyeSiMQAnXOXSqs1SZxPA0dOoWwTjlrnQgjE4XoBCpahomiU9gVYFw646yIhQmFkLK-bzHmJomKjVM2zaMarFfzkA2X02vG47SOTFPKuAbbo8toEfq7oQrbGdA9CdHJJJY14N7oWbcU7MhKaWaekbWzkbUzEp0YHa3-ZdAWTDVb52fZ2fHF6RpM03nCtXq0DhP93sBuIGHp603vkp8bt-RS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD7xkqgv3o0oak18HZSuW-ejEYh3jYDhwWTp1jYSdRCEGP31nnaA6KM-7tJkO_16vi9bz3cAjjRSLhKJ8lSiqccDmXgyCalnuERysPYf3NY7X9-EZy1-0Q7aU1X8uT_E5IObXRkuX9sF3lOm_G0aiu9kK8mZs5wSszDPQxpZXFfvvw2kEF55M3kuPGvCOrZtpKz8c_wPgTktUx3P1FdAjp8w317yXBoOklL6-cu88T-vsArLIxFKTnLUrMGMztZh8XTc-20DHpsdFI2d4St5kKnr3_tGOhlpdm4ZwXyMgExQNpKaK7widq_IywepOTcKJDFy99QddFXfJlLS0PId9WyfNFDuuk3Wm9Cq15qnZ96oD4PXQ_oWHk6XQh1TSY-pSVOumTRpJBRHAkxSZiKudaJCwyJqEBJcG2m0Npz6yqcIAelvwVzWzfQ2ECaMMpoHXFHOhagca8y4YSgDZaSOUr8AxfE0xKPF9BazIKqgzhQiKMDh5DJGxP7bkJnuDu09oRWTYSAKwFzM415u1xHnxswsttGOJ9GOreXE5GjnL4MOYOGuWo-vzm8ud2HJnrakVvGLMDfoD_UeqpVBsu8A-QWfPeMK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanium+Vacancies+in+TiO2+Nanofibers+Enable+Highly+Efficient+Photodriven+Seawater+Splitting&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhang%2C+Yan%E2%80%90Xiang&rft.au=Wu%2C+Si%E2%80%90Ming&rft.au=Tian%2C+Ge&rft.au=Zhao%2C+Xiao%E2%80%90Fang&rft.date=2021-10-13&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=57&rft.spage=14202&rft.epage=14208&rft_id=info:doi/10.1002%2Fchem.202101817&rft.externalDBID=10.1002%252Fchem.202101817&rft.externalDocID=CHEM202101817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon